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Doctor of Philosophy

Abstract

In this thesis we study the class of shifted simplicial complexes. A simplicial
complex on n nodes is shifted if there exists a labelling of the nodes by 1 through n
such that for any face, replacing any node of the face with a node of smaller label
results in a collection which is also a face.

A primary motivation for considering shifted complexes is a procedure called
shifting. Shifting associates a shifted complex to any simplicial complex in a way
which preserves meaningful information, while simplifying the structure of the com-
plex. For example, shifting preserves the f -vector of a complex but always reduces
the topology to a wedge of spheres. Shifting has proved to be a successful tool for
answering questions regarding f -vectors.

While most of the previous results on shifted complexes are algebraic or topolog-
ical in nature, we explore the combinatorics of shifted complexes. We give intrinsic
characterization theorems for shifted complexes and shifted matroid complexes. In
addition, we show results on the enumeration of shifted complexes and connections
to various combinatorial structures.

Thesis Supervisor: Richard P. Stanley
Title: Norman Levinson Professor of Applied Mathematics
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Chapter 1

Introduction

In this thesis we study the combinatorics of the class of shifted simplicial com-

plexes. A simplicial complex on n nodes is shifted if there exists a labelling of the

nodes by 1 through n such that for any face {v1, v2, . . . , vk}, replacing any vi by a node

with a smaller label results in a collection which is also a face. An equivalent defini-

tion of shifted complexes is in terms of order ideals. Consider the poset Ps on strings

of increasing integers where (x1 < x2 < · · · < xk) is less than (y1 < y2 < · · · < yk) if

xi ≤ yi for all i. Shifted complexes are exactly order ideals of Ps.

A primary motivation for the study of shifted complexes is the fact that any sim-

plicial complex can be transformed into a shifted complex in a way which preserves

meaningful information. There are many such shifting procedures. The original form

was initially developed by Erdös, Ko, and Rado [5]. More recently, Kalai introduced

the notion of algebraic shifting [7]. These shifting operations preserve certain prop-

erties of a complex while simplifying others. For example, shifting preserves the

f -vector of a complex, but the topology is always reduced to a wedge of spheres.

The f -vector of a complex is the vector {f0, f1, . . . , fd}, where fi is the number of

i dimensional faces of the complex. In fact, studying the f -vectors of simplicial

complexes is the main application of algebraic shifting. Shifting is analogous to the

compression procedure. While shifting maps a simplicial complex to an order ideal

of the shifted partial ordering, compression maps a simplicial complex to an initial

segment of the lexicographical ordering. Compression preserves the f -vector of a
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complex but loses essentially all other information. This procedure was used to prove

the Kruskal-Katona theorem which characterizes the f -vectors of all simplicial com-

plexes. Similarly, shifting has proved to be a successful tool for answering questions

regarding f -vectors. For example, it has been used to characterize the f -vectors of

simplicial complexes with prescribed Betti numbers [3]. A nice exposition of results

in shifting and motivation for the study of shifted complexes is Vic Reiner’s talk [12].

While much work has concentrated on studying shifting procedures, surprisingly

little attention had been given to the class of shifted complexes itself except in the

one dimensional case. One dimensional shifted complexes are the same as thresh-

old graphs. Threshold graphs have been extensively studied [8] and this connection

provides many insights into the structure of shifted complexes. We first extend a

characterization of threshold graphs in terms of the vicinal preorder by defining a

generalized vicinal preorder for simplicial complexes of any dimension. Our result

shows that a complex is shifted if and only if the generalized preorder is total; see

Theorem 3.1.1. Building on this, we arrive at a second characterization for shifted

complexes in terms of obstructions. Threshold graphs are known to be characterized

by a finite list of forbidden induced subgraphs. We give the range of the number of

nodes on which there exist obstructions to shiftedness. In particular we show that

there exists a finite number of obstructions to shiftedness in each dimension; see The-

orem 3.2.2. Chapter 2 reviews many of the concepts of threshold graphs, and Chapter

3 contains the characterization theorems.

In Chapter 4 we consider the enumeration of shifted complexes. It is not difficult

to show that there are 2n−1 threshold graphs on n nodes. We provide the number of

two dimensional shifted complexes by giving a surprising but very simple bijection

between these complexes and totally symmetric plane partitions. The question of

enumerating totally symmetric plane partitions has a long history [14], and the result

was eventually proved by Stembridge [16]. Beyond dimensions one and two, we can

say very little about the total number of shifted complexes. The question has been

looked at from the perspective of plane partitions, but there is not even a conjecture

for dimension three. We do give the first few entries of the number of pure shifted
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complexes; see Figure 4-5.

In [1] a construction is given which forms a shifted complex from any subpartition

of a fixed partition. If the subpartition is taken to be the first row, the construction

yields a complex which is not only shifted but even the complex of independent

sets of a matroid. This led to considering shifted matroid complexes. These shifted

matroids have previously been considered as nested transversal matroids [11]. In

Chapter 5 we provide two characterizations of this class of matroids. The first is a

construction involving two basic operations, adding a disjoint vertex and starring a

vertex; see Theorem 5.2.3. For the second result, recall that shifted complexes are

order ideals in Ps. Our characterization theorem shows that shifted matroids are

exactly the principal order ideals of Ps; see Theorem 5.4.1. We also show that this

class of matroids is closed under duality and minors. In addition, we give results on

the Tutte polynomials and broken circuit complexes of shifted matroids.

Chapter 6 contains results on other subclasses of shifted complexes. The original

construction which led to shifted matroids can be generalized to form a class of linear

extension complexes [1]. These complexes are shifted but not always matroids. We

show partial results on determining the cases which do yield shifted matroids. Next,

we consider the class of constructible shifted complexes. This is the class of all

complexes formed from the two operations mentioned above - adding a vertex and

starring a vertex. We give results on the form of the corresponding order ideals; see

Theorem 6.2.1. In the next section we consider shifted independence complexes of

graphs, also called flag complexes. We show that a graph is threshold if and only if its

independence complex is shifted. In addition, we give a constructive characterization

of these complexes. Finally, we show that shiftedness is preserved under a generalized

independence complex construction.
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Chapter 2

Definitions and Preliminaries

2.1 Shifted Complexes

Definition 2.1.1. A simplicial complex on n nodes is shifted if there exists a labelling

of the nodes by one through n such that for any face {v1, v2, . . . , vk}, replacing any vi

by a node with a smaller label results in a collection which is also a face.

Example:

A simplicial complex with the faces {1, 2, 3} and {2, 4} must also have the face {1, 4}

to be shifted.

4 3

2

1

Figure 2-1: A two dimensional shifted complex.

Definition 2.1.2. An order ideal I of a poset P is a subset of P such that if x is in

I and y is less than x in the partial order then y is in I.

An equivalent definition of shifted complexes is in terms of order ideals. Consider the

partial ordering on strings of increasing integers where (x1 < x2 < · · · < xk) is taken
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to be less than (y1 < y2 < · · · < yk) if xi ≤ yi for all i. Shifted complexes are exactly

order ideals in this poset.

Example:

4 3

1

2

124

134

234

34

12

13

14 23

12324

Figure 2-2: Shifted complexes as order ideals.

Let us consider some complexes that are not shifted.

Example:

b

a c

d b d

a c a c

db
G1 G2 G3

Figure 2-3: Non-shifted complexes.

We can easily see that the graphs of Figure 2-3 are not shifted. For example, in

G1 let node a have label 1. Then the label of c must be larger than the label of a.

So we should be able to replace c with a in the collection {c, d} and have a face of

the complex. But {a, d} is not a face. Therefore G1 is not shifted, and we could

similarly prove G2 and G3 are not shifted. These three graphs are actually all of

the obstructions to shiftedness in dimension one. This result is a consequence of the

connection between shifted complexes and threshold graphs which we state in the

next section.
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2.2 Threshold Graphs

Definition 2.2.1. An independent set of a graph is a collection of nodes no two of

which are connected by an edge.

Definition 2.2.2. A graph is threshold if for all v ∈ V there exists weights w(v),

and t ∈ R such that the following condition holds: w(U) ≤ t if and only if U is an

independent set, where w(U) =
∑

v∈U w(v).

Example:

t = 2

2

2

1 1

Figure 2-4: A threshold graph with threshold 2.

Threshold graphs are an extensively studied class of graphs. There are many equiv-

alent characterizations of these graphs. For a thorough look at threshold graphs, we

refer the interested reader to [8]. Here we will look at some of these characterizations

and their generalizations because of the following property:

Proposition 2.2.1. One dimensional shifted complexes are exactly the threshold

graphs.

This is not hard to prove directly, but we leave it for now since it will be implied in

the next chapter.

2.2.1 Obstructions

Above we claimed that G1, G2, and G3 are all the obstructions to shiftedness in

dimension one. This statement is simply a translate of the following result.
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Theorem 2.2.1. [8] A graph is threshold if and only if it does not contain G1, G2,

or G3 as an induced subgraph.

In the next chapter we generalize this characterization, in the sense that we can

characterize shifted complexes in terms of obstructions.

2.2.2 Polytope of Degree Sequences

Another characterization of threshold graphs is in terms of the polytope of degree

sequences. To form this polytope, fix a number n and consider all simple graphs on

n nodes. For each graph G, form an n-vector d(G) = (d1, d2, . . . , dn) where di is the

degree of each node i. The polytope Pd of degree sequences is the convex hull of these

points in Rn. Threshold graphs are extremal with respect to this structure.

Theorem 2.2.2. [8] A graph is threshold if and only if its degree sequence is a vertex

of Pd.

Definition 2.2.3. A Hypergraph is a pair (V,E) where V is a finite set and E is a

collection of subsets of V . If every element of E has the same size then we call the

hypergraph regular. For a regular hypergraph with each element of E having size d,

we call the hypergraph d-regular.

Notice that a 2-regular hypergraph is the same as a simple graph.

Golumbic considered various hypergraph analogs of threshold graphs [6]. In particu-

lar he asked whether the following three generalizations are equivalent for d-regular

hypergraphs:

• T1 - There exists a labelling of V by positive integers and a threshold t such that

for all subsets X of V , X does not contain an edge if and only if
∑

x∈X w(x) ≤ t.

• T2 - There exists a labelling of V such that for all subsets X ⊂ V of size d + 1,

X ∈ G if and only if
∑

x∈X w(x) > t.

• T3 - For vertices x and y define x � y if x can replace y in any hyperedge. Then,

for all x and y either x � y or y � x.

16



First we notice that condition T3 is the same as shiftedness for a pure complex. A

hypergraph is called threshold if it satisfies condition T2. This second condition is the

direct analogue of the condition in Theorem 3. For a d-regular hypergraph, we may

generalize the notion of a degree sequence to reflect the number of hyperedges each

vertex is adjacent to. As above we may form a polytope of these more general degree

sequences. The threshold complexes will be the vertices of this polytope. And while

T1 ⇒ T2 ⇒ T3, we have, T3 ; T2 ; T1 so shifted complexes are not the vertices of

this polytope [13].

2.2.3 Construction

Threshold graphs can be described constructively in terms of two basic operations.

Let D stand for adding a disjoint node. Let S stand for starring a node, namely

placing a new node adjacent to all previous nodes of the graph.

Theorem 2.2.3. Threshold graphs are exactly those graphs formed from the empty

graph by successive applications of the operations D and S.

������������
�������
����
�����

������������

	�		�	
�

�


����������������������������

��������������������
�
�
�
�����

DSDDS

Figure 2-5: A threshold graph with its construction.

It is easy to see that these two operations preserve shiftedness. Starring in higher

dimensions also preserves shiftedness. By starring a node v in dimension d, we simply

mean forming all faces {v ∪ f | f is a face of dimension ≤ (d − 1)}. This is different

from coning in that we do not necessarily increase the dimension of the complex and

hence we can star multiple times in the same dimension. All complexes formed by

the operations of adding a disjoint node and starring in the general sense are shifted.

These do not form all shifted complexes however. We refer to these complexes as

constructible. See Figure 2-6 for examples of constructible and non-constructible

shifted complexes, where a vertical bar denotes an increase in dimension.
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Figure 2-6: Examples of constructible and non constructible shifted complexes.

2.2.4 Vicinal Preorder

The last characterization we look at here is in terms of the vicinal preorder. First, let

us recall the definition of the vicinal preorder for graphs, which we call the 1-vicinal

preorder for convenience later on.

For any simple graph G and any node v ∈ G, let

N1(v) = {w ∈ G |wv ∈ G} and

N1[v] = N1(v) ∪ {v}.

Note that N1(v) is just the usual neighborhood of a vertex of a graph.

Definition 2.2.4. (1-Vicinal Preorder %1)

x %1 y if and only if N1[x] contains N1(y).

If x %1 y and y %1 x then we write x ∼1 y.

Theorem 2.2.4. [8] G is a threshold graph if and only if the vicinal preorder of G is

total.

Example:

1

4 3

2

Figure 2-7: A threshold graph with a shifted labelling.

1 ∼1 2 �1 3 ∼1 4

18



In this example, the graph has been labeled with a shifted labelling. Notice that the

shifted labelling is exactly opposite the vicinal order. This is true in general, so once

we determine the vicinal ordering of a graph, we may obtain a shifted labelling.
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Chapter 3

Characterizations

3.1 Generalized Vicinal Preorders

In the last chapter we noted that one dimensional shifted complexes are the same

as threshold graphs. First we extend the characterization in terms of the vicinal

preorder. We have for any one dimensional simplicial complex K,

K is shifted if and only if the 1-vicinal preorder of K is total.

In order to generalize this result, we will need the concept of the vicinal preorder for

general simplicial complexes, not just graphs. The star of a vertex v of a simplicial

complex is the set of faces of the complex which contain v. The link of a vertex v of a

simplicial complex K is the set of faces of the star(v) which do not contain v. Namely,

the link of a vertex v is equal to the set of faces {f ∈ K | f ∪ v ∈ K and v /∈ f}. Next

we define the generalized preorder. For a d-dimensional simplicial complex K, and v

a node in K, let

Nd(v) = {(d − 1)-dimensional faces of the link(v)} and

Nd[v] = {(d − 1)-dimensional faces of the star(v)}.

Note that for d = 1 Nd(v) and Nd[v] are the same as in the graphical case.

Definition 3.1.1. (d-vicinal preorder %d)

x %d y if and only if Nd[x] contains Nd(y).

We need to check that this is a preorder, namely that it is reflexive and transitive.

21



Reflexivity requires that Nd[x] ⊇ Nd(x), which is true by definition. Transitivity

requires that Nd[x] ⊇ Nd(y) and Nd[y] ⊇ Nd(z) imply Nd[x] ⊇ Nd(z). Suppose

yz /∈ K. Then Nd(z) ⊆ Nd(y) ⊆ Nd[x]. If yz ∈ K then for some face f , yf ∈ Nd(z).

We must show yf ∈ Nd[x]. We have

yf ∈ Nd(z)

⇒ zf ∈ Nd(y)

⇒ zf ∈ Nd(x)

⇒ xf ∈ Nd(z)

⇒ xf ∈ Nd(y)

⇒ yf ∈ Nd(x).

Definition 3.1.2. A simplicial complex is pure if all maximal faces under contain-

ment are the same size.

Theorem 3.1.1. For a pure d-dimensional simplicial complex K, K is shifted if and

only if the d-vicinal preorder is total.

Proof. (⇒) Suppose K is shifted and the d-vicinal preorder is not total.

This implies there exists nodes x, y ∈ K such that x and y are incomparable.

Then we have Nd[x] + Nd(y) and Nd[y] + Nd(x).

Hence there exists faces f1 and f2 such that xf1 ∈ K, yf1 /∈ K and yf2 ∈ K, xf2 /∈ K.

Let l be a shifted labelling for K. Without loss of generality, we may assume l(x) <

l(y). Then yf2 ∈ K implies xf2 ∈ K, a contradiction.

(⇐) Suppose the d-vicinal preorder is total. Label the nodes of K in non-increasing

order with respect to the vicinal preorder. We claim this is a shifted labelling. Con-

sider any face (x1, x2, . . . , xd+1) ∈ K and any node w such that l(w) < l(xi) for some i.

Since the labelling is non-increasing, Nd[w] ⊇ Nd(xi) implies (x1, x2, . . . , x̂i, . . . , xd+1) ∈

Nd[w] which implies (w, x1, x2, . . . , x̂i, . . . , xd+1) ∈ K.

This is our first intrinsic look at shifted complexes of dimension greater than one.
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However, it is restricted to pure complexes. It is tempting to think that a complex

is shifted if each skeleton is shifted, where the ith skeleton is the collection of all i

dimensional faces. It is important to point out that having all the vicinal preorders

total does not imply shiftedness. For example, consider the simplicial complex with

maximal faces = {abc, ad, ae, cd, ce, de} (see Figure 3-1). Both the 1 and 2 vicinal

preorders are total,

a ∼1 c �1 e ∼1 d �1 b

a ∼2 b ∼2 c �2 e ∼2 d

but the complex is not shifted.

b

c

a
e

d

Figure 3-1: A non-shifted complex with both preorders total.

On the other hand, for a complex to be shifted, we do need that the preorders are

total. What still may be missing is a single labelling which is a shifted labelling in all

dimensions. Any shifted labelling must label the nodes in non-increasing order with

respect to all preorders. Otherwise, we would have two nodes, x and y, such that

l(x) < l(y) but y �i x for some i. This means Ni[y] ⊃ Ni(x) with strict containment.

Therefore we would have yf ∈ K but xf /∈ K for some face f , showing K is not

shifted. Thus we see that for a complex to be shifted it must have all preorders total

and a labelling which is non-increasing with respect to them all. This means that

two nodes may be equivalent in one preorder and have one larger than the other

in another preorder. But, we can not have one node larger than the other in one

preorder and then smaller in another preorder.

In Figure 3-2 we have a ∼1 b �1 c ∼1 d and a ∼2 b ∼2 c �2 d.
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a

bc

d

���
�

���
�

���
�

���
�

Figure 3-2: A shifted complex with different but compatible preorders.

3.2 Obstructions

In the last chapter we saw that threshold graphs may also be characterized in terms

of forbidden induced subgraphs.

Theorem 3.2.1. [8] G is a threshold graph if and only if it does not contain any of the

following as induced subgraphs: {ab, cd}, {ab, bc, cd} or {ab, bc, cd, ad} (see Figure 3-

3).

b

a c

d b d

a c a c

db

Figure 3-3: Forbidden induced subgraphs for threshold graphs.

Our goal is to characterize shifted complexes in terms of forbidden induced subcom-

plexes. We consider an obstruction to shiftedness to be a non-shifted simplicial com-

plex all of whose induced subcomplexes are shifted. We will give the range of nodes

on which there are obstructions to shiftedness. For a complex to be shifted, it must

be shifted in all dimensions. By Theorem 6, we may easily check if the 1-skeleton of

a complex is shifted. Therefore in general, when we consider the d-dimensional case,

we allow ourselves to assume the (d − 1)-skeleton is shifted.

Theorem 3.2.2. In d dimensions all obstructions to shiftedness with shifted (d− 1)-

skeleton are on (d + 3) ≤ n ≤ (2d + 2) nodes, and there exist obstructions on each of

these values.

Proof. Let K be a d-dimensional obstruction with shifted (d − 1)-skeleton on n >

(2d + 2) nodes.
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Case 1: The d skeleton of K is not shifted.

Then the d-vicinal preorder is not total. This is the case if and only if there exists

x, y ∈ K such that x and y are incomparable. Again this is equivalent to Nd[x] +

Nd(y) and Nd[y] + Nd(x). Hence we have (d − 1) faces e1 and e2 such that xe1 ∈ K,

ye1 /∈ K and ye2 ∈ K, xe2 /∈ K.

The number of nodes in {x, y, e1, e2} is at least (d + 3) and at most (2d + 2). Since

n > (2d + 2), there must exist a node a, not equal to x or y and not in e1 or e2.

Removing a from K clearly cannot affect xe1, ye1, ye2, or xe2. This implies the d-

vicinal preorder is not total on K \ a. Therefore K \ a can not be shifted, which

contradicts that K is an obstruction.

Case 2: The d skeleton of K is shifted.

Then we know all preorders are total. Since K is not shifted, there is no labelling

of the nodes which is non-increasing with respect to all of them. We have assumed

the (d− 1) skeleton is shifted, therefore it is the d-vicinal order which does not agree

with the first (d − 1) orders. This happens if and only if there exists x and y such

that x �i y and y �d x for some i ≤ d − 1. Hence we have a (d − 2)-face w and a

(d − 1)-face f such that xw, yf ∈ K and yw, xf /∈ K.

The total number of nodes in {x, y, w, f} is at least (d + 3) and at most (2d + 1).

Since n > (2d + 2), there must exist a node a, not equal to x or y and not in f or w.

Removing a from K cannot affect xw, yw, xf, or yf . This implies there cannot exist

a shifted labelling on K \ a, which contradicts that K is an obstruction.

To finish the proof, we first note that if n < (d + 3) then we cannot have any of the

obstructing structures above. Next, we show a family of obstructions on (d + 3) ≤

n ≤ (2d + 2) nodes. For each of the following complexes, let the (d − 1)-skeleton be

complete. Take two d-faces, (x,w1, w2, . . . , wd) and (y, v1, v2, . . . , vd). Consider the

amount of overlap between the vis and wis. They may overlap on 0 to at most (d−1)

nodes. In each case, removing any node leaves at most one d-face on a complete

(d − 1)-skeleton, which is shifted (see Figure 3-4 and Figure 3-5).

One of the most important consequences of this theorem is that there are finitely
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w 1

d−2x y

w 1

w 2
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Figure 3-4: A family of obstructions.
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Figure 3-5: The 2-skeletons of the 2-dim members of the family of obstructions.

many obstructions to shiftedness in each dimension. This means that we can check

for shiftedness in a fixed dimension.
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Chapter 4

Enumeration

4.1 Threshold Graphs

In one dimension, the number of shifted complexes is the number of threshold graphs.

Theorem 4.1.1. There are 2n−1 non-isomorphic unlabeled threshold graphs on n

nodes.

Proof. Consider the constructive characterization of threshold graphs. Recall that

all threshold graphs can be formed by successively performing two operations. This

would give us 2n strings, except that at the first step, starring a node and adding a

disjoint node are equivalent. No two of these graphs are isomorphic to each other.

One way to see this is to note that each string gives a unique degree sequence.

4.2 Totally Symmetric Plane Partitions

Theorem 4.2.1. The number of two dimensional shifted complexes on (n + 1) nodes

is given by:
∏

1≤ i≤ j ≤ k≤n

i + j + k − 1

i + j + k − 2

.
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The first few numbers of this series are:

1, 2, 5, 16, 66, 352, 2431, . . .

This is a result of the connection between shifted complexes and totally symmetric

plane partitions. We show that two dimensional shifted complexes are in bijection

with totally symmetric plane partitions.

Definition 4.2.1. A plane partition π = (πij)i,j≥1 is an array of nonnegative integers

with non-increasing rows and columns.

Example:

3 3 2

2 1

1 0

2

1

Figure 4-1: A plane partition.

Definition 4.2.2. A plane partition is totally symmetric if πij = πji and each row,

when considered as an ordinary partition, is self-conjugate.

Example:

3 3 2

2 1

1 0

3

2

Figure 4-2: A totally symmetric plane partition.

Plane partitions can also be thought of as collections of blocks in R3 where entry

ij gives us the height of the blocks at that location. Then we can look at different

symmetry classes of this structure. Totally symmetric plane partitions correspond to

plane partitions which are invariant under the action of S3. In this setting, it is not

hard to see that TSPPs are order ideals in the poset of Figure 4-3.
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222

122

112

111

011

001

000

002

012

022

Figure 4-3: TSPPs as order ideals.

Where a string (abc) represents all permutations of the elements {a, b, c}. Then, given

an order ideal π in N3, we recover the plane partition as follows: πij = |{k : (i, j, k) ∈

π}|. We can move between this poset and the shifted poset simply by adding (012)

to each entry.

222

122

112

111

011

001

002

012

022

000

−(012)

+(012) 124

134

234

34

14

24 123

23

13

12

Figure 4-4: Bijection between TSPPs and 2-dimensional shifted complexes.

Now we can see that two dimensional shifted complexes are the same as totally sym-

metric plane partitions as they are order ideals in the same poset.

Theorem 4.2.1 is simply a restatement of the following:

Theorem 4.2.2. [16] The number of TSPPs which fit in an (n × n × n) box is:

∏

1≤ i≤ j ≤ k≤n

i + j + k − 1

i + j + k − 2

.
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These questions can be generalized by looking at stacks of cubes in higher dimension

which are invariant under certain symmetries. The d-dimensional shifted complexes

exactly correspond to the d-dimensional analogue of a totally symmetric plane parti-

tion. Essentially nothing is known in this direction. There is not even a conjecture of

the number of such structures for dimension four and higher. We refer the interested

reader to [15] for much more on plane partitions.

4.3 Pure complexes

Here we give the first entries in the number of pure shifted complexes (see Figure 4-5).

In zero dimensions, the only pure shifted complexes are the graphs consisting of n

disjoint nodes. In one dimension, exactly half of all shifted complexes are pure. These

are the threshold graphs which have the last node starred. In two dimensions, we use

the total number of two dimensional shifted complexes on n nodes Tn to count those

that are pure. The number of pure two dimensional shifted complexes on n nodes is

Tn−1 −Tn−2. To see this, consider the shifted poset of only the strings of length three

on n nodes. The pure complexes will correspond to order ideals in this poset with

at least one element containing n. The total number of order ideals in this poset is

Tn−1. The number of order ideals which do not have an element with the node n is

Tn−2.

The main diagonal in Figure 4-5 reflects the d-simplex. The diagonal just below the

main diagonal counts order ideals with top elements of length (n−1) which contain the

node n. Clearly there are (n− 1) of these. The next diagonal consists of the Eulerian

numbers, 2k − k− 1, with k = n− 1. Along this diagonal, n− d = 3. Consider a pure

shifted d-dimensional complex on n nodes with n− d = 3. Taking the complement of

each d-face forms a one dimensional shifted complex (with a reverse shifted labelling).

Hence these complexes are in bijection with certain threshold graphs. A pure complex

will correspond to an order ideal whose top elements are all the same size and at least

one of which contain the node n. The complement, will not have n in all of its top

faces. There are (n − 1) faces with n as an element in one dimension, and all of
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these faces are comparable. This gives (n− 1) order ideals which do not yield a pure

complex. The final step is to notice that the shifted poset of only one dimensional

faces on n nodes is the same as the entire shifted poset on (n − 1) nodes. Hence the

number of order ideals which give us pure shifted complexes is 2n−1 − (n − 1) − 1 =

2n−1 − n, where the last 1 is to account for the empty set.

1

2

3

5

6

Total 0 1 2 3 4 5

1

1

1

1

2

4

516

11

50 2699

n
d

4

1

2

4

9

25

1

1

1

1

1

4

8

3 1

1

Figure 4-5: The number of pure shifted complexes in d dimensions on n nodes.
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Chapter 5

Shifted Matroids

5.1 Matroids

In this chapter we look at the connections between shifted complexes and matroids.

We essentially follow the terminology of [10]. We start with a number of definitions

and motivation.

Definition 5.1.1. A matroid is a collection of subsets I of a base set E such that

1) ∅ ∈ I.

2) If I ∈ I and J ⊆ I then J ∈ I.

3) If I and J are in I and |J | < |I| then there exists e ∈ I\J such that J ∪ e ∈ I.

The elements of I are referred to as the independent sets of the matroid. Many

concepts for a matroid follow naturally from the idea of the elements of I being

independent. For example, a basis of M is a maximally independent set and a circuit

of M is a minimally dependent set. Also, there exists a well-defined rank function

associated to any matroid in terms of these concepts.

Definition 5.1.2. The rank function ρ of a matroid M is given by:

The rank of any subset X of the base set is the size of the largest independent set

contained in X. The rank of a matroid M is the size of any basis of M .
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Let us give the motivating example for this terminology. Consider a finite collection of

vectors in a vector space. If we let these vectors be our base set, then the collections of

vectors which are linearly independent form the independent sets of a matroid. This is

easy to check from the definition. A matroid which corresponds to some collection of

vectors in a vector space is called representable. Matroids are a more general concept

however and include many structures which do not correspond to any such collection

of vectors.

Matroids can be formed from many other combinatorial structures. For example, if

we take the edges of a graph as our base set, then the collection of forests of the

graph form the independent sets of a matroid. The connections between matroids

and graph theory motivate other terminology.

Definition 5.1.3. An element e ∈ E is called a loop if {e} is a circuit.

Definition 5.1.4. Two elements e and f are called parallel if {e, f} is a circuit. A

parallel class of M is a maximal collection of parallel elements.

5.1.1 Affine Representation

One convenient way to work with matroids is by their affine representations. This is

a representation by surfaces in Rn where independent sets are represented by certain

incidences of the surfaces. The general form of these depictions is quite complicated

and so we refer the interested reader to [9]. In general, we only use the fact that such

a representation exists.

For rank 3 matroids, the form is simple and extremely useful. For a matroid of rank

3 on a base set E, place the points of E in the plane and put a line through all closed

sets of size greater than 3 but whose rank is only 2. Then the bases of the matroid

are the subsets of points of size three which are not collinear. In the other direction,

any collection of points and lines in the plane such that any two lines meet in at most

one point is a representation of a rank 3 matroid whose bases are the subsets of size

3 which are not collinear.
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Example:
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4

1

3

5

2

Figure 5-1: An affine representation of a matroid.

Figure 5-1 corresponds to a matroid with bases = {123, 124, 134, 145, 234, 235, 345}.

5.2 Shifted Matroid Complexes

Notice that the second condition in the definition of a matroid simply states that

the independent sets form a simplicial complex. We want to consider those matroids

whose complexes of independent sets are shifted. All matroid complexes are pure and

so we can characterize shiftedness by a total vicinal preorder. Recall that the basic

obstruction to the vicinal preorder being total is faces f1 and f2 and nodes x and y

such that f1x, f2y ∈ K and f1y, f2x /∈ K.

We first note that any matroid with a shifted matroid complex can have at most one

parallel class of size greater than one. Suppose we had two parallel classes {a, b} and

{c, d} in a matroid M . Let KM be the corresponding matroid complex. Then we

would have ac, bd ∈ KM and ab, cd /∈ KM . Hence the vicinal preorder is not total and

the complex is not shifted.

5.2.1 Rank 2

In this section, we consider all matroids in terms of their affine representations. There

are only three cases of rank two matroids; a single point, two points, or a line. To

be shifted we know we can have at most one multiplicity. It is easy to see that all

of these cases give shifted matroid complexes. In fact, we can see how to construct

these complexes. The only non-adjacencies in this graph are between the members of

the parallel class of size greater than one. (If we have no multiplicities, then we have
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a complete graph.) We can form any such complex by starting with a collection of

disjoint nodes and then starring on all other nodes.

Let D stand for adding a disjoint node and S for starring a node.

Theorem 5.2.1. Rank two shifted matroid complexes are exactly those complexes of

the form DD · · ·DSS · · ·S.

In particular we can understand the structure of these graphs as a clique with nodes

starred on.
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Figure 5-2: A one dimensional shifted matroid.

5.2.2 Rank 3

Rank 3 matroids are represented by collections of lines which obey certain incidence

rules. However, we quickly see that we cannot have more than one line for a shifted

matroid complex. Let {a1, b1, c1} and {a2, b2, c2} be two not necessarily disjoint lines

(for example c1 and c2 could be the same point) of a matroid M with complex KM .

This would give us (a1b1c1), (a2b2c2) /∈ KM and (a1b2c1), (a2b1c2) ∈ KM showing KM

is not shifted. So a shifted rank 3 matroid can have at most one line and possibly

disjoint points. The line corresponds to the rank 2 case. Therefore rank 3 shifted

matroids have the structure of the rank 2 case with additional disjoint points. Again,

it is easy to see that all matroids of this form do have shifted matroid complexes. The

extra disjoint points are also starred points of the complex but this time in one higher

dimension. Therefore we started with a shifted one dimensional complex and starred

nodes in the second dimension, which clearly leaves us with a shifted complex.

Let a vertical bar denote an increase in dimension.
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Theorem 5.2.2. Rank 3 shifted matroid complexes are exactly those complexes of

the form DD · · ·DSS · · ·S|SS · · ·S.

5.2.3 General Rank

Rank n matroids are represented by collections of n−1 dimensional euclidean surfaces

which obey certain incidence rules [9]. But, by the same argument above, we can not

have more than one such surface. Therefore our only option again becomes the rank

n − 1 case with disjoint points added. As before this results in a shifted matroid

complex since the disjoint nodes simply contribute by starring in the top dimension.

Theorem 5.2.3. Rank n shifted matroid complexes are exactly those complexes of

the form DD · · ·DSS · · ·S|SS · · ·S| · · · |SS · · ·S (with exactly n − 2 vertical bars).

5.3 Partition Matroids

In this section we show specific examples of shifted matroids and find their explicit

constructive representations. Recently, Ardila introduced a family of shifted matroids

[1]. For ease of exposition, we start by considering a special case, the Catalan matroid.

5.3.1 Catalan Matroids

The Catalan matroid is formed from the collection of Dyck paths of a fixed length.

A Dyck path is a lattice path in Z2 which starts at the origin, ends on the x-axis,

and takes steps of the form (x, y) → (x + 1, y + 1) and (x, y) → (x + 1, y − 1). For

Dyck paths of length 2n, the base set of our matroid is [1, 2, . . . , 2n]. The bases are

the collections of ‘up’ or ‘northeast’ steps of each Dyck path. It is easy to see that

this matroid is shifted. We show that it takes on a particularly nice form. Consider

all Dyck paths of length 2n. We concentrate on the non-faces of the corresponding

matroid complex. Immediately we see that {2n} is not a face since the last step

of any Dyck path must be a down step. All other elements of the base set are

independent. Next consider faces of size two. The pair {2n − 2, 2n − 1} is also not a
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face of the matroid complex since there is only one step left in the Dyck path but two

down steps are now needed to reach the x-axis. Similarly, {2n − 2, 2n − 3, 2n − 4},

{2n − 3, 2n − 4, 2n − 5, 2n − 6} · · · {n, n − 1, . . . 2} can not be faces of the matroid

complex. We know that the complex is shifted so no subset greater than these can be

a face either. It is easy to see that all subsets less than these are in fact independent.

Now, we need to understand the form of this complex. By our first observation we see

that the corresponding matroid complex is on only 2n − 1 nodes. We can construct

the complex as disjoint nodes and stars starting with the highest labeled nodes. The

pair {2n−2, 2n−1} is the only non-edge. We must add these as disjoint nodes to not

have an edge between them. Therefore we first add on 2n − 2 and 2n − 1 as disjoint

nodes. All other nodes are starred on later so they have edges between themselves

and 2n−2 and 2n−1. Next we need to avoid {2n−2, 2n−3, 2n−4}. In order to not

achieve this 2-face, we star on the nodes 2n− 3 and 2n− 4 in dimension one. Notice

that this also avoids {2n− 3, 2n− 4, 2n− 1} as is necessary. All smaller faces appear

since the nodes not added yet have to be starred in a higher dimension. We continue

in this fashion by starring on the necessary nodes down one dimension. And, in each

dimension there are exactly two new nodes that appear in the smallest non-face. This

gives us all but the maximal faces of the complex (notice we have not yet dealt with

node 1). All Dyck paths begin with an initial up step. This puts 1 in every basis.

So, our final step is to star by 1 in the top dimension. This brings us to the following

result:

Theorem 5.3.1. The Catalan matroid has the form DDSS|SS|SS| · · · |SS|S.

5.3.2 Partition Matroids

As mentioned above, the Catalan matroid is just a special case of a larger collection

of shifted matroids introduced in [1]. Given a partition λ ` n we can form a matroid

by looking at all standard Young tableaux of shape λ and taking the collection of

first rows as bases.
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Example:

3

2

3

1 2 3

4 5

1 2 4

3 5

1 2 5

3 4

1 4

5

1 5

2 4

Figure 5-3: All standard Young tableaux of shape (3,2).

The matroid formed by the partition λ = (3, 2) has bases {123, 124, 125, 134, 135}.

The Catalan matroid corresponds to the special case of a 2×n partition. All partition

matroids are shifted. And, we are able to construct them in the same way as the

Catalan matroid. The key observation is that these matroids have a unique highest

basis in terms of the shifted ordering. This top face determines all other faces for us.

Let (x1, x2, . . . , xn) be the top face. All elements larger than xn are not independent.

Now consider all elements between xn−1 and xn. These elements are never in faces

with each other or with xn. As before, to have no adjacencies we must add these nodes

as disjoint nodes before all others. Next we consider the elements between xn−2 and

xn−1. Again to take care of these non-faces, we must star on the elements at the

next stage. At each step we are adding the ‘length of each column’ number of nodes.

Namely, the conjugate partition tells us how many nodes we add in each dimension.

These partition matroids account for all shifted matroids which have a non-decreasing

number of nodes added in each dimension except for the top dimension which has

just one starred node.

For example, if we take a partition of shape 4 × n, we get:

DDDDSSSS|SSSS| · · · |SSSS|S.
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5.4 Principal Order Ideals

The ease of determining the partition matroids really stems from the fact that they

provided a unique top face. In terms of the shifted ordering, we had a principal order

ideal. In fact, Ardila’s class of shifted complexes is of this generality. He defined

a family, SM , which are exactly these principal order ideals and showed they are

matroids. We show that this is the right concept for all shifted matroid complexes.

Theorem 5.4.1. Shifted matroid complexes are exactly the principal order ideals

under the shifted partial ordering.

Proof. Let (x1, x2, . . . , xn) be any element of the shifted partial ordering. We can

apply the same procedure used above in section 5.3.2 to form a shifted matroid

complex from this element. When we formed a matroid from the first row of a

partition, we did not use properties of partitions. We only needed that the first row

provided a unique maximal element in the shifted partial ordering.

Now suppose we had an order ideal with at least two top elements, (x1, x2, . . . , xn)

and (y1, y2, . . . , yn). Let us say we have an incomparability of the form xi < yi and

xj > yj with i < j. Then we have the face (yi, yj) but (yi, xj) and (yj, xj) are not faces.

We have no way to place yi, yj, and xj under our construction of shifted matroids to

form these adjacencies. The two non-faces would require that all three be added as

disjoint nodes, but then we do not have yi and yj adjacent. Therefore we can not

have a shifted matroid complex.

Corollary 5.4.1. There are
(

n

k

)
shifted matroids of rank k on n nodes.

5.5 Matroid Operations

5.5.1 Minors

First we define two operations for a matroid, deletion and contraction. Both oper-

ations result in new matroids. We define the operations by giving the independent
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sets of the resulting matroids.

Definition 5.5.1. Let M be a matroid on the base set E, and let T ⊆ E. Define the

deletion M\T to be the matroid on E − T whose independent sets are given by:

I(M\T ) = {I ⊆ E − T : I ∈ I(M)}.

Definition 5.5.2. Let M be a matroid on the base set E, and let T ⊆ E. Define the

contraction M/T to be the matroid on E − T whose independent sets are given by:

I(M/T ) = {I ⊆ E − T : I ∪ B ∈ I(M)}, where B is a basis for M\(E − T ).

Definition 5.5.3. A minor of a matroid is any matroid formed by a sequence of

contractions and deletions.

Theorem 5.5.1. The class of shifted matroids is closed under taking minors.

Proof. Let M be a shifted matroid on the base set E and e be any element of E.

First we consider M\e, whose independent sets are the independent sets of M which

do not involve e. In terms of the complex of independent sets, this is equivalent to

the geometric deletion of e from the complex. Since the class of shifted complexes is

closed under deletion, we have that M\e is a shifted matroid.

Next we look at M/e. First we note that M\(E − e) is the matroid on just one

element, e. Therefore, {I ⊆ E − T : I ∪B ∈ I(M)} are those subsets which form an

independent set with e. Again, in terms of the matroid complex, this is simply the

link of e and the link of any node in a shifted complex is shifted. Therefore M/e is a

shifted matroid.

5.5.2 Duality

There is also a natural duality operation for matroids. Let B(M) be the collection

of bases of a matroid M on base set E. Let B∗(M) = {E − B : B ∈ B(M)}. The

collection B∗(M) is the collection of bases of a matroid on E. We denote this matroid

by M∗ and call it the dual matroid of M . This is a well-defined duality operation and

in particular, (M ∗)∗ = M .
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Theorem 5.5.2. The class of shifted matroids is closed under duality.

Proof. Consider any shifted matroid as a principal order ideal in the shifted par-

tial ordering with unique top element (x1, x2, . . . xk). The bases of the matroid are

{(y1, y2, . . . , yk) | yi ≤ xi and yi 6= 0∀i}. Clearly, if we have two bases B1 and B2 such

that B1 is less than B2 in the shifted partial ordering, then E − B1 is greater than

E − B2 in the shifted partial ordering. Taking the complement of all bases gives a

principal filter in the shifted partial ordering. This is equivalent to a principal or-

der ideal since we may simply reverse the labelling. Therefore the dual of a shifted

matroid is a shifted matroid.

5.5.3 Shifting

Shifting a complex which is a matroid does not necessarily result in a matroid. Con-

sider the simplicial complex which is the boundary complex of the octahedron. It is

not hard to check that this is a matroid complex. For both symmetric and exterior

shifting, the result is the shifted complex with top faces 136 and 234 and hence not a

matroid [7]. Also, we can combinatorial shift the boundary complex of an octahedron

to the shifted complex generated by 145 and 136. We can observe that matroids are

not preserved under shifting in a more general sense. Recall that shifting preserves

the f -vector of a complex. A shifted matroid is always a principal order ideal in

the shifted partial ordering, and so we are limited by the size of such ideals. For

the octahedron, we have eight two dimensional faces on six nodes. But there are

no principal order ideals in the shifted partial ordering on six nodes with eight two

dimensional elements. Hence no shifting procedure could associate a shifted matroid

to the boundary complex of a octahedron.

5.6 Broken Circuit Complex

Next we investigate shifted broken circuit complexes. Again we begin with some

definitions and examples. The results used here may all be found in [4].
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Definition 5.6.1. Given a matroid M on the base set E and a linear ordering of the

base set, a broken circuit of M is a subset C −{xi} where C is a circuit and xi is the

smallest element of C with respect to the linear ordering.

Definition 5.6.2. The broken circuit complex BC(M) of a matroid M on a base set

E is defined by:

BC(M) = {S ⊆ M : S contains no broken circuit}.

Definition 5.6.3. The reduced broken circuit complex BCr(M) of a matroid M with

broken circuit complex BC(M) is defined by:

BCr(M) = {S ∈ BC(M) : xm /∈ S}, where xm is the node of smallest label.

First we give some examples. Let M be the matroid with two three point lines which

intersect in one point (see Figure 5-4).
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Figure 5-4: A labeled matroid whose broken circuit complex is not shifted.

The circuits of this matroids are C = {123, 145, 2345}, and the broken circuits are

BC = {23, 45, 345}. BC(M) is generated by maximal faces {124, 125, 134, 135}.
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Figure 5-5: The broken circuit complex of the matroid in Figure 5-4.

The construction of the broken circuit complex uses the labelling of the matroid. This

construction is not independent of the labelling. Let us consider the same matroid

as in the last example but with a different labelling (See Figure 5-6).
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Figure 5-6: The matroid of Figure 5-4 with a different labelling.

With this labelling we have C = {135, 245, 1234}, BC = {35, 45, 234}, and BC(M)

generated by {123, 124, 125, 134}.
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Figure 5-7: The broken circuit complex of the matroid in Figure 5-6.

The broken circuit complex has clearly changed under this new labelling. We note

two results on broken circuit complexes before moving to our result on shifted broken

circuit complexes.

Proposition 5.6.1. BC(M) is pure of dimension ρ(M) − 1.

Proposition 5.6.2. BC(M) = Cone(BCr(M)). BC(M) = BCr(M) ∗ xm where xm

is the node of smallest label.

Now let us consider the case where we have a rank n matroid M with a shifted matroid

complex and a shifted labelling of the nodes.

Theorem 5.6.1. Broken circuit complexes of shifted matroids are shifted and inherit

a shifted labelling.

Proof. BC(M) is a pure n-dimensional cone with cone point 1, and a subcomplex of

the matroid complex. Purity allows us to only check shiftedness in the top dimension.

If BC(M) had all n-faces that included 1 from the matroid complex, then it would
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be shifted since the matroid complex is shifted. But some such face may contain a

broken circuit. Say we have a circuit (x1, x2, . . . , xd+1), broken circuit (x2, . . . , xd+1),

and (1, x2, . . . , xd+1) is a face of the matroid complex. Then (1, x2, . . . , xd+1) is not a

face of BC(M). So we need any greater face, say (1, y2, . . . , yd+1), to also not be a face

of BC(M). If (y2, . . . , yd+1) is not a face of the matroid complex then we are done.

Otherwise we need it to be a broken circuit. Now since (x1, x2, . . . , xd+1) is a circuit,

it had to be a non-face of the matroid complex. But then (x1, y2, . . . yd+1) must also

be a non-face or the matroid complex would not be shifted. Hence (y2, . . . yd+1) is also

a broken circuit, and BC(M) is shifted under the initial shifted labelling of M .

We list here some other results on shifted broken circuit complexes.

Proposition 5.6.3. The same matroid with two different labellings can result in one

shifted broken circuit complex and one not shifted.

Proof. The two examples given above demonstrate this. The first labelling gives a

non-shifted broken circuit complex. An easy way to see this is to notice that BCr(M)

is a square, one of the obstructions to shiftedness. The second labelling gives a shifted

complex and induces a shifted labelling.

Proposition 5.6.4. All shifted matroid complexes with a single S (see section 5.2)

in the top dimension appear as broken circuit complexes.

This is a direct consequence of the following result:

Theorem 5.6.2. For any matroid M there exists a matroid N such that BCr(N) =

I(M).

Proposition 5.6.5. All one dimensional broken circuit complexes are shifted.

Proof. All one dimensional broken circuit complexes must be cones over zero dimen-

sional complexes. The only zero dimensional complexes are collections of disjoint

nodes. Hence all one dimensional broken circuit complexes are star graphs which are

shifted. In fact they are matroids, and this structure falls under the situation of the

previous proposition.
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Proposition 5.6.6. All matroids of rank less than four and on less than six nodes

give a shifted broken circuit complex with an induced shifted labelling.

Proposition 5.6.7. The matroid with two 3-point lines can not induce a shifted

labelling on a broken circuit complex.

Proof. Consider this matroid with the labels as given in Figure 5-8. Suppose with

out loss of generality a has the smallest label among {a, b, c}, d has the small-

est label among {d, e, f}, and l(a) < l(d). Then C = {abc, def, abde, abdf, abef,

acde, acdf, acef, bcde, bcdf, bcef}. BC contains {bc, ef, bde, bdf, bef, cde, cdf, cef}. The

last three circuits contribute differently depending on the labelling, but none affect

BC(M). Hence we have BC(M) = {abd, abf, ace, abe, acd, acf, ade, adf}. Consider

BC(M) − {a, d}, which equals {ce, eb, bf, fc}, a square. Hence BC(M) can not be

shifted.
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Figure 5-8: The matroid with two 3-point lines.

5.7 The Tutte polynomial

Next we give some preliminary results on Tutte polynomials of shifted matroids. For

a general introduction to Tutte polynomials see [17]. For a matroid M on a base set

E with rank function ρ the Tutte polynomial is defined as follows:

Definition 5.7.1. T (M ; x, y) =
∑

A⊆E(x − 1)ρ(E)−ρ(A)(y − 1)|A|−ρ(A).

The Tutte polynomial carries a great deal of information about a matroid. Different

evaluations provide different combinatorial invariants. For example:
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T (M ; 1, 1) = number of bases of M .

T (M ; 2, 1) = number of independent sets of M .

T (M ; 1, 2) = number of spanning sets of M .

T (M ; 2, 2) = 2|E|.

We utilize the following recurrences satisfied by the Tutte polynomial:

• T (M) = T (M − e) + T (M/e), if e is not equal to a loop or isthmus.

• T (M) = T (M(e))T (M − e), if e is equal to a loop or isthmus.

For a shifted matroid, let d be the number of initial disjoint nodes and si the number

of starred nodes in dimension i. Also, we always use n for the size of our base set.

5.7.1 Rank 1

In rank 1 the only shifted matroid is the uniform matroid U1,n, and

T (U1,n) = x + y + y2 + · · · + yn−1.

5.7.2 Rank 2

In rank 2, we have matroids of the form M = DD · · ·DSS · · ·S.

If s1 = 1, then the unique starred node is a coloop since it is in all maximal faces. In

this case we get T (M) = x(x + y + y2 + · · · + yn−1).

If s1 > 1, we notice that contracting along any starred node gives us U1,(n−1). This

is because contracting gives us the link of the node, and a starred node forms a face

with all other nodes. Using the contraction/deletion recurrences we get

T (M) = T (DD · · ·D SS · · ·S
︸ ︷︷ ︸

s1−1

) + T (DD · · ·D
︸ ︷︷ ︸

n−1

).

To simplify notation, for a matroid M with non-zero parameters {d, s1, s2, . . . sk},

write T (M) as T (d, s1, s2, . . . , sk). Then the above statement is simply

T (d, s1) = T (d, s1 − 1) + T (n − 1).
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The second term is simply the rank 1 case. Using this recurrence, we get a general

form for all rank 2 matroids.

Theorem 5.7.1. We have

T (d, s1) = x(x + y + · · · + yd−1) + (s1 − 1)(x + y + · · · + yd) + (s1 − 2)yd+1

+(s1 − 3)yd+2 + · · · + yn−2.

From this we see that

T (d + 1, s) = T (d, s) + xyd + yd+1 + yd+2 + · · · + yd+s−1

T (d, s + 1) = T (d, s) + x + y + y2 + y3 + · · · + yd+s.

5.7.3 General Rank

Now we consider T (d, s1, s2, . . . , sk) for a shifted matroid of rank k + 1. As before,

if sk = 1 then the unique node starred in dimension k is a coloop and we have

T (M) = xT (d, s1, s2, . . . , sk−1). If sk > 1 we consider contraction along a starred

node. Again we get the link of the node which is all (k − 1)-faces. This gives us

a complex with parameters {d, s1, s2, . . . , s
′
k−1} where s′k−1 = sk−1 + sk − 1. In the

previous notation of Ds and Ss, we are removing the last vertical bar and one S.

Here the recurrence is

T (d, s1, s2, . . . , sk) = T (d, s1, s2, . . . , sk − 1) + T (d, s1, s2, . . . , sk−1 + sk − 1).

In [1] the Tutte polynomial for Catalan matroids is given in terms of simple properties

of Dyck paths.

Open Problem: Find the explicit form of the Tutte polynomial for an arbitrary

shifted matroid.

5.8 Nested Transversal Matroids

Let S be a finite set and A = (A1, A2, . . . , Ak) be a family of subset of S. A transversal

of A is a subset {s1, s2, . . . , sk} of S such that sj ∈ Aj for all j. A subset X ⊂ S is a

partial transversal of A if X is a transversal of some subset of A.
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Theorem 5.8.1. [10] Let A be a family of subsets of a finite set S. Let I be the set

of partial transversals of A. Then I is the collection of independent sets of a matroid

on S.

A transversal A is called nested if A1 ⊆ A2 ⊆ · · · ⊆ Ak. In [11] a class of matroids

M was introduced which are formed from the domains of integer valued functions.

These matroids are exactly the transversal matroids with nested presentations. This

class is also the same as the class of shifted matroids.

Given a function f from a finite base set E to the integers, form a function f ′ from

2E to the integers by:

f ′(A) =







max{f(a)| a ∈ A} if A 6= ∅

min{f(a)| a ∈ E} otherwise.

Definition 5.8.1. Mf is the matroid with I = {I ⊆ E such that max{f(a)| a ∈ J} ≥

|J | for all J ⊆ I, J 6= ∅.

M is the collection of matroids obtained from integer valued functions in this way.

In [11] it is shown that M is closed under many matroid operations, and is exactly

the class of nested transversal matroids. Also, they give a characterization of this

class in terms of excluded minors which we include below.

For any k ≥ 2, form a base set E which is the disjoint union of two k element sets E1

and E2. Form a matroid N k on E by letting the circuits be given by

C(Nk) = {E1, E2} ∪ {C |C + E1, C + E2, C ⊂ E, |C| = k + 1}.

Theorem 5.8.2. [11] M is the class of matroids having no minor isomorphic to N k

for k ≥ 2.

In terms of the independent set complex, this class of matroids has the form:

• (k − 1) dimensional,

• all faces of dimension less than or equal to (k − 2),

• all but two disjoint (k − 1) faces.

For example, for k = 2, N k is the matroid with complex a square.
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Chapter 6

Connections

In this chapter we investigate many of the places where shifted complexes appear

in connection to other common combinatorial structures. We saw some examples

already. The enumeration of shifted complexes made a connection with plane parti-

tions. Also, Catalan paths and first rows of tableaux induce shifted matroids.

6.1 Linear Extensions

In the previous chapter, we saw that shifted matroids can be formed by the collection

of first rows of all standard young tableaux of a fixed partition. This result can be

partially extended. Namely, the collection of entries of any fixed subpartition of all

standard Young tableaux of a partition forms a shifted complex. This construction

does not however always yield a matroid.

For example, consider λ = (5, 1, 1) and µ = (3, 1). This pair gives a complex formed

by the two top faces (1245) and (1236) in the shifted partial ordering.

1 2 3 4 5

6

7

2

3

4 5 6 71

Figure 6-1: A partition complex that is not a matroid.
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In Figure 6-1, we show the realization of these two faces. Due to the large number of

standard Young tableaux of this shape, we do not show all possibilities, but it is not

hard to check these are the maximal cases. We can see the complex is not a matroid

since it does not have a unique top face.

These partition complexes are actually all special cases of the following even more

general construction. A linear extension of a poset P on n elements is a bijection f

from the elements of P to [1, 2, . . . , n] such that if x is less than y in P then f(x) is

less than f(y). Consider any poset, P and a fixed order ideal I ⊆ P . Take a linear

extension f of P and consider the set of values which are assigned to the elements of

the order ideal, {f(xi) |xi ∈ I}. The collection of these sets over all linear extensions

of P forms a shifted complex. In [2] Ardila posed the question of studying the pairs

(I, P ) which form a matroid. Here we show some partial results on this question. First

we demonstrate some of the complications of this question. Consider the following

examples:
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Figure 6-2: Posets with order ideals = {abc}.

The non-matroid example above is minimal in the following sense:

All linear extension complexes formed from posets of size at most 5 are matroids.

All linear extension complexes formed from order ideals of size at most 2 are matroids.

The second result is actually a consequence of a slightly more general result.

Proposition 6.1.1. For any linear extension complex, the first entry in all top faces

is the same.

Proof. Suppose we have two faces (x1, x2, . . . , xk) and (y1, y2, . . . , yk) with x1 < y1

and xi > yi for some i 6= 1. We will show that (y1, x2, . . . , xk) is also a face of
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the complex. First we note that we can take x1 + 1 = y1. Since the complex is

shifted, the face (y1, y2, . . . , yk) implies (x1 + 1, y2, . . . , yk) is also a face and also

incomparable to (x1, x2, . . . , xk). Now consider the linear extension which admits the

face (x1, x2, . . . , xk). Reassign the point given the value x1 with y1. Reassign the

point given the value y1 with y1 + 1, y1 + 1 with y1 + 2 and so on. Continue until

we are at the first incomparable element to the original element with value x1. This

element is the smallest incomparable element that had a value larger than y1. We

may give this element the value x1. Now we have moved y1 into x1 position showing

that (y1, x2, . . . , xk) can be realized.

Hence an order ideal with only 2 elements can not give incomparable top faces since

the first entry will be the same in both.

Now we give the first positive result on realizing matroids via this construction.

Proposition 6.1.2. Every shifted matroid can be realized as a linear extension com-

plex.

Proof. Suppose we have a shifted matroid with top element {x1, x2, . . . , xk}. If x1 is

not equal to 1 then we first form a chain of length x1 − 1. Next we form a second

chain with “branches”. Namely, form a poset with a primary chain of length k and

chains of length xi −xi−1 − 1 at height i for all i 6= 1. To obtain our matroid, we take

the primary chain of length k as our order ideal. If x1 is equal to 1, we simply skip

the first step of forming an extra chain.

For example, consider the matroid with top face {3, 7, 9}. We form a chain of length

2 and then another primary chain of length 3 with two branches (See Figure 6-3).

It is easy to see that this will result in the desired shifted matroid.

Now we see that there are pairs of posets and order ideals which will give us any shifted

matroid. The representation from the proof above is not unique. Many different

posets and order ideals can give the same complex. Although the construction above
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Figure 6-3: A poset and order ideal corresponding to M generated by (379).

forms a principal order ideal, in general restricting to principal order ideals does not

necessarily give a matroid.

Example:
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a

b c

d

Not a Matroid

Figure 6-4: A principal order ideal complex that does not yield a matroid.

In Figure 6-4 the linear extension complex corresponding to the order ideal {a, b, c, d}

is not a matroid. This complex has two top faces, {1, 2, 5, 7} and {1, 3, 4, 7}. Therefore

although shifted matroids correspond to principal order ideals in the shifted partial

ordering, principal order ideals do not necessarily give us matroids in this setting.

6.2 General Order Ideals

We have seen that shifted matroids are exactly the principal order ideals under the

shifted partial ordering. Now that we understand the principal order ideals, we are

naturally led to consider order ideals with any fixed number of top elements. We can

provide results on these for the class of constructible shifted complexes.

In general, the D and S operations preserve shiftedness. Matroid complexes are

those in which all the disjoint added nodes come first. We have seen that these will

correspond to principal order ideals. Thus we ask if having multiple switches from
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adding disjoint nodes to starring nodes might lead to having multiple top elements

in the order ideal. We now answer this in the affirmative.

Theorem 6.2.1. Given a shifted complex formed by the two operations D and S,

the number of switches from D to S is exactly the number of top elements in the

corresponding order ideal. (In dimension one, all shifted complexes have this form.)

Proof. First, given a complex formed by the D and S operations, we show how to

obtain a shifted labelling. Consider the complex written out as a string with the

nodes added left to right. Label the Ss starting with 1 and increasing from right to

left (one each time) until the last S. Say we have k S operations in all. Then label

the Ds starting with k + 1 and increasing left to right (one each time). For example:

D

7

D

8

S

6

| S

5

D

9

S

4

S

3

| S

2

S

1

To see that this is a shifted labelling, first consider the final node added. If it is

disjoint, clearly we may give it the highest labelling. If it is starred on, then we know it

has the most possible adjacencies and we may give it the smallest labelling. Removing

the last node leaves an induced subcomplex on n−1 nodes. This subcomplex is shifted

and we may repeat our argument with the remaining labels.

Now suppose we have a complex formed by Ds and Ss and we have labelled it as

above. Consider the switches from D to S. Let us think of them as pairs: from left to

right (D1, S1), (D2, S2), . . . ,(Dm, Sm). Notice by our labelling, D1 < D2 < · · · < Dm

and S1 > S2 > · · · > Sm so faces with different switch pairs will be incomparable.

Also, each switch pair appears in a top face since for a pair (Di, Si), Si is the largest

node adjacent to Di. Finally, two switch pairs cannot appear in the same face since

the D with higher label will not be adjacent to the nodes in the other pair. Therefore,

we now have that the number of top elements in the order ideal is at least the number

of switches from D to S. Now we just need to show that these are all the top elements.

Suppose we had another top element not arising from a switch pair; then all nodes

of this face must be added by starring. Otherwise, we would have a D with an S to

the right of it and at least one other element in between. If the node in between is a

55



D, then it has higher label than the original D, while if it is an S, it has higher label

than the original S. Either way, we can replace it with one of the original nodes to

get a higher face. So a top face with no switch pair must have all Ss. But a face with

all Ss cannot be a top face because there is always at least one D (the first node) to

the left of any S. So we could replace any element with the initial D and have a face

with a higher labelling.

6.3 Independence Complex

Recall that an independent set of a graph is a collection of nodes no two of which are

connected by an edge. Let I(G) denote the independence complex of a graph G. This

complex is formed by taking the collection of independent sets of G. Clearly removing

a node from an independent set results in an independent set so this collection is a

simplicial complex.

Proposition 6.3.1. G is a threshold graph if and only if I(G) is shifted.

Proof. Let G be a threshold graph. Then we know G is shifted. Let l be a shifted

labelling of the nodes of G. Consider any face F = {v1, v2 . . . vk} of I(G) and a node w

such that l(w) > l(vi) for some i. We need to show that F ′ = {v1, v2, . . . , v̂i, w, . . . , vk}

is a face of I(G). If not, then w must be connected to some vj (j 6= i) in G. Then w

has a larger label than vi so if {wvj} ∈ E(G) then {vivj} must be in G for G to be

shifted, which contradicts F being a face of I(G).

Now let I(G) be shifted and l a shifted labelling. Consider any edge, {v1v2} of G and

a node w such that l(w) > l(v2) . We need to show that {v1w} is an edge of G. If

not, then {v1w} is an independent set of G and hence a face of I(G). I(G) is shifted

and v2 had a smaller label than w which means {v2w} must be a face of I(G) and

not an edge of G, again a contradiction.
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6.3.1 Flag complexes

Definition 6.3.1. A flag complex is a complex such that every minimal non-face has

exactly two elements.

Every flag complex can be formed as the independence complex of a graph. And, the

independence complex of any graph is a flag complex. So we now see that all shifted

flag complexes are formed from threshold graphs. This allows us to determine the

form of these complexes.

Theorem 6.3.1. Shifted flag complexes are the constructible complexes with exactly

one S in each dimension.

Proof. Every shifted flag complex arises as the independence complex of a threshold

graph. Every threshold graph can be represented as a string of Ds and Ss standing

for adding a disjoint node and starring a node. Consider mapping this string under

the following rules: D → |S and S → D. Namely, switch every S to a D and switch

every D to an S but also increase dimension with every such switch.

Example: DDSDSDSSD → S|SD|SD|SDD|S

Notice that usually we always start the strings with a D but it is equivalent for the

first operation to be a D or an S.

First, we want to determine the independent sets of a threshold graph from its string

of Ds and Ss. They are the set of all Ds and all collections which consist of an S and

all Ds that come after it.

Next, given the image of the string, we want to determine its facets. They are the

set of all Ss and all collections which consist of a D and all Ss that come after it. In

particular they are exactly the independent sets of G.

This procedure is invertible showing that all strings of Ds and Ss with exactly one S

in each dimension are flag complexes.

We note here for completeness that shifting does not preserve flag complexes. As

an example consider the graph K3,3. It is easy to check that this a flag complex.
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Symmetric shifting yields the complex generated by top face {2, 6} and exterior shift-

ing yields the complex generated by top faces {2, 5} and {3, 4}. In the first graph,

the collection {1, 2, 3} is a minimal non-face showing it is not a flag complex. In

the second graph, {1, 2, 3} is also a minimal non-face. As with shifting matroids, we

can see that shifting could not preserve flag complexes from a broader consideration.

Recall that shifting preserves the f -vector of a complex. The graph K3,3 has 6 nodes,

9 edges, and no faces of dimension 2 or greater. But any order ideal in the shifted

partial order ordering on 6 nodes with 9 one dimensional faces will include the edges

{1, 2}, {1, 3}, and {2, 3}. Since we can not add any two dimensional faces, this will

generate a minimal non-face with three elements.

6.3.2 Generalized Independence Complex

Forming the independence complex of a graph can be generalized to arbitrary simpli-

cial complexes. For a simplicial complex ∆, we form I(∆) by declaring the facets of ∆

to be the minimal non-faces of I(∆). Ehrenborg suggested considering this construc-

tion with respect to shifted complexes. The statement that ∆ is shifted if and only if

I(∆) is shifted is false in both directions. Consider ∆ generated by {123, 14, 24, 15}.

Then I(∆) is generated by {235, 345, 12, 13}. We can easily see that this complex is

not shifted by looking at the induced subcomplex on {1, 2, 4, 5}. This subcomplex is

a path of length three, an obstruction to shiftedness in dimension one.

We can continue applying the procedure to disprove the other direction. I(I(∆)) is

generated by {245, 234, 145, 35} which is also not shifted. But, I(I(I(∆))) is generated

by {123, 124, 125, 134, 45} which is shifted (mapping 3 to 4 gives a shifted labelling).

Note that the counterexamples to this result are non-pure complexes. We could ask

the question again for the case of pure complexes. This is actually a more natural

generalization of the independence complex of a graph. The generalized procedure

only restricts to the same procedure on graphs if the graph is connected (i.e. pure).

Namely, if we have a graph with disjoint nodes, under the generalized procedure they

would be minimal non-faces of I(∆). On the other hand, a disjoint node is in all

maximal faces of the independence complex of the graph. In the pure case, we come
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to the following result:

Proposition 6.3.2. For ∆ pure, ∆ is shifted if and only if I(∆) is shifted.

Proof. (⇒) Suppose ∆ is shifted but I(∆) is not shifted. Then there exists x, y, f1, f2

such that xf1, yf2 ∈ I(∆) and yf1, xf2 /∈ I(∆). Since yf1 and xf2 are not in I(∆),

they must be facets or contain facets of ∆. First we note that the facets involved here

must not be strictly contained in f1 and f2 or xf2 and yf1 could not be in I(∆).

Suppose yf1 and xf2 are facets of ∆. Let l be a shifted labelling for ∆ and with out

loss of generality, let l(x) < l(y). Since ∆ is shifted, we have that xf1 ∈ ∆. But, |xf1|

= |yf1| which implies xf1 is a facet of ∆ and can not be in I(∆) a contradiction.

Suppose at least one of yf1 and xf2 is not a facet of ∆. Then they must contain a

facet. Let g1 ⊆ f1, g2 ⊆ f2, and xg2, yg1 be facets of ∆. They will not be in I(∆),

but yg2 ⊆ yf2 ∈ I(∆) and xg1 ⊆ xf1 ∈ I(∆) so we are back in the first case.

(⇐) Now suppose I(∆) is shifted but ∆ is not shifted. Then there exists x, y, f1, f2

such that xf1, yf2 ∈ ∆ and yf1, xf2 /∈ ∆. First notice that we may take xf1 and yf2

to be maximal faces since ∆ is pure, and in particular this gives that |xf1| = |yf2|.

Since xf1 and yf2 are facets of ∆, they are not in I(∆). Next consider xf2 and yf1;

we must show they are also not in I(∆). For these faces not to be in I(∆), they must

contain facets. However, |xf2| = |yf2| = |xf1| = |yf1| so if they contained a facet it

would be of smaller size, and this can not be because ∆ is pure. Hence xf2 and yf1

are in I(∆), which contradicts I(∆) being shifted.
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