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ABSTRACT. We study degree sequences for simplicial posets and polyhedral complexes,
generalizing the well-studied graphical degree sequences. Here we extend the more com-
mon generalization of vertex-to-facet degree sequences by considering arbitrary face-to-flag
degree sequences. In particular, these may be viewed as natural refinements of the flag
f-vector of the poset. We investigate properties and relations of these generalized degree
sequences, proving linear relations between flag degree sequences in terms of the com-
position of rank jumps of the flag. As a corollary, we recover an f-vector inequality on

simplicial posets first shown by Stanley.

1. INTRODUCTION

Degree sequences of graphs, which record how many edges contain each vertex, have been
studied extensively, and enjoy a rich literature. One popular chapter of this literature is the
characterization of when an integer sequence can be a degree sequence; for example, see [6].

In higher dimensions, the notion of degree sequence for simplicial complexes has received
considerably less attention. For example, although the behavior of the vertex-to-facet degree
sequence for pure simplicial complexes has been studied in [1, 3, 5], little is known about
the intrinsic properties or characterizations for this, possibly most natural, extension of
graphical degree sequences.

In this paper, we formulate a higher dimensional and more general analogue of graphical
degree sequences, and we study the nature of these sequences for simplicial posets and for
more general polyhedral complexes. In particular, we define the face-to-flag degree sequence,
recording how many flags with prescribed rank jumps contain each face of a given rank.
More precisely, let P be a pure, rank-k simplicial poset, and o = (071, ..., 0p,) a composition
of k. The face-to-flag degree sequence d?(P) is a sequence indexed by the faces F; of rank
o1, with the corresponding entry in d?(P) counting the number of flags

{FZ’CXQC"'CXmZl“k(Xj):O'l—l-O'g—F"-—FO'j},

which are the flags containing F; with rank jumps o1,...,0,,. We give linear relations
between such sequences, proving a majorization result in the case of simplicial posets, in
terms of the relative sizes of the rank jumps of the flags. Namely, for 7 = (71,...,mn,) a
permutation of o, if 71 > o1, then
d°>d”.
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Furthermore, we obtain a weak majorization result for face-to-flag degree sequences analo-
gously defined for complexes whose maximal faces are simple polytopes.

Our majorization result in the simplicial case yields results on f-vectors and flag f-
vectors of pure simplicial posets because these sequences naturally refine the flag f-vector
of the poset. In particular, we recover a result of Stanley: for a rank-k simplicial poset, the
f-vector satisfies the inequality f; < fr_;, when i < k — 1.

In Section 2, we review graphical degree sequences as a basis and motivation for studying
generalized degree sequences, also recalling the definition of vertex-to-facet degree sequences
and a few preliminary results. In Section 3, we introduce the face-to-flag degree sequences,
and prove our main result (Theorem 3.5), giving a total ordering (via majorization) of the
face-to-flag degree sequences of a simplicial poset. As a corollary, we recover the aformen-
tioned result of Stanley. In Section 4 we consider non-simplicial posets. First, Theorem 3.5
is extended to the setting of complexes all of whose maximal faces are simple polytopes.
Finally, we give an elementary example showing that these results may not be extended to
arbitrary polyhedral complexes.

2. DEGREE SEQUENCES, MOTIVATION AND PRELIMINARIES

2.1. Graphical degree sequences.

Definition 2.1. For a simple graph G = (V, E) with |V| = n, the graphical degree sequence
of GG is the sequence
d(G) = (d1,da, ... ,dy),
where
di = {7 :{i,j} € E}|,
and the vertices are labeled so that di > dy > ... > d,,.

Majorization (or dominance) order is often the natural choice for comparing graphical
degree sequences, as in [4, Chapter 7].

Definition 2.2. Given two sequences of nonnegative integers a = (a1, as,...,a,) and b =
(b1, b2, ..., by) having the same sum, a majorizes b, written a &> b, if the following system

of inequalities hold:

ap > by

a1 +az > by + by

art+as+ -+ ap_1>b1+bas+---+by_1.

If one weakens the sum requirement to the inequality ) ., a; > ), b;, then a is said to weakly
majorize b, written a > b. Majorization forms a partial ordering on integer sequences.
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The conjugate of a sequence d = (dy, ..., d,) of nonnegative integers is the sequence d’
given by
di =|{j:d; > i}
for ¢ > 1. This agrees with the transpose when considering d as an integer partition. An

elementary relation on graphical degree sequences compares a sequence and its conjugate.

Proposition 2.3 ([4, Chapter 7, Section D|). The degree sequence of any simple graph G
is majorized by its conjugate:

(d@)" = d(@).

The problem of characterizing graphical degree sequences, that is, deciding which se-
quences arise as the degree sequence of some graph, is well understood. For example, [6]
lists seven criteria, all of which are linear relations on the degree sequence or between the
degree sequence and its conjugate.

2.2. Vertex-to-facet degree sequences. Moving to higher dimensions, we first consider
pure, rank-k simplicial complexes; that is, complexes in which every maximal face is of rank
k, where we define the rank of a face to be one more than its dimension.

For a pure, rank-k simplicial complex, the “vertex-to-facet” degree sequence, counting the
number of facets containing each vertex, has received the most attention as a generalization
of graphical degree sequences. For example, these sequences are treated in [1], [3], and
[5], where they arise in connection with Laplacian eigenvalues, plethysms, and zonotopes
respectively.

Little is known about the intrinsic properties of such integer sequences. In general, the
vertex-to-facet sequence does not share many of the nice properties of the graphical case.
For example, Proposition 2.3 no longer holds.

Example 2.4. Let A be the complete, rank-3 complex on five vertices. Then the vertex-
to-facet degree sequence is (6,6, 6,6,6), and (6,6,6,6,6)" = (5,5,5,5,5,5). Proposition 2.3
does not hold here, since the majorization occurs in the wrong direction: (6,6,6,6,6) >
(5,5,5,5,5,5).

To match the notation for generalized degree sequences introduced in the upcoming
Definition 3.2, let d ("1"’2)(A) be the sequence counting, for each rank-o face in a simplicial
complex A, the number of rank-(o; 4+ 02) faces containing that face. Duval, Reiner, and
Dong consider face-to-facet sequences, and give the following relation for a rank-k complex.

Proposition 2.5 ([1, Proposition 8.4]). For any pure, rank-k simplicial complex A,
. T .
(d (3,k—1) (A)) >d (k—1,3) (A) )

In fact, a more direct relationship exists between d k=0 and d *=49) and between more
general “face-to-flag” degree sequences where the compositions of rank jumps for the flags
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are permutations of each other. These generalized degree sequences, indexed by composi-
tions of rank jumps, are defined in the subsequent section.

3. GENERALIZED DEGREE SEQUENCES

3.1. Face-to-flag degree sequences.
For the remainder of the paper, we will assume that all simplicial complexes and posets
are pure. That is, we assume that all maximal faces have the same rank.

Definition 3.1. A simplicial poset is a poset with a minimal element 0 in which every
principal order ideal [0, z] is a boolean algebra.

In parallel to the terminology for the more commonly studied vertex-to-facet degree se-
quences of simplicial complexes, we will also use the term face to denote an element of the
poset, and flag to denote a nested sequence of faces (that is, a chain) in the poset. Addi-

tionally, when no confusion can arise, we will move freely between these two interpretations.
Definition 3.2. For a pure, rank-k simplicial poset P, and o = (071, ...,0,,) a composition
of k, the face-to-flag degree sequence d°(P) is
d?(P) = (d?(F1),d? (Fh),. .., d7 (Fy))
where {Fy, Fs, ..., Fs} are the rank-o faces of P, and
d°(F) =H{F CXoC - C Xy i 1k(Xj) =01+ 02+ -+ 0}

The sequence d 7 (P) records the degrees of rank-o; faces to flags with rank jumps o1, ..., opp,.
As with graphical degree sequences, for a fixed o, the faces F; are indexed so that d?(F}) >
d?(Fy) > ... > d°(Fs). We assume that all flags end at the top rank, since otherwise one
could take the appropriate truncation of the poset.

Note that there is an abuse of notation in Definition 3.2: the function d? is defined both
on a simplicial poset and on a face, which itself could be considered as a simplicial poset.
Throughout this article, the context of the usage should be clear.

Example 3.3. Let A be the pure, rank-4 simplicial complex with facets {1234, 1246, 1256}.
Consider the following three degree sequences recording vertex-to-edge/tetrahedron flags,
vertex-to-triangle /tetrahedron flags, and edge-to-triangle/tetrahedron flags, respectively.

dBB2(A) = (9,9,6,6,3,3)

dB2D(A) = (9,9,6,6,3,3)

dPPD(A) = (6,4,4,4,4,2,2,2,2,2,2,2)
From here it is easy to see that

d(1’1’2) (A) _ d(l,?,l)(A) > d(2’1’1) (A)
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To formalize the majorization behavior observed in Example 3.3, comparing face-to-flag
degree sequences for a given complex, fix P a rank-k simplicial poset, and o = (01,...,0m)
a composition of k. Additionally, let > d?(P) denote the sum of the entries in d?(P).

Let {Fi,..., Fs} be the rank-0; elements of P. Observe that

k—O’l

d°(P) = < ) (= (R), . a Ry ) (1)

02,...,0m

Thus, the sum of the entries in d?(P) is

Sarey = (77 ) Sae i = (T ) )
b =1 ym

AN %

= (o T )p@(0)=5m(,, L) @

where fi(P) is the number of rank-k elements of P, and
fo’l7k(7)) = ’{Xl C Xo: I"k(Xl) = Ul,rk(Xg) = k}|

is an entry in the flag- f vector of P. Additionally, since the right side of equation (2) only
depends on the entries of o, we see that Y d?(P) = > d™(P) for any permutation 7 of the

composition o.

Lemma 3.4. Fiz 0 = (01,...,0m) a composition of k and m a permutation of o, with
m > o1. If F is a rank-o1 element of a pure, rank-k simplicial poset P, and G > F is a
rank-m1 element, then d°(F) > d™(G).

Proof. Let m = oy for some 1 <1 < m.

o o1 ko k— o1 k— o1 k—o1—m
d (F) - d( o 1)(F)<0'2 g ): Z ( T )(0'2... 6\'1 O‘)

H:rk(H)=k
F<H
D)
m 0%y ev ey Olyevy Om
Hork(H)=k
G<H
k—o
I TR 3 <k - 7r1) < k—o1—m >
- k—m ~
(k—m—lal) Herk(H) =k o1 09,...30y...,0m
G<H
> Z ( k—ﬂ'l > :d(ﬂhkﬂl)(G)( ]C—ﬂ'l ) :dﬂ—(G)
= T2y Tm Ty vey Tm '
H:rk(H)=k
G<H
The last inequality is due to the fact that 71 > o1, and {o1,...,07,...,0m} and {7, ..., mn}

are equal as sets. O
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Theorem 3.5. Fiz a pure, rank-k simplicial poset P, a composition o = (01,...,0m) of k,

and m = (71, ...,my) a permutation of o. If m1 > o1, then
d?(P)>d™(P).

Proof. We recall that Y d?(P) depends only on the entries of o, and therefore > d?(P) =
> d™(P). We divide the rest of the proof into two cases: 71 = o1 and m > o7.

First, consider the case m; = 01. Here we are considering elements of the same rank
compared to different flags. By equation (1), we see that d?(P) = d™(P).

Now, suppose m > o1. Let {Fi,Fs,...,Fs} be the rank-o; elements of P, and let
{G1,Ga,...,G;} be the rank-m; elements. Furthermore, assume they are labeled so that

d’(F;) > d°(F;) and d™(G;) > d™(Gy)

for all i < j.

By Lemma 3.4, if F' < G, then d?(F') > d™(G). It remains to prove that

>
Zd (Gy) Si ) for all r < s. (3)

We prove this by induction on r. Suppose r = 1, and consider the smallest j such that
F; < G1. Then we have
d°(Fy) > d?(F;) > d™(Gh).
For r > 1, we consider two subcases.
Suppose there exists F; < G; with j > r and [ < r. As above, we have

d°(F,) > d°(F;) > d™(G;) > d™(G,).

In this case, the rth terms in the sums satisfy the necessary inequalities themselves, hence
the rth partial sum, equation (3), holds by induction.

Now assume there does not exist F; < G with j > r and [ < r. We prove this case
directly. First, note that if we sum the degrees of all rank-m; elements which are greater
than a given rank-o; element, we count the degree of the fixed rank-o; element (2) times:

S ar < )dawj).
o1

Gl F <Gl

This implies that

)rem=x ¥ e

GF<Gl

ZZ >, dT(G)

J=1G:F; <G,
<r

-()xre
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0

As a corollary, we obtain an inequality for the f-vector of a simplicial poset. This result
was first shown by Stanley (see [2] for a brief history of this inequality).

Corollary 3.6. For P a pure simplicial poset of rank k, with i <k — 1,

Ji < Jr—i
where f; is the ith entry of the f-vector of P, indexed by rank.

Proof. If a and b are nonnegative sequences with a ™ b, then the number of non-zero entries
of a must be less than or equal to the number of non-zero entries of b. For the sequence
d (k=9 the number of (non-zero) entries is equal to the number of rank-i elements of P,
because P is pure of rank k. O

Remark 3.7. Note also that:

S S

D dWTE) =Y AU = fij = fiig
I=1 I=1

where the f; ; are entries in the flag f-vector of P, indexed by ranks. Hence, we can view

generalized degree sequences as refinements of flag f-vectors. The theorem above states

that for all pure simplicial posets, and for ¢ < j — 7, the contributions which make up f;_; ;

are “more spread out” than those which make up f; ;.

The definition of face-to-flag degree sequences can easily be extended to a notion of flag-
to-flag degree sequences which record the degrees of flags with specified rank jumps to flags
with continuing rank jumps. The flag-to-flag degree sequence can be computed in terms
of face-to-flag degree sequences. An analogous majorization result holds in this case where
the necessary condition is in terms of the relative sizes of the sums of rank jumps of the
initial flags.

4. NON-SIMPLICIAL DEGREE SEQUENCES

The definition of face-to-flag degree sequences is not specific to simplicial posets, and so
we carry over that definition to the setting of a pure polyhedral complex. In particular, if
all maximal faces of our complex are simple polytopes, then many of the results from the
simplicial case also hold. For a discussion of simple polytopes, see [7].

Definition 4.1. A polytope is simple if every proper upper interval in its face lattice, [z, 1]
with x # 0, is a boolean algebra.

As a starting point, we observe that Lemma 3.4 holds in this case.

Lemma 4.2. Let 0 = (01,...,0m) be a composition of k, and m = (mw1,..., 7)) a permu-
tation of o with o1 < m. If F is a rank-01 face of a pure, rank-k complex in which every

maximal face is a simple polytope, and if G D F' is a rank-m face, then d°(F) > d™(G).
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Proof. Lemma 4.2 follows as in Lemma 3.4. In particular, the initial multinomial expression

d°(F) = d(ol,km)(F)( k— o1 )

02y...,0m

is easy to see, since every upper interval of the face lattice ending at rank k is boolean. [

The simple case differs from the simplicial case in that the sums of the degree sequences
>>d?(C) and > d™(C) are not necessarily equal for a complex C with simple maximal faces.
However, if every maximal face of C is the same simple polytope, then we establish an
inequality on the sums which implies weak majorization, as demonstrated in the following
analogue to Theorem 3.5.

Theorem 4.3. Fiz a pure, rank-k complex C in which every mazimal face is the same
simple polytope, a composition o = (01,...,0m) of k, and © = (m1,...,7Tm) a permutation
of o. If m1 > o1, then

d°(C) = d™(C).

Proof. The proof is identical to that of Theorem 3.5, with Lemma 4.2 replacing Lemma 3.4,
except that equality of the total sums is no longer guaranteed.
Let {F1, Fy,..., Fs} be the rank-o; faces of C. Then we have

k— o1

d°(C) = < ) (ar b= (m), ... d R (R )

02,...,0m

By the same argument as in Theorem 3.5, if o1 < 71, then
T T
> dT(Gi) <) do(F) forall r < s,
i=1 i=1

where {G1,...,G:} are the rank-m; faces in C.

Now,

ey Om

= < oo >fk(C)Nala

02,...,0m

Sdo(0) = (@’f o )fal,kw)

where Ny, is the number of rank-o; faces contained in a given rank-% face.
Comparing this to the sum ) d™(C), we find

>doC) _ Ny ()
>d7(C) — Ny ()

g1

(4)

This ratio must be greater than or equal to 1 for weak majorization to hold.
To establish this inequality, we restrict our attention to a single maximal face and consider
the number of pairs of rank-oq faces contained in rank-m; faces. Since the maximal face is
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simple, each rank-o; face is contained in ( 751_—0011) rank-m; faces. Each rank-m; face contains

k —
(0= ()
T — 01 g1

This implies that the expression in equation (4) is at least 1. Therefore, if o1 < 1, then

at least (2) rank-oq faces, so

d°(C) = d™(C).

Furthermore if o091 = 71, then

g

In fact, the result of Theorem 4.3 would hold for suitably defined “polyhedral posets” as
well. For example, just as a simplicial poset is one in which every principal order ideal is
a boolean algebra, a poset is cubical if every principal order ideal is isomorphic to the face
lattice of a cube, and such posets also satisfy the results of the theorem.

4.1. A polyhedral counterexample.

Theorem 3.5 breaks down, even in the case of weak majorization, as we diverge from the
simplicial and simple cases. For example, in a 3-polytope, the sum of the entries of d13) ig
equal to f1, the number of vertices of the polytope, while the sum of the entries of ) is f3,
the number of facets. Thus, any 3-polytope with more facets than vertices results in d(®1)
weakly majorizing d(*3). The following example describes one such polyhedral complex; in

fact, a Platonic solid.
Example 4.4. Let A be the octahedron. We have

dI(A) = (1,1,1,1,1,1), and
d(371)(A) = (171717111’171’1)'

Although (3,1)>(1,3), the (weak) majorization of these degree sequences is in the direction
opposite to that in the results for the simplicial and simple cases: d 3D (A) = d13)(A).
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