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Abstract

We consider domino tilings of three-dimensional cubiculated manifolds
with or without boundary, including subsets of Euclidean space and three-
dimensional tori. In particular, we are interested in the connected compo-
nents of the space of tilings of such regions under local moves. Building on
the work of the third and fourth authors [19], we allow two possible local
moves, the flip and trit. These moves are considered with respect to two
topological invariants, the twist and flux.

Our main result proves that, up to refinement,
• Two tilings are connected by flips and trits if and only if they have the
same flux.
• Two tilings are connected by flips alone if and only if they have the same
flux and twist.

1 Introduction

Tiling problems have received much attention in the second half of the twentieth
century: two-dimensional domino and lozenge tilings in particular, due to their
connection to the dimer model and to matchings in a graph. A large number of
techniques have been developed for solving various problems in two dimensions.
For instance, Kasteleyn [13], Conway and Lagarias [5], Thurston [25], Cohn,
Elkies, Jockush, Kuperberg, Larsen, Propp and Shor [12, 4, 7], and Kenyon,
Okounkov and Sheffield [15, 14] have used very interesting techniques, ranging
from abstract algebra to probability.

A number of generalizations of these techniques have been made to the three-
dimensional case. Randall and Yngve [23] considered tilings of “Aztec” octahedral
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and tetrahedral regions with triangular prisms, which generalize domino tilings
to three dimensions. Linde, Moore and Nordahl [18] considered families of tilings
that generalize rhombus (or lozenge) tilings to arbitrary dimensions. Bodini [2]
considered tiling problems of pyramidal polycubes. And, while the problem of
counting domino tilings is known to be computationally hard (see [22]), some
asymptotic results, including for higher dimensions, date as far back as 1966 (see
[11, 3, 10]).

Most relevant to the discussion in this paper are the problems of connectivity
of the space of tilings under local moves. A flip is the simplest local move: remove
two adjacent parallel dominoes and place them back in the only possible different
position. In two dimensions, any two tilings of a simply connected region are flip
connected; see e.g., [25, 24]. This is no longer the case when one considers tilings
in three dimensions.

Even for simple three-dimensional regions, the space of tilings is no longer
connected by flips. This is perhaps not surprising as the flip is inherently a two-
dimensional move. The trit is a three-dimensional local move, which lifts three
dominoes sitting in a 2 × 2 × 2 cube, no two of which are parallel, and places
them back in the only other possible configuration (see Figure 3). It is natural
to ask if these two moves, the flip and trit are enough to connect all tilings of
three-dimensional spaces. In general, the answer is again no. Here we consider
connectivity of tilings taking into account two topological invariants. In doing
so, we are able to characterize (up to refinement) when two tilings are connected
by flips or flips and trits.

The first invariant is the Flux of a tiling. The flux of a tiling of a region R
takes values in the first homology group H1(R;Z). The second invariant is the
twist of a tiling. The twist assumes values either in Z or in Z/mZ where m is a
positive integer depending on the value of the Flux. For contractible regions (such
as boxes), the twist assumes values in Z. If R is a torus of the form Z3/L, where
L is spanned by (a, 0, 0), (0, b, 0), (0, 0, c) (with a, b, c even positive integers) then
the twist assumes values in Z if Flux is 0 and in some Z/mZ otherwise. The twist
was first introduced by Milet and Saldanha [19, 20] for particularly nice regions.
In that context, the twist has a simple combinatorial definition. Unfortunately,
it does not extend to the more general tiling domains considered here.

Our new definition of twist, and our introduction of Flux relies on the con-
struction of auxiliary surfaces. The difficulty is that the required surfaces may
not always exist. The difficulty is addressed by using the concept of refinement.
A region R is refined by decomposing each cube of R into 5×5×5 smaller cubes.
Refinement guarantees the existence of auxiliary surfaces which, borrowing from
knot theory, we call Seifert surfaces.

Informally, Flux measures how a tiling flows across a surface boundary. If
two tilings are flip and trit connected, they must have equal Flux. The twist
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measures how “twisted” a tiling is by trits: under a trit move the twist changes
by exactly one. A key property is that if two tilings are in the same flip connected
component, then they must have equal twist. The converse is false in general.

The twist can also be interpreted as a discrete analogue of helicity arising in
fluid mechanics and topological hydrodynamics, see e.g. [21, 1, 16]∗. The helicity
of a vector field on a domain in R3 is a measure of the self linkage of field lines.
An important recent result shows that helicity is the only integral invariant of
volume-preserving transformations [8].

Our main result is a characterization of the connectedness of three-dimensional
tilings by flips and trits with respect to flux and twist.

Theorem 1. Consider a cubiculated region R and two tilings t0 and t1 of R.

(a) There exists a sequence of flips and trits taking a refinement of t0 to a
refinement of t1 if and only if Flux(t0) = Flux(t1).

(b) There exists a sequence of flips taking a refinement of t0 to a refinement of
t1 if and only if Flux(t0) = Flux(t1) and Tw(t0) = Tw(t1).

In general, the refinement condition is necessary in the statement of the the-
orem. However, it is not known if the refinement condition may be dropped in
certain special cases. For nice regions (such as boxes) there is empirical evidence,
see [19, 9], that refinement is almost never necessary; for item (a) it may never
be necessary.

Section 2 contains preliminaries for the regions we will consider. The two
local moves, the flip and trit, are introduced in Section 3. Section 4 introduces
the flux. In Sections 5 and 6 we work heavily with discrete surfaces leading
to the definition of the twist in Section 7. Section 8 extends the concept of
height functions to our setting where they are better described as height forms.
Theorem 1 is proved in Section 9. We end with a discussion of further questions
and conjectures concerning three-dimensional tilings.

The authors are thankful for the generous support of CNPq, CAPES, FAPERJ
and a grant from the Brown-Brazil initiative.

2 Preliminaries

2.1 Cubiculated Regions

In this paper, we will consider tilings of certain three-dimensional regions. By
a cubiculated region R, we will mean a cubical complex embedded as a finite

∗The authors thank Yuliy Baryshnikov for bringing this concept to our attention.
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polyhedron in RN , for some N , which is also a connected oriented topological
manifold of dimension three with (possibly empty) boundary ∂R. We assume
that: (i) interior edges of R are surrounded by precisely four cubes; (ii) cubes
are painted black or white such that two adjacent cubes have opposite colors; and
(iii) the number of black cubes equals the number of white cubes. It follows from
this definition that ∂R is also a polyhedron and an oriented topological manifold
of dimension two.

Example 2.1. A box is the cubiculated region [0, L]× [0,M ]× [0, N ], where L,
M and N are positive integers, at least one of them even. The torus T = R3/L,
where L ⊂ Z3 is a three-dimensional lattice such that (x, y, z) ∈ L implies x+y+z
is even, is a cubiculated region without boundary.

We also consider the dual cubical complex R∗ ⊂ R. Vertices of R∗ are centers
of cubes in R and edges of R∗ join centers of adjacent cubes in R. There is a
cube in R∗ around each interior vertex of R: its eight vertices are the centers of
the cubes in R adjacent to the interior vertex. The dual cubical complex R∗ may
or may not be a manifold, for instance, there may exist edges of R∗ not adjacent
to any cube of R∗.

We will also work with the graph G(R) and its dual G(R∗). The vertices and
edges of G(R) are just the vertices and edges of R; in other words, G(R) is the 1-
skeleton of R. Similarly, G(R∗) is the 1-skeleton of R∗ which is a bipartite graph.
Tiling regions are often simply regarded as subgraphs of G(R∗). It is important
to note that the regions we are working with here must be topological manifolds,
therefore it does not suffice to consider arbitrary subgraphs of the Z3 lattice.

A domino (or domino brick) is the union of two adjacent cubes in R and a
(domino) tiling of R is a collection of dominoes with disjoint interior whose union
is R. Thus, a tiling of R is equivalent to a matching of the graph G(R∗). When
seen as an edge in G(R∗), a domino is called a dimer.

2.2 Cycles

An important concept to have in mind throughout this paper is the interpretation
of the difference of two tilings as a union of disjoint cycles.

An embedded cycle is an injective continuous map γ : S1 → R∗ ⊂ R whose
image is a union of vertices and edges of R∗. Thus, an embedded cycle is a cycle
in the graph theoretical sense for G(R∗).

We will also consider cycles homologically as elements of Z1(R∗;Z), the kernel
of the boundary map from one to zero dimensional cells of R∗. Similarly, since a
dimer connects a pair of vertices of opposite color, we may also think of dimers
as oriented edges pointing from the center of a white cube to the center of a black
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cube (by convention), i.e., as generators of C1(R∗;Z), the one dimensional chain
group.

With this point of view in mind, given two tilings t0 and t1, we define t1 − t0
to be the union of the dimers in both tilings, with the dimers in t0 having their
orientations reversed. Hence, t1−t0 is the union of disjoint cycles; cycles of length
2 in the graph theoretical sense are called trivial cycles and are usually ignored.
Figure 1 shows a simple example.

Figure 1: The two tilings in Figure 2 plotted together as a union of oriented
dimers yielding three curves, one of which is trivial.

2.3 Refinements

A region R is refined by decomposing each cube of R into 5×5×5 smaller cubes;
the corners and the center are painted the same color as the original cube. This
defines a new cubiculated region R′. We sometimes need to refine a region R not
once but k times: we then call the resulting region R(k). As topological spaces,
R and R′ are equal. A tiling t is refined by decomposing each domino of t into
5× 5× 5 smaller dominoes, each one parallel to the original domino. Again, this
defines a new tiling t′; if we refine k times we obtain t(k).

Some comments on the choice of 5 × 5 × 5 are in order. Dividing each cube
into 2× 2× 2 smaller cubes would erase the distinction between black and white
and make the entire discussion trivial. Dividing into 3×3×3 smaller cubes works
for our purposes but the fact that the central cube in this small block has the
opposite color as the corner is a source of unnecessary confusion. What we need,
therefore, is a positive integer congruent to 1 mod 4; 5 being the smallest.

3 Local Moves: Flips and Trits

A flip is a move that takes a tiling t0 into another tiling t1 by removing two
parallel dimers that form a 2 × 2 × 1 “slab” and placing them back in the only
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other position possible. The flip connected component of a tiling t is the set of
all tilings that can be reached from t after a sequence of flips. For instance, the
3 × 3 × 2 box has 229 total tilings, but only three flip connected components.
Two components contain just one tiling each; i.e. there are no possible flip moves
from these tilings, see Figure 2.

Figure 2: The two tilings of a 3×3×2 box that have no possible flips. Note that
the tilings differ only in that the “top” and “bottom” levels have been swapped.

A trit is a move involving three dominoes which sit inside a 2 × 2 × 2 cube
where each domino is parallel to a distinct axis. We thus necessarily have some
rotation of Figure 3. The trit that takes the drawing at the left of Figure 3 to
the drawing at the right is a positive trit. The reverse move is a negative trit.
Notice that the 2× 2× 2 cube need not be entirely contained in R. On the other
hand, not just the six cubes directly involved in the trit but also at least one of
the other two must be contained in R otherwise R is not a manifold.

Figure 3: The anatomy of a positive trit (from left to right). The trit that takes
the right drawing to the left one is a negative trit. The empty corners may
represent either partial dimers that are not contained in the 2 × 2 × 2 cube or
cubes that are not contained in the region (for instance, if the region happens
not to be a box).

Flips and trits behave well with respect to refinement. If t0 and t1 differ by a
flip, then their refinements differ by a sequence of 125 flips. If t0 and t1 differ by
a trit, then their refinements differ by a a trit and a sequence of flips. Therefore
we have:

Proposition 3.1. If t0 and t1 are connected by flips (resp. flips and trits) then
their refinements are also connected by flips (resp. flips and trits).
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The converse does not hold however. Already in the 4×4×4 box, there exist
tilings t0 and t1 which are not mutually accessible by flips but such that t

(1)
0 and

t
(1)
1 are.

4 Flux

In this section we define and develop the concept of Flux via homology theory, a
related notion of flux through a surface will be give in Section 6.

Recall that if t0 and t1 are two tilings, then t1 − t0 ∈ Z1(R∗;Z), and the
equivalence class [t1 − t0] is an element of the homology group H1(R∗;Z) (which
is naturally identified with H1(R;Z) since the inclusion R∗ ⊂ R is a homotopy
equivalence).

Definition 4.1. Let t⊕ be a fixed base tiling. The Flux of a tiling t is defined as:

Flux(t) = [t− t⊕] ∈ H1(R∗;Z).

Notice that if t0 and t1 differ by a flip then t1− t0 is the boundary of a square.
Similarly, if t0 and t1 differ by a trit then t1− t0 is the boundary of a sum of three
squares. In either case we have:

Proposition 4.2. If t0 and t1 differ by flips and trits, then Flux(t0) = Flux(t1).

Again, the converse is not true. For L = 8Z3, let R be the torus R3/L. It is
possible to construct two tilings of R for which the Flux is 0 but from at least
one tiling no flip or trit is possible, see [9].

While the converse is not true, our main Theorem provides the correct con-
verse to this statement – there exist refinements of the two tilings that are con-
nected by flips and trits if and only if the Flux are equal. First, we show that
the Flux is preserved under refinement.

Lemma 4.3. If t′ is the refinement of a tiling t, then Flux(t′) = Flux(t).

Proof. An embedded cycle γ : S1 → R∗ is refined by merely interpreting it as
γ′ = γ : S1 → (R′)∗. A tiling t of R is tangent to an embedded cycle if every
vertex of R∗ in the image γ[S1] is one of the endpoints of a dimer d contained in
the tiling t and in γ[S1]. Unfortunately, if t is tangent to γ it does not follow that
t′ is tangent to γ′. In this situation, we therefore define a modified refinement t(1;γ)

which is tangent to γ. At each 5× 5× 5 cube around a vertex of R∗ belonging to
the image of γ, perform a flip in t′ if needed (as in Figure 4) to obtain the required
tiling t(1;γ) tangent to γ′. We can iterate this procedure to define t(k;γ) which is
tangent to γ(k) and connected to t(k) by flips in the neighborhood of γ. Similarly,
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Figure 4: Performing flips after a refinement in order to obtain a tiling tangent
to the boundary cycle.

consider two tilings t0 and t1 of R and let γ be the system of cycles t1− t0. Then
t
(k;γ)
0 and t

(k;γ)
1 are both tangent to γ(k). Moreover, a sequence of flips in the

neighborhood of γ yields new tilings t
[k;γ]
0 and t

[k;γ]
1 such that t

[k;γ]
1 − t[k;γ]

0 = γ(k).
If t⊕ is the base tiling of R, take t′⊕ to be the base tiling of R′. It then follows

from the construction of t
[k;γ]
1 that Flux(t′) = Flux(t).

5 Surfaces

In order to better understand the Flux, and to define the Twist, we will work
heavily with discrete surfaces. Consider a cubiculated region R and its dual R∗.
An embedded discrete surface in R∗ is a pair (S, ψ) where:

• S is an oriented topological surface with (possibly empty) boundary ∂S;

• ψ : S → R∗ ⊂ R is an injective continuous map whose image is a union of
vertices, edges and squares of R∗.

We will sometimes abuse notation using S to refer to the domain surface S,
the image ψ[S] and the element of C2(R∗;Z) obtained by adding the squares in
ψ[S] (with the orientation given by S and ψ).

Figure 5: An embedded discrete surface which consists of five squares. The
thicker line represents the oriented boundary of the surface.

Figure 5 shows a simple embedded discrete surface. Since both S and R are
oriented, this defines an orientation transversal to S. In other words, at each
square of S there is a well defined normal vector.
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Figure 6: Two possible Seifert surfaces.

Consider a tiling t0 of a region R and an embedded discrete surface S. The
tiling and the surface are tangent at the boundary if t0 and the system of cycles
ψ|∂S are tangent. In particular, if ∂S = ∅ then any tiling is tangent at the
boundary to S. The tiling and the surface are tangent if they are tangent at the
boundary and, furthermore, every vertex of R∗ in S is an endpoint of a dimer in
t0 and S.

Refinements are important throughout the paper and some additional remarks
on the subject are in order. Consider a tiling t0 of R tangent to S. The refinement
t′0 of t0 is not tangent to S but, as in Figure4, a few flips are sufficient to go from t′0
to a tiling t1 which is tangent to S. We will pay little attention to the distinction
between t′0 and t1 and speak of t1 as the refinement of t0.

We shall also have to consider tilings t0 of R which are tangent to ∂S but
which cross S (that is, fail to be tangent to S). If t0 crosses S at m vertices, then
the refinement t′0 crosses S at many more points (between 9m and 25m). Again,
a few flips take t′0 to t1 which crosses S at the original m points only; we often
simply call t1 the refinement of t0, slightly abusing notation.

Definition 5.1. A (discrete) Seifert surface for a pair of tilings (t0, t1) of a
region R is a connected embedded discrete surface S where the restriction ψ|∂S is
the collection of nontrivial cycles of t1 − t0.

By definition, both t0 and t1 are tangent at the boundary to S. The tiling t0
is tangent to S if and only if t1 is. As above, if S is a Seifert surface for (t0, t1)
then its refinement S ′ is a Seifert surface for the pair of refinements (t′0, t

′
1).

Example 5.2. If t0 and t1 differ by a flip, a unit square is a valid Seifert surface
for the pair (the simplest surface, but not the only one). If t0 is obtained from
t1 after a single positive trit, we may assume that the situation is, perhaps after
some rotation, as portrayed in Figure 6. Note that in order to build the surfaces
portrayed in Figure 6, we need that the interior point of the surface in either case
is a center of a cube in R. This condition is satisfied in at least one of the cases
since ∂R is a manifold.

It follows from homology theory that in order for a discrete Seifert surface to
exist, we must have Flux(t0) = Flux(t1). The converse is not true: in the example
of Figure 1 there exists a disconnected surface (two disks) and a connected surface
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which does not respect orientation (a cylinder) but no discrete Seifert surface for
the pair. This is one of several occasions when taking refinements solves our
difficulties.

Lemma 5.3. Consider a cubiculated region R and two tilings t0 and t1 of R. If
Flux(t0) = Flux(t1) then for sufficiently large k ∈ N there exists a discrete Seifert
surface in (R(k))∗ for the pair (t0, t1).

First, we need the following purely topological lemma. The statement is well-
known for sufficiently nice regions, see e.g. [17]. As we were unable to find a proof
at our level of generality, we include one here for completeness.

Lemma 5.4. Consider a cubiculated region R and two tilings t0 and t1 of R. If
Flux(t0) = Flux(t1) then there exists a smooth Seifert surface in (R(1))∗ for the
pair (t0, t1).

Proof. To simplify notation, write L for the difference t1 − t0. The refinement
guarantees that L is contained in the interior of R. The hypothesis Flux(t0) =
Flux(t1) guarantees that L is a boundary, i.e., that there exists s in C2(R(1))∗

with ∂(s) = L.

For each vertex v of R, construct a small open ball bv around v. For each
edge e of R, construct a thin open cylinder ce around e. Let R0 = R \ {bv ∪ ce},
R minus the union of all bv and ce. Let R1 = R \ {bv}, R minus the union of all
bv. Thus R0 ⊂ R1 ⊂ R. We construct a smooth Seifert surface in three stages:
first in R0, then extend it to R1 and finally to R.

For R0, we consider each square a of R and its coefficient sa in s. Orient the
square a so that sa ≥ 0. Construct S0 in R0 by taking sa translated copies of a,
with boundary falling outside R0.

Next consider each edge e. There are two possibilities: e may or may not
belong to the support of L. First assume it does not. Examine the boundary of
ce: we see a number of line segments (the intersection of the squares in S0 with
the boundary of ce). This can be described by a family of 2k points in a circle, k
positive and k negative. It is possible to match positive and negative points and
draw curves joining them so that the curves do not cross. Indeed, by induction,
take two adjacent points, one positive and one negative, and join them by a curve
near the circle. For the other points construct segments taking to a smaller circle.
Now use induction. Take the Cartesian product of these curves by e to construct
a surface in R1.

Now consider the case where e belongs to the support of L. Similar to above,
we have k positive points on a circle, (k + 1) negative points on the circle and
a positive origin. The same inductive proof constructs smooth disjoint curves
joining the points (the last negative point on the circle will be connected to the
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center). Again, take the Cartesian product of these curves with e to construct a
surface in R1. This completes the construction of S1 in R1.

We now extend the surface to R, that is, we extend it to each ball bv. Again
we consider two cases: v in the support of L and v not in support of L. First
consider v not in the support of L. Examine the boundary of bv, a sphere Sv. Our
previous construction obtains a family of disjoint oriented simple closed curves
in Sv. Attach disjoint disks contained in bv with these curves as boundary: Take
a point in Sv not in the cycles and call it infinity, so that Sv is identified with the
plane. Cycles are now nested: start with an innermost cycle and close it; proceed
along cycles to the outermost.

Next, consider the case where v is in the support of L. Again examine the
sphere Sv. We have a family of disjoint oriented simple curves: one of them is a
segment (with two endpoints), the others are closed (cycles). Take the “point at
infinity” in Sv very near the segment so that in the plane the segment is outside
the cycles. Close cycles from inner to outermost.

Finally, consider the segment. Notice it can be long, perhaps going several
times around a face of the octahedron formed on the sphere by the adjacent cubes.
Take a smooth 1-parameter family of diffeomorphisms keeping the endpoints of
the segment fixed and taking the segment to a geodesic on the sphere (this may
involve rotations around endpoints). Apply this family of diffeomorphisms on
spheres of decreasing radii and complete the surface with a plane near the vertex.
This completes the construction of S.

Proof of Lemma 5.3. Construct a smooth Seifert surface ψ∞ : S → R (as in
Lemma 5.4). A sufficiently large value of k allows for an approximation ψ of ψ∞
such that ψ is a discrete Seifert surface as follows:

Consider a smooth Seifert surface S as in Lemma 5.4. Let K be the maximum
sectional curvatures of S, up to and including the boundary. Take n such that
K < 5(n−1) and refine n times so that the radii of curvature at any point is always
more than twice the diagonal of any cube. Now classify cubes near the surface
(meaning with center at a distance < 5/2 from the surface, thus including cubes
crossing the surface) as above or below S according to the orientation of S and
the measure of the cube on each side of S. The tiled surface S lies between cubes
which are above and cubes below (and therefore closely approximates S). The
curvature estimate implies the good behavior of S.

6 Flux through surfaces

We now introduce flux through surfaces. We relate this notion with the Flux(t)
at the end of the section. The interpretation here provides motivation for our
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choice of terminology; we think of tilings as flowing through regions and across
surfaces.

Let t be a tiling and S an embedded discrete surface such that t is tangent
to S at the boundary. For each vertex v of R∗ in the interior of S consider the
only dimer d of t adjacent to v. Draw a small vector along d starting from v: its
endpoint may be on S (if d is contained in S), above, or below S as determined
by the normal vectors to squares of S.

Definition 6.1. For a surface S and a tiling t, define the flux of t through S,
φ(t;S) ∈ Z, as follows. Set

ϕ(v; t;S) = color(v) ·


+1, endpoint above ψ[S];

0, endpoint on ψ[S];

−1, endpoint below ψ[S];

φ(t;S) =
∑
v

ϕ(v; t;S),

where the color of v is +1 if v corresponds to a black tile and −1 if v corresponds
to a white tile.

Example 6.2. In Figure 7, we see four dimers intersecting the interior of a
surface. The horizontal dimer completely contained in the surface will contribute
0 to the flux.

Figure 7: An example of flow through a surface. Only a few representative dimers
have been shown; one sitting strictly in the interior of the surface, one above and
one below.

The next Theorem shows that with the definition above, the flux of a tiling
through the boundary of a manifold is always zero.

Theorem 2. Let R be a cubiculated region and t a tiling of R. Let ψ : S → R∗

be an embedded discrete surface with ∂S = ∅. Assume there exists a topological
manifold M1 ⊂ R∗ with ∂M1 = S. Then, φ(t;S) = 0.

Proof. We start by showing the following enumerative result. Let bint and wint be
the number of black and white vertices of R∗ in the interior of M1; let b∂ and w∂
be the number of black and white vertices of R∗ on S. Then 2bint+b∂ = 2wint+w∂.
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To prove this claim, let M2 be a copy of M1 with reversed orientation. Glue
M1 and M2 along S to define a topological 3-manifold M . The manifold M is
oriented, has empty boundary, and inherits from M1 and M2 a cell decomposition,
with vertices painted black and white. Let fi(M) be the number of faces of
dimension i in this cell decomposition. Since the Euler characteristic of M equals
0,

f0(M)− f1(M) + f2(M)− f3(M) = 0.

Also, f2(M) = 3f3(M): since M has no boundary, each face must be shared by
exactly two cubes and each cube has six faces.

Our enumerative claim is equivalent to saying that the number of black ver-
tices of M equals the number of white vertices. In order to see this, we first build
another 3-complex T for the topological manifold M in the following way: the
vertices of T are the white vertices of M ; the edges of T are the diagonals that
connect white vertices in each (two-dimensional) face of M ; the two-dimensional
faces of T are the four triangles in each cube that form a regular tetrahedron
with its four white vertices; finally, the three-dimensional faces of T come in two
flavors: the regular tetrahedrons inside each cube, and cells around black vertices
of M (these are regular octahedra if the vertex is in the interior of either Mi but
may have some other shape if the vertex belongs to S).

We have f0(T ) = 2wint +w∂, f1(T ) = f2(M) (each face of M contains exactly
one edge of T ), f2(T ) = 4f3(M) (each cube of M contains exactly four faces of
T ) and f3(T ) = f3(M) + 2bint + b∂ (one tetrahedron inside each cube, one other
cell around each black vertex). Thus

0 = f0(T )− f1(T ) + f2(T )− f3(T )

= (2wint + w∂ − 2bint − b∂) + (3f3(M)− f2(M)) = 2wint + w∂ − 2bint − b∂.

Now, each black vertex on S must match either a white vertex in the interior
of M1, on ∂M1 = S, or in the exterior of M1: let b1, b2 and b3 be the number of
vertices of each kind so that b1 + b2 + b3 = b∂. Define w1, w2 and w3 similarly, so
that w1+w2+w3 = w∂. Clearly, b2 = w2. By definition, φ(t;S) = b3−b1−w3+w1.
Counting vertices in the interior of M1 gives b1−w1 = wint−bint so that φ(t;S) =
(b∂ − w∂)− 2(b1 − w1) = 0.

The remainder of the section develops that the flux is not dependent on a
precise surface, but can be defined in terms of homology classes. If S0 and S1 are
oriented surfaces with ∂S0 = ∂S1 then let S1 − S0 denote the surface obtained
by gluing S1 and S0 along the boundary and reverting the orientation of S0.
Furthermore, if ψi : Si → R are continuous maps, let ψ1 − ψ0 : S1 − S0 → R
denote the map defined by (ψ1 − ψ0)(p) = ψi(p) if p ∈ Si.

The image, (ψ1−ψ0)[S1−S0], can be seen as an element of H2(R); the maps ψ0

and ψ1 are homological if (ψ1−ψ0)[S1−S0] = 0 ∈ H2(R). Note that if S0 and S1



14 Domino tilings of 3D tori — February 1, 2017

are smooth or topological oriented surfaces with ∂S0 = ∂S1 and ψi : Si → R are
smooth or topological embeddings such that there exists a topological manifold
M1 ⊂ R for which ψ1 − ψ0 : S1 − S0 → ∂M1 ⊂ R is an orientation preserving
homeomorphism then ψ0 and ψ1 are homological. On the other hand, if S0 and
S1 are smooth or topological oriented surfaces with ∂S0 = ∂S1 then the map
ψ1 − ψ0 : S1 − S0 → R is usually not an embedded surface.

Lemma 6.3. Let R be a cubiculated region and t be a tiling of R. Let S0 and
S1 be oriented surfaces with ∂S0 = ∂S1. Let ψi : Si → R∗ be embedded discrete
surfaces with (ψ0)|∂S0 = (ψ1)|∂S1. If t is tangent to (ψi)|∂Si

and ψ0 and ψ1 are
homological then φ(t, S0) = φ(t, S1).

We first construct a function ω, the winding number, taking integer values on
vertices of R (and therefore also cubes of R∗). Consider v0, v1 vertices of R: we
first show how to compute ω(v1)− ω(v0). Consider a simple path γ along edges
of R going from v0 to v1 (such a path exists since R is assumed to be connected).
Count intersections of γ with (the image of) ψ1 − ψ0. Notice that γ intersects
ψ1 − ψ0 at the centers of oriented squares: each intersection counts as +1 (resp.
−1) if the tangent vector to γ coincides (resp. or not) with the normal vector to
the square in ψ1 − ψ0. This total is ω(v1)− ω(v0).

Notice that the value of ω(v1) − ω(v0) does not depend on the choice of the
path γ. Indeed, take two such paths γ0 and γ1 and concatenate them to obtain
a closed path γ1 − γ0. Counting intersections with γ1 − γ0 as described in the
previous paragraph defined a linear map from C2(R∗) to Z and therefore an
element of C2(R∗) which is easily seen to be in Z2(R∗). Since ψ1−ψ0 is assumed
to belong to B2(R∗) their product must equal 0, yielding independence from path.
A similar argument shows that if v0 and v1 both belong to the boundary ∂R then
counting intersections with γ also defines an element of Z2(R∗) and therefore
ω(v1) − ω(v0) = 0. We may therefore define w so that if v ∈ ∂R then ω(v) = 0;
if ∂R = ∅ we have a degree of freeedom here and we choose w so that it assumes
the value 0 somewhere.

Proof of Lemma 6.3. Our proof works by induction of c = |maxω|+ |minω|. If
c = 0 then the surfaces ψ0 and ψ1 coincide and we are done. Let us consider the
case c = 1; without loss of generality, ω assumes the values 0 and 1. Let M1 ⊂ R∗

be the union of closed cubes centered at vertices v (of R) with ω(v) = 1. We
would like M1 to be a 3D manifold with boundary. Unfortunately, that is not
guaranteed. But this can easily be fixed. Start by refining R (and the surfaces),
so that now M1 is a union of 5× 5× 5 blocks of cubes. If M1 is not a manifold,
this means thare are bad edges (two alternate blocks present, two absent) or bad
vertices (more than one undesirable pattern). First fix the vertices by adding
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extra cubes; then the edges. This corresponds to constructing a chain of auxiliary
surfaces

ψ̃0 = ψ0, ψ̃1, ψ̃2, . . . , ψ̃N−1, ψ̃N = ψ1

such that for any k the pair ψ̃k−1, ψ̃k satisfies c = 1 and M1 a manifold.

v

Ψ1

Ψ0

Ψ

M1

Figure 8: Auxiliary surfaces as in the proof of Lemma 6.3.

We are therefore left with the case where ψ1−ψ0 is the boundary of a manifold
M1. It now appears that this case follows from Theorem 2. This is true but not
as trivial as it may seem at first. As in Figure 8, let S = ∂M1 and ψ be a
parametrization of S. What Theorem 2 tells us is that φ(t;S) = 0 but what we
need is that φ(t;S1)− φ(t;S0) = 0. In other words, we need∑

v

D(v) = 0; D(v) := ϕ(v; t;S1)− ϕ(v; t;S0)− ϕ(v; t;S). (1)

If v belongs to at most two surfaces then D(v) = 0. On the other hand, for v as
in Figure 8, D(v) = −1. Let Γ be the curve along which the three surfaces S0, S1

and S meet. A case by case analysis shows that for v ∈ Γ we have D(v) = 0 if v’s
partner also belongs to Γ and D(v) = − color(v) otherwise. Since Γ is balanced
this proves equation 1 and completes the proof of this case.

The general inductive step is now similar. Otherwise assume without loss of
generality that maxω = l > 0. Let Ml be the union of cubes of R∗ with center v
with ω(v) = l. As above, we may assume Ml to be a 3D manifold. Thus, Ml is a
3D manifold and its boundary ∂Ml consists of subsets of ψ0 and ψ1 meeting at
curves (in the simplest example, Ml is a ball, the two subsets are disks meeting
at a circle; this may get significantly more complicated but does not affect our
argument). Modify ψ0 to define ψ2 by discarding the subset of ψ0 in ∂Ml and
attaching instead the subset of ψ1 also in ∂Ml. The two surfaces ψ0 and ψ2
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are homological by construction and the difference ψ2 − ψ0 is the boundary of
M1. The case c = 1 above shows that φ(t, S0) = φ(t, S2). For the new winding
number ω̃ (defined for the pair ψ1 and ψ2) we have c̃ = c − 1: by induction we
are done.

Lemma 6.4. Consider a cubiculated region R, a tiling t of R, and an element
a ∈ H2(R;Z).

1. There exist a nonnegative integer k and an embedded discrete surface ψ :
S → (R(k))∗ such that ∂S = ∅ and ψ[S] = a.

2. Let k0 and k1 be nonnegative integers. Let ψ0 : S0 → (R(k0))∗ and ψ1 : S1 →
(R(k1))∗ be embedded discrete surfaces such that ∂S0 = ∂S1 = ∅. Assume
that ψ0[S] = ψ1[S] = a. Then φ(t(k0);S0) = φ(t(k1);S1).

Proof. As in the proof of Lemma 5.3, for any a ∈ H2(R;Z), there exists a smooth
embedded surface ψ∞ : S → R with ψ∞[S] = a (where S is a smooth closed
surface with ∂S = ∅). For sufficiently large k there is an embedded discrete
surface ψ : S → R approximating ψ∞ so that ψ[S] = a. The equality in item (2)
follows from Lemma 6.3.

Using this lemma, for a ∈ H2(R;Z), define φ(t; a) to be equal to φ(t(k);S) for
any embedded discrete surface ψ : S → (R(k))∗ such that ψ[S] = a (as an element
of H2(R;Z)).

Note that if t0 and t1 differ by a flip or trit then φ(t0; a) = φ(t1; a).

Lemma 6.5. Consider a cubiculated region R and tilings t0, t1 of R. If Flux(t0) =
Flux(t1) then φ(t0; a) = φ(t1; a) for all a ∈ H2(R;Z).

Proof. Let S be a discrete embedded surface in some refinement R(k) with ∂S = ∅.
Adding φ(t0;S) + φ(t1;S) gives a linear map from C1(R∗;Z) to Z. Boundaries
of squares are taken to 0 and therefore B1(R∗;Z) is contained in the kernel of
this map. Hence we have a map from H1(R∗;Z) to Z. By hypothesis [t1 − t0] =
0 ∈ H1 and therefore t1 and t0 are taken to the same number. In other words,
φ(t0;S) = φ(t1;S). Since this holds for all S, φ(t0; a) = φ(t1; a).

The converse does not hold. For example, let L be spanned by the vector
(0, 0, 4); let R ⊂ (R3/L) be the set of points (x, y, z) for which 0 ≤ x, y ≤ 4. Then,
one can construct tilings of R with different values of the Flux but H2(R) = 0
and therefore φ(t; a) is always trivial [9].

Most importantly, it follows from Lemma 6.5 that the next definition is well-
defined and can be seen as a function of the Flux(t) rather than t.
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Definition 6.6. Define the modulus of a tiling as

m = µ(Flux(t)) = gcd
a∈H2

φ(t; a);

so that for all a ∈ H2 we have φ(t; a) ≡ 0 (mod m).

7 Twist

In this section, we define our second topological invariant of tilings, the twist. The
twist was first introduced in [19]. There it has a very nice combinatorial definition
but the construction involved is not well defined at the level of generality of this
paper. Here we give an alternate definition of twist involving embedded surfaces.
If the Flux is zero, the twist assumes values in Z. Otherwise, the twist assumes
values in Z/mZ where m is the modulus of the tiling, as defined at the end of
the previous section. Intuitively, the twist records how “twisted” a tiling is by
trits; the value of the twist changes by exactly 1 after a trit move.

We start by defining the flux around a curve. Consider a cubiculated region
R, a tiling t of R, and m = µ(Flux(t)). If γ : S1 → R∗ is an embedded cycle
such that t is tangent to γ, then Lemmas 5.3 and 6.5 imply that there exists a
nonnegative integer k and an embedded surface ψ : S → (R(k))∗ such that ψ|∂S =
γ(k). Furthermore, if k0 and k1 are nonnegative integers and ψ0 : S0 → (R(k0))∗

and ψ1 : S1 → (R(k1))∗ are embedded surfaces such that (ψi)|∂Si
= γ(ki), then

φ(t(k0;γ);S0) = φ(t(k1;γ);S1) (as elements of Z/mZ). These observations allow us
to give the following definition.

Definition 7.1. For a tiling t and a curve γ, define φ(t; γ) ∈ Z/mZ, the flux of
t around γ, to be

φ(t; γ) := φ(t(k;γ);S) ∈ Z/mZ
for any surface ψ : S → (R(k))∗ such that ψ|∂S = γ(k).

Using the flux of a tiling around a curve, we may define our first notion of
twist; the twist for a pair of tilings.

Definition 7.2. Let R be a cubiculated region. Let tilings t0 and t1 be two tilings
of R such that Flux(t0) = Flux(t1). Then the twist of t1 with respect to t0 is
defined as

TW(t1; t0) := φ(t1; t1 − t0) = φ(t0; t1 − t0) ∈ Z/mZ.

Our larger goal is to define the twist of a single tiling, Tw(t). In particular, the
twist should satisfy TW(t1; t0) = Tw(t1)− Tw(t0) so that Tw(t) can be defined
using a base tiling and the twist of a pair. To this end, first consider the result
of a flip move.
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Proposition 7.3. Let R be a cubiculated region. Let t0, t1 and t2 be tilings of R
such that Flux(t0) = Flux(t1) and t1 and t2 differ by a flip. Then

TW(t1; t2) = 0 and TW(t1; t0) = TW(t2; t0).

Proof. For the first equation simply take the surface for t1 − t2 to be a single
square.

For the second equation, first consider the case where the flip t2−t1 is disjoint
from the system of cycles t1− t0. Then we may take a surface S1 for t1− t0 which
is also disjoint from the flip t2 − t1. Take S2 to be the disjoint union of S1 with
the square with boundary t2 − t1. For the general case, we have to consider the
position of the single square with respect to the system of cycles t1 − t0. A case
by case analysis shows that suitable surfaces can always be constructed.

Let γ1 and γ2 be disjoint systems of smooth cycles in an oriented 3-manifold
R. If [γ1] = [γ2] = 0 ∈ H1(R), then there exist Seifert surfaces S1 and S2 for γ1

and γ2. Classically, the linking number Link(γ1; γ2) = Link(γ2; γ1) ∈ Z of γ1 and
γ2 is defined as the number of intersections (with sign) between γ1 and S2 (or γ2

and S1). Furthermore, the linking number is independent of the choice of S1 and
S2. For our more general spaces, the linking number must be considered with
respect to the modulus m of the tiling. Then, the linking number quantifies the
difference in twist. Namely, suppose R is a cubiculated region and t0, t1, t2 and
t3 are tilings of R with equal Flux. If the systems of cycles γ1 = t1 − t0 = t3 − t2
and γ2 = t2 − t0 = t3 − t1 are disjoint then

TW(t3; t2)− TW(t1; t0) = TW(t3; t1)− TW(t2; t0) = 2 Link(γ1; γ2)

and TW(t3; t0) = TW(t3; t2) + TW(t2; t0) = TW(t3; t1) + TW(t1; t0). More gen-
erally, if t2 − t1 and t1 − t0 are not disjoint, then refine and slightly move these
systems of cycles using flips (and Proposition 7.3) to obtain disjoint cycles. To-
gether this gives the following.

Proposition 7.4. Let R be a cubiculated region. Let t0, t1 and t2 be tilings of R
with Flux(t0) = Flux(t1) = Flux(t2). Then TW(t2; t0) = TW(t2; t1)+TW(t1; t0).

We are now ready to define the twist of a tiling.

Definition 7.5. Let R be a cubiculated region. For any possible value Φ of
the Flux of a tiling, choose a base tiling tΦ. For a tiling t of a region R with
Flux(t) = Φ define

Tw(t) := φ(t; t− tΦ) = φ(tΦ; t− tΦ) ∈ Z/mZ.

Corollary 7.6. If t1 is obtained from t0 by a positive trit then Flux(t1) = Flux(t0)
and Tw(t1) = Tw(t0) + 1.
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8 Height Functions

In this section we consider discrete Seifert surfaces together with the restriction
of G(R∗) to the surface. We prove that, under suitable hypothesis, two tilings of
such a surface are connected by flips. The proof relies on a development of height
functions appropriate to our setting. Height functions are a standard tool in the
study of domino tilings, see e.g. [25], [5], [6].

If S is a discrete Seifert surface in R, a tiling of R which is tangent to S
restricts to a tiling of S, i.e., a matching of G∗, the restriction of G(R∗) to S. Let
T = T (S,G∗) be the set of all tilings of S.

Just as for 3-dimensional dominoes, if t0, t1 ∈ T , the difference t1 − t0 can be
seen as a system of cycles in S. We interpret [t1 − t0] to be an element of H1(S)
and, given a choice of a base tiling t⊕ ∈ T , set FluxS(t) = [t−t⊕] ∈ H1(S). Given
a ∈ H1, let Ta be the equivalence class of tilings of S with the same Flux a. A
tiling t ∈ T is stable if every edge of G∗ belongs to some tiling in the equivalence
class TFluxS(t); in this case, we also call the set TFluxS(t) stable.

When taking refinements, we may use t′⊕ as a base tiling of refined S (after
a few flips to make sure the tiling is tangent to S). It is then easy to see that
FluxS(t′) = FluxS(t) (we will blur the distinction between a surface S and its
refinement S ′). Furthermore, sufficient refinement makes any class stable: the
condition of existence of a suitable tiling becomes easy after refinement.

Let a = FluxS(t0) = FluxS(t1) so that t0, t1 ∈ Ta. Let V be the set of
components of S r G (squares) with one extra object called ∞ corresponding to
∂S. For each oriented edge of G, there is an element el ∈ V to its left and an
element er ∈ V to its right; if the edge is contained in ∂S then one of these is
∞. Two elements v0, v1 ∈ V are neighbors if there exists an oriented edge e with
v0 = el and v1 = er.

Let C2 be the Z-module of functions w : V → Z. Let C1 be the Z-module
spanned by oriented edges of G∗. Define the boundary map ∂ : C2 → C1 as
follows: given w ∈ C2 and e an oriented edge of G∗, the coefficient of e in ∂w is
w(el)−w(er). Let B1 ⊆ C1 be the image of ∂ : C2 → C1: given g ∈ B1, there is a
unique element w = wind(g) ∈ C2 with w(∞) = 0 and ∂w = g. We call wind(g)
the winding of g.

Given two tilings t, t̃ ∈ Ta, we have t− t̃ ∈ B1. The function w = wind(t− t̃)
satisfies w(∞) = 0. Furthermore, given a black-to-white edge e, we have w(el)−
w(er) = [e ∈ t] − [e ∈ t̃] (we use Iverson notation: [e ∈ t] equals 1 if e ∈ t and
0 otherwise). In particular, if v0, v1 ∈ V are neighbors then |w(v0)− w(v1)| ≤ 1.
We shall associate to each tiling t ∈ Ta a height function ht : V → R defined by

ht =
1

|Ta|
∑
t̃∈Ta

wind(t− t̃).



20 Domino tilings of 3D tori — February 1, 2017

Thus, ht is the average of the windings wind(t − t̃) for t̃ ∈ Ta. Notice that for
any t ∈ Ta the height function ht satisfies:

(a) ht(∞) = 0;

(b) for any v ∈ V , ht(v) ≡ ht0(v) (mod Z);

(c) if v0, v1 ∈ V are neighbors then |ht(v0)− ht(v1)| < 1.

Condition (a) follows from the equivalent equation for wind(t − t̃); (b) follows
from wind(t − t̃) = ht − ht̃. Finally, the strict inequality in (c) follows from the
hypothesis of t0 being stable.

Conversely, any function h : V → R satisfying conditions (a), (b) and (c)
above is the height function of a (unique) tiling t ∈ Ta. Indeed, take w = h− ht0
(which is integer valued) and t = ∂h: conditions (b) and (c) guarantee that
for any vertex in G∗ exactly one edge adjacent to it receives the coefficient 1. In
particular, the maximum or minimum of two height functions is a height function.
For t, t̃ ∈ Ta, write t ≤ t̃ if ht(v) ≤ ht̃(v) for all v ∈ V . Also, t < t̃ if t ≤ t̃ and
t 6= t̃.

Two height functions t, t̃ ∈ Ta differ by a flip at v ∈ V r{∞} if ht(v)−ht̃(v) =
±1 and ht(ṽ) = ht̃(ṽ) for ṽ ∈ V r {v}. Conversely, a flip at v ∈ V r {∞} is
allowed from t ∈ Ta if and only if v is a local maximum or minimum of ht.

Theorem 3. Consider a pair (S,G∗) and two stable tilings t0, t1 of S with
FluxS(t0) = FluxS(t1). Then t0 and t1 are connected by flips.

Proof. Assume t0 < t1. We show that we can perform a flip on t1 in order to
obtain t̃ with t0 ≤ t̃ < t1; by induction, this completes the proof. Let V1 ⊂ V be
the set of v ∈ V for which ht1(v) − ht0(v) is maximal. Let v2 be the point of V1

where ht1 is maximal. We claim that v2 is a local maximum of ht1 . Indeed, let ṽ
be a neighbor of v2. If ṽ ∈ V1 then ht1(ṽ) < ht1(v2) by definition of v2. If ṽ /∈ V1

then ht0(v2) < ht0(ṽ) ≤ ht1(ṽ) < ht1(v2) by definition of V1, completing the proof
of the claim. Let

ht̃(v) =

{
ht1(v), v 6= v2;

ht1(v2)− 1; v = v2 :

the function ht̃ satisfies conditions (a), (b) and (c) and therefore defines a valid
tiling t̃ ∈ Ta with the required properties.

Remark 8.1. The results of this section, including Theorem 3, hold more gen-
erally for any coquadriculated surface, a pair (S,G∗) consisting of: an oriented
compact connected topological surface S with non-empty boundary ∂S and an
embedded connected bipartite graph G∗ ⊂ S such that every connected compo-
nent of S r G∗ is a square, that is, is surrounded by a cycle of length 4 in G∗.
Namely, it is not necessary to have an ambient manifold to induce the surface
being tiled.
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9 Connectivity

In this section we prove our main theorem. Let R be a cubiculated region. Let
t0, t1 be tilings of R with Flux(t0) = Flux(t1). A discrete Seifert surface (S, ψ)
for the pair (t0, t1) is:

• balanced if the number of black vertices equals the number of white vertices
in the interior of S;

• zero-flux if φ(t0;S) = φ(t1;S) = 0;

• tangent if t0 and t1 are tangent to S (including in the interior of the surface).

Notice that a tangent surface is clearly both balanced and zero-flux. The converse
implications in general do not hold.

Recall from Lemma 5.3 that if Flux(t0) = Flux(t1) then there exists a refine-
ment R(k) and a discrete Seifert surface for the pair (t0, t1) in this refinement.
We are now ready to prove our main theorem by considering when nicer Seifert
surfaces can be constructed.

Proof of Theorem 1. We in fact prove a series of results. Each item below could
be considered a distinct lemma, but since they build naturally to the main result,
we prefer to present this as a single proof.

Consider a cubiculated region R and two distinct tilings t0 and t1 of R with
Flux(t0) = Flux(t1).

1. If Tw(t0) = Tw(t1) then there exists a refinement R(k) and a discrete zero-
flux Seifert surface for the pair (t0, t1) in this refinement.

2. If there exists a discrete zero-flux Seifert surface for the pair (t0, t1) then
there exists a refinement R(k) and a discrete balanced zero-flux Seifert sur-
face for the pair (t0, t1) in this refinement.

3. If there exists a discrete balanced zero-flux Seifert surface for the pair (t0, t1)
then there exists a refinement R(k) and tilings t̃i of R(k) with t̃1 − t̃0 =
(t1− t0)(k), t̃i obtained from t

(k)
i by a sequence of flips, and a tangent Seifert

surface for the pair (t̃0, t̃1).

4. If there exists a discrete tangent Seifert surface for the pair (t0, t1) then there

exists a refinement R(k) for which there exists a sequence of flips taking t
(k)
0

to t
(k)
1 .
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For item (1), start by constructing a smooth Seifert surface S. By the defini-
tion of twist, φ(t0;S) = φ(t0;S) is a multiple of m and therefore an integer linear
combination of φ(t0;Si) = φ(t1;Si) where the Si are smooth closed surfaces:

φ(t0;S) +
∑

ciφ(t0;Si) = 0.

Let S̃ be the union of S with ci copies of Si (reverse orientation if ci < 0).
Perturb the surfaces to guarantee transversality. Along intersection curves, per-
form a standard cut-re-glue-smoothen procedure (see e.g.[17]) to obtain a smooth
embedded Seifert Surface Ŝ with φ(t0; Ŝ) = φ(t0; Ŝ). As in Lemma 5.3, after re-
finements, Ŝ can be approximated by a discrete surface.

For item (2), notice first that the parity of the number of black and white
interior vertices is already the same, otherwise φ(t0;S) would be odd. In order
to increase the black-minus-white difference by two, look for a white vertex in
a planar part of S and lift a surrounding square as in Figure 9. Repeat the
procedure as needed.

Figure 9: The four center squares on the bottom layer are removed and the
surfaces is lifted. This increases the difference between the number of black versus
white vertices; there is a net increase of 5 black vertices and 3 white vertices.

For item (3), consider vertices in the interior of S which are matched with
points outside S. Classify these vertices as black-above, white-above, black-below
and white-below according to their color and the position of their match. It
follows from S being balanced and zero-flux that the number of black-above and
white-above are equal (and similarly for black-below and white-below). Associate
vertices black-above and white-above in pairs (and similarly for black-below and
white-below). We show how to perform flips in order to have such pairs cancel
out. Starting from a black-above vertex, draw a simple curve γ on S using
tangent dominoes until you arrive at its white-above partner. Since the surface
has been refined there are large regions of parallel dimers (or dominoes) both on
the surface and near S. We may therefore construct a narrow disk S1 by going
“above” γ in the direction normal to S. As in Figure 4, by performing flips and
taking refinements, we may assume S1 to be a surface with an induced tiling by t.
By construction, both the black-above and the white-above dominoes belong to
γ1 = ∂S1. Again by virtue of refinements we may assume t to be stable (as a tiling
of S1). Apply Theorem 3 (for S1, not the original S) in order to obtain a sequence
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of flips whose effect is to rotate γ1, thus getting rid of both the black-above and
the white-above dominoes.

For item (4), we apply Theorem 3 to the surface S. If t0 (and t1) are stable,
this can be done directly. Otherwise, take refinements: appropriate refinements
of t0 (and t1) are stable. This completes the proof of item (b) of Theorem 1.

As to item (a), let l be a positive integer such that Tw(t1) = Tw(t0) ± l.

Apply refinements such that t
(k)
0 and t

(k)
1 contain at least l boxes of dimension

3 × 3 × 2 tiled by 9 parallel dominoes. Starting from t
(k)
0 , apply flips and trits

inside l such boxes so as to increase or decrease the twist by l, thus connecting
by flips and trits t

(k)
0 to a tiling t with Tw(t) = Tw(t1). By item (2), t and t1 can

be connected by flips (possibly after further refinement).

10 Final Remarks

Theorem 1 is the first positive result concerning connectivity of three-dimensional
domino tilings. Given the nature of the result, many natural questions arise. We
discuss some of these here, many more constructions, experiments, open problems
and conjectures will appear in a forthcoming paper [9].

Our methods rely heavily on refinements but it is important to point out that
they are not simply an artifact of our proof techniques. For example, already
in the 4 × 4 × 4 box, there are tilings with the same twist which are not flip
connected before refinement.

On the other hand, in the general case of boxes, it is not known if refinements
are needed: If t0 and t1 are two tilings of a fixed box, can t0 and t1 be connected
by flips and trits? It is known that refinements are neccessary for connectivity of
tilings of simple prisms and tori [20]. What is not clear, however, is how many
refinements are needed. Our results offer no bounds on the number of times one
needs to refine two tilings before they become connected.

It is also unknown how often refinement is neccessary for certain regions. For
example, consider the cubical torus given by Z3/(N · Z3) for some even integer
N . Based on computational experiments, we conjecture that the probability that
two tilings with the same flux and twist are connected by flips tends to 1 as N
tends to infinity, see [9].

More broadly, one asks, what does a ‘typical’ tiling look like? The twist
essentially partitions the space of tilings into flip connected components. For a
fixed region, what is the distribution of the twist? For example, consider again
the case of boxes. Let the base tiling (twist 0) be one in which all tiles are
parallel to a fixed axis. Related results suggest the following question: is the
twist normally distributed about 0?
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