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The Labeled Chip-Firing Novel Proof of Sorting Theorem New Results

Problem The firing moves in chip-firing on a line exhibit a nice poset structure: Theorem (conj. by Galashin et al 2017):
if the initial configuration has n chips at

Place n chips, labeled from 1 to n, at 1 and ped chins at site 0. th
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the origin in a 1D grid. (il il > fe d chips atSite U, the
chips sort.
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Perform firing moves by choosing 2 W“W \FL\MWZ/ Theorem (conj, by K., L.): For positive
. . . SRR integer t, and k from O to t, place 2
chips at the same site, sending the “\sg‘zl” ‘mw}\gwr . g f ; e to kel : 3 f ot
QR KERERD +1, and from -
smaller one left and the larger one ’,:::::::::,’ ,&“» cUBes rom.5|.e. O - a . O (2)
right CRBBEEILLs  AEBEEEEIR -k-1. If the initial configuration has 2**
. 929.9.9.0.9.9, . . .
LS chips at site O, then chips weakly sort.
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1 Step 1: Prove the existence of the grid at the bottom of the Hasse diagram
for n even.
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3 Step 2: Prove straightforward bounds on the maximum or minimum position
1 , A of each chip throughout the process.

Step 3: Prove that chips meeting these bounds will be sent to the correct

=, ! final position by the moves in the grid. -
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. . . Self-loop, n=15. Exponential, t=3, n=32.
Continue until no firing moves are

available. Right: we renumber the chips to go ; ‘ Theorem (conj. by Hopkins et al 2016):
if every site has a self-loop and an edge

from—nto 1 and 1ton. Chip 3 3_5 0 5
Theorem (Hopkins, McConville, must remain at or to the right of . "0 ; in each direction, and n is 1 mod 4
Propp 2016): If n is even, then the the red line labeled 3, while chip -4 y .”0 5 then chips weakI’y sort. ’
chips end in sorted order, regardless must remain at or to the left of the \ ’0’
of the choices of moves. red line labeled -4. These bound \ ’ Theorem (conj. by Hopkins et al 2016):
if every site has r self-loops, and r edges

the final position of every chip in a
way that can only be satisfied when N to the left and right, and nis r mod 4r,
then chips weakly sort.

the chips are sorted. Y VA
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