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Abstract

One of the key autoregulatory mechanisms that controls blood flow in the kidney

is the myogenic response. Subject to elevated blood pressure, the renal afferent

arteriole responds with an increase in muscle tone and a decrease in diameter.

We investigate the myogenic response of a vascular segment of multiple smooth

muscle cells by connecting instances of afferent arteriole cell models in series.

To model individual cells, we include detailed Ca2+ signaling, transmembrane

transport of major ions, the kinetics of myosin light chain phosphorylation, as

well as cellular contraction and wall mechanics. The cells of the vessel are

connected by gap junctions, which link the cytoplasm of neighboring cells, and

by a layer of endothelial cells. Blood flow through the afferent arteriole vessel

is modeled using Poiseuille flow. Simulation of an inflow pressure up-step leads

to vasoconstriction in the proximal part of the vessel and to vasodilation for

a down-step. The afferent arteriole model stabilizes to a significant degree a

physiological range of blood pressures (80–180 mmHg) and predicts a decrease

in the average segment diameter for high blood pressures. Similar responses

are also observed for short-term pressure pulses. The developed model allows

for the study of the effect of oscillatory perturbations to inflow pressure on the
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blood flow. The ability of the model to represent the myogenic response suggests

that it can be incorporated as a key component into models of integrated renal

hemodynamic regulation.

Key words: smooth muscle, gap junctions, microcirculation, kidney,

hemodynamics, non-linear model
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1. Introduction

The kidneys are organs in the body of mammals that extract waste from

blood and regulate the balance of water, electrolytes, acid-base species, etc.

[1]. The kidneys accomplish these crucial tasks by filtering blood through the

nephrons where a portion of the supplied blood is extracted from the blood-5

stream. As the extracted fluid flows through the nephrons, its composition

constantly changes, as water and solutes are selectively reabsorbed or secreted,

depending on the organism’s homeostatic status.

To maintain proper kidney functions, the rate of filtration into each of the

nephrons must be maintained within a narrow range [1]. If the filtration rate is10

high, the kidney may not have sufficient capacity to reabsorb all that is needed

and necessary substances may be lost in urine. If the filtration rate is low, the

kidney may reabsorb more than is needed and unnecessary substances or toxic

waste may leak back into the general circulation. To regulate filtration rate,

blood flow in the nephron is controlled by a number of autoregulatory mecha-15

nisms [2, 3, 4, 5], all of which share a common effector, namely the suppling

blood vessel, called afferent arteriole.

One of the key mechanisms acting on the afferent arteriole is the myogenic

response [6]. This mechanism induces vasoconstriction of the arteriole when

blood pressure is elevated and vasodilation when blood pressure is reduced. This20

way the myogenic response enables the kidney to actively impede or accelerate

blood flow and therefore to adjust the filtration rate in response to perturbations

of blood pressure.
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At the vascular level, the myogenic response has been well characterized

experimentally and theoretically, for example [7, 8, 9, 10]. However, at the25

cellular level little is known about the involved phenomena [5]. A goal of this

study is to gain a better understanding of the involved intercellular interactions.

To that end, we expand on a previously published, highly detailed mathematical

model of Ca2+ signaling within an afferent arteriole smooth muscle cell [11].

That model represents the transmembrane transport of major ions, intracellular30

Ca2+ dynamics, the kinetics of myosin light chain phosphorylation, and the

mechanical behavior of the cell. Here we extend a multi-cell vascular model of

the afferent arteriole presented with blood flow, initially developed in [12], that

adopts the cellular model of [11], by incorporating a layer of endothelial cells,

and we use the resulting model to study the myogenic response of the afferent35

arteriole at the cellular and vascular level.

2. Mathematical Model

In this section we describe the model equations, the numerical methods

developed for the solution of the model equations, and present values for the

model parameters.40

2.1. Model Description

In our model of the afferent arteriole, we couple individual smooth muscle

cells through gap junctions, the endothelium, and blood flow.

2.1.1. Vascular Blood Flow

To obtain an accurate representation of blood flow we model a segment of the45

renal vasculature consisting of an afferent and the associated efferent arterioles

as shown in Fig. 1. We represent the two vessels as consecutive straight tubes

that extend from the cortical radial artery (x = 0) to the glomerulus (x = LAA),

and from the glomerulus to the entrance of the peritubular capillary network

(x = LAA + LEA), respectively.50
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Figure 1: Model vasculature. Blood flows through the afferent arteriole from the cortical

radial artery to the glomerulus and subsequently flows through the efferent arteriole from the

glomerulus to the peritubular capillaries.

Let QAA and QEA denote the blood flow in the model afferent and effer-

ent arterioles, respectively. In the glomerulus, a portion of the supplied blood

is removed from the bloodstream due to filtration [1]. To model glomerular

filtration, we assume a constant filtration fraction fg. So, the single nephron

glomerular filtration rate equals fgQAA and conservation of mass reads55

QEA = (1 − fg)QAA. (1)

Blood flow in the model vasculature is assumed to obey Poiseuille’s law [13],

which, applied to the two vessels, reads

∂P

∂x
= − 8µ

πR4
QAA, 0 < x < LAA, (2)

∂P

∂x
= − 8µ

πR4
QEA, LAA < x < LAA + LEA. (3)

In the above equations, P and R denote the pressure and radius profiles along

the model vasculature, respectively, and µ denotes the blood viscosity, which

is assumed equal in both vessels (see Fig. 1). Micro-puncture studies indicate60

minor pressure differences between the renal artery and the entrance of the

afferent arteriole, as well as between the peritubular capillaries and the renal
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vein [14, 15]. Therefore, we use the boundary conditions

P (t, 0) = Pa, (4)

P (t, LAA + LEA) = Pv, (5)

where Pa and Pv denote the blood pressures in the renal artery and vein, respec-

tively. As in previous modeling studies [16, 17, 9], we assume Pa is a prescribed65

function of time, while Pv is fixed. To facilitate the presentation in Section 3,

we refer to the pressures PAA(t, 0) and PAA(t, LAA) as afferent arteriole inflow

and outflow pressures, respectively.

Conservation of mass (1), Poiseuille’s law (2)–(3), and the boundary condi-

tions (4)–(5) can be combined to yield70

QAA =
Pa − Pv

WAA +WEA
, (6)

where the vascular resistances WAA and WEA are given by

WAA =
8µ

π

∫ LAA

0

1

R4
dx, (7)

WEA = (1 − fg)
8µ

π

∫ LAA+LEA

LAA

1

R4
dx. (8)

Autoregulatory phenomena in the renal vasculature typically require 1–60 sec-

onds to develop [2, 3, 4]. On this time scale, the radius of the efferent arteriole

appears essentially constant [4], therefore for x > LAA we assumeR(t, x) = REA,

where REA is a fixed radius. So (8) reduces to75

WEA =
8(1 − fg)µLEA

πR4
EA

. (9)

In contrast, over the same time scale, the radius of the afferent arteriole may

change considerably due to either spontaneous contractions of the arteriolar

smooth muscles or the operation of the autoregulatory mechanisms [6, 9]. There-

fore, to accurately predict the evolution of R(t, x) for x < LAA, we develop a

detailed model of the afferent arteriolar wall that is described below.80

2.1.2. Coupling Vascular Smooth Muscle Cells

The wall model consists of a chain of NAA smooth muscle cells oriented

circumferentially along the afferent arteriole as shown in Fig. 2. The muscle
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Figure 2: A segment of the model afferent arteriole. The vascular wall consists of a chain of

smooth muscle cells (SMC). The local vascular radius Ri is determined by the balance of T i
P

and T i
wall which depend on local blood pressure Pi and the contractile state of the surrounding

smooth muscle, respectively. Along the vascular wall, signals are conducted directly through

the smooth muscles (vi−1 ↔ vi ↔ vi+1) or indirectly through the endothelium (ui−1 ↔ ui ↔

ui+1).

cells are located at

xi =

(
i− 1

2

)
h, i = 1, . . . , NAA, (10)

where h = LAA/NAA is the axial muscle width.85

For each smooth muscle cell we adopt the model of [11] which represents

detailed transmembrane ionic transport, Ca2+ dynamics, and kinetics of myosin

light chain phosphorylation. Among other variables, the smooth muscle cell

model predicts muscle membrane potential vi, cytosolic concentrations [k]i for

k = K+, Na+, Cl−, Ca2+, and the fraction ψi of phosphorylated myosin light90

chains. In [11] the muscles are studied in isolation, so the developed model does

not account for signals shared between different smooth muscles [18]. In the

present study we extend the model of [11] by the addition of gap junctional

coupling motivated by the model of [12]. To represent gap junctions, we model

two pathways: a direct one where ions pass between the cytosol of adjacent95
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smooth muscles, and an indirect one where electrical currents pass between the

smooth muscles and the endothelium [19]. For the former, we compute the

ionic fluxes according to the Goldman-Hodgkin-Katz equation similar to [20].

For the latter, we assume each smooth muscle is associated with an endothelial

compartment with local membrane potential ui, and compute the electrical100

fluxes according to Ohm’s law similar to [21]. In summary, the modified muscle

dynamics are given by

Cm
dvi
dt

= −Iinet(Pi) − Iim↔m − Iim↔e, (11)

Vcyt
d[k]i
dt

= J i
net,k(Pi) + J i

m↔m,k, (12)

for k = K+, Na+, Cl−, Ca2+ and the potential dynamics of the endothelial

nodes ui are given by

Ce
dui
dt

= Iim↔e − Iie↔e. (13)

Above, Cm and Ce denote the capacitances of the smooth muscle membrane105

and the endothelial compartments, respectively; Vcyt denotes the volume of the

muscle cytosol; Iinet(Pi) denotes the net sum of the currents passing through

membrane channels [11]; Iim↔m, Iie↔e, and Iim↔e denote the currents passing

through gap junctions developed between muscles and the endothelium [20, 21];

and J i
net,k and J i

m↔m,k denote the corresponding ion fluxes [11, 20]. For the110

above equations, we assume no-flux boundary conditions at both end points of

the afferent arteriole. Notice that the model muscle cells represent the myogenic

response according to which the afferent arteriole responds to changes in blood

pressure [6]. For this, the model incorporates in Iinet(Pi) and J i
net,k(Pi) contri-

butions from pressure sensitive membrane channels whose activation depends115

on local blood pressure

Pi(t) = P (t, xi), i = 1, . . . , NAA, (14)

where P (t, x) is the pressure profile of (2).

We denote the fraction of myosin light chains that are phosphorylated by

ψi and refer to [11, 12] for its dependence on the model variables. Given ψi
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and pressure Pi, the model of [11] predicts the local vascular radius Ri in the120

vicinity of the ith smooth muscle. In particular, Ri is determined by the balance

of hoop stresses T i
P and T i

wall that are exerted across the muscle,

η
dRi

dt
= T i

P (Pi, Ri) − ξiT
i
wall(ψi, Ri). (15)

The Laplace stress T i
P depends on Pi and tends to stretch the smooth muscle,

causing passive vasodilation. The wall stress T i
wall depends on ψi and tends

to compress the muscle, causing active vasoconstriction [11]. As the pressure125

Pi decreases along the vessel [16], the stress T i
P is lower near the glomerulus

than near the cortical radial artery. To achieve a baseline radius profile that is

approximately flat, we introduce a parameter ξi in (15) which downscales T i
wall

similar to the baseline T i
P . That is, we set

ξi = 1 +

(
P ref
g

P ref
a

− 1

)
xi
LAA

, (16)

where P ref
a and P ref

g denote reference values for the afferent arteriole inflow and130

outflow pressures.

2.2. Numerical Methods

To obtain solutions of the model equations we need to solve a large system

of ordinary differential equations that describes the dynamics of the smooth

muscle cells. The system can be put in the form135

dXi

dt
= Fi(Xi−1, Xi, Xi+1, Pi), i = 1, . . . , NAA, (17)

where Xi combines the state variables of the ith smooth muscle cell (for ex-

ample Xi combines vi, ui, [k]i, ψi, Ri, etc.). We implement no-flux boundary

conditions assuming X0 = X1 and XNAA+1 = XNAA
. The system in (17) is

coupled to the blood flow representation of Section 2.1.1, which is discretized

spatially. For this we assume that the radius profile is locally approximated by140

the smooth muscle predictions

R(t, xi) = Ri(t), i = 1, . . . , NAA. (18)
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Given (6), (7), and (8), blood flow in the afferent arteriole is computed by

QAA =
π

8µ

Pa − Pv∑
i

h
R4

i
+ (1 − fg)LEA

R4
EA

. (19)

Pressures at the discrete locations Pi are obtained via (2) using an upwind

approximation of the gradient ∂P/∂x. Namely, the pressures are given by

P1 = Pa −
4µh

π

QAA

R4
1

, (20)

Pi+1 = Pi −
4µh

π

(
1

R4
i−1

+
1

R4
i

)
QAA, i = 2, . . . , NAA. (21)

To compute numerical solutions we cast the resulting system of semi-discrete145

equations (17), (19), (20), and (21) in the form

dY

dt
= G1(t, Y, Z), (22)

0 = G2(t, Y, Z), (23)

where Y = (X1, . . . , XNAA
) and Z = (QAA, P1, . . . , PNAA

). For the time evolu-

tion of (22)–(23) we apply standard numerical methods for initial value problems

in differential-algebraic form [22, 23].

2.3. Parameters150

2.3.1. Vascular Geometry and Hemodynamics

Throughout this study, we consider an afferent arteriole of total length

LAA = 60 µm that consists of cells with axial length h = 3 µm approximately

of the same dimensions as reported in [24, 25]. Based on the estimated LAA

and h, the model afferent arteriole is discretized into NAA = 20 cells.155

Values for the model parameters are listed in Table 1. These are chosen based

on previous modeling studies or have been computed assuming reference values

for the afferent arteriole inflow and outflow pressures P ref
a and P ref

g , afferent

arteriole radius Rref
AA, afferent arteriole blood flow Qref

AA, and single nephron

glomerular filtration rate Qref
g . We set the radius of the efferent arteriole REA160

to 10% larger than Rref
AA as reported in [26], and we compute the length of

efferent arteriole LEA and blood viscosity µ such that the resulting pressure
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drops along the afferent and efferent arterioles at reference are P ref
a − P ref

g and

P ref
g − Pv, respectively.

2.3.2. Electrophysiology165

Values for the parameters modeling the currents Iinet and ion fluxes J i
net,k of

(11)–(12) are adopted from [11, 12], while values for the parameters modeling

Iim↔m and J i
m↔m,k are adopted from [20]. For the currents Iim↔e and Iie↔e

modeling endothelial gap junctions, we use Ohmic conductances gme and gee,

respectively. We compute these values based on the estimated dimensions of170

the model afferent arteriole, namely

gme =
Ame

ρme`me
, (24)

gee =
Aee

ρee`ee
, (25)

where Ame = 2πhRref
AA is the contact area between the muscles and the endothe-

lium, Ame = πRref
AA`me is the endothelial cross-section area, `me is half of the

afferent arteriole wall thickness, and `ee equals h. For the resistivities ρme and

ρee we adopt the values from [28].175

3. Model Results

We examine the output of our model when the inflow pressure, denoted

Pa(t), is set to a constant value, perturbed by an instantaneous rise or drop,

and perturbed by sinusoidal oscillations.

3.1. Spontaneous vasodilation180

We first compare our model to the previous models of [11] and [12] by study-

ing the base case situation when the inflow pressure Pa is set to a constant value

of 100 mmHg. Fig. 3A shows the predicted oscillations for the first cell in the

afferent arteriole for the membrane potential v1. The mean value is −35.96 mV,

which, when rounded, is the same value as found in both [11, 12] and which ap-185

proximates the measured value of −40 mV well [29]. Fig. 3B shows the cytosolic
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Figure 3: Predicted oscillations for the first cell in the afferent arteriole at an inflow pressure

of 100 mmHg for the (A) membrane potential; (B) cytosolic concentration of Ca2+; and (C)

afferent arteriole local diameter.

Ca2+ concentration, which varies between approximately 200 and 360 nM, a

somewhat larger range than as predicted in both [11, 12]. The frequency of the

oscillations is 0.15 Hz, the same as in [12] and slightly smaller compared to [11].

This frequency value falls within the range of experimental measurements, for190

example see [10]. Fig. 3C shows the vascular diameter in the proximity of the

first cell of the afferent arteriole, which has an average of 19.7 µm with an oscil-

lation amplitude of 0.6 µm. Both values are in agreement with previous model

predictions [11] and also experimental observations of spontaneous vasomotion,

for example [26].195

To investigate the myogenic response of the model’s afferent arteriole, we

computed the outflow pressure and time- and space-averaged diameter of the

afferent arteriole given different constant inflow pressures Pa. As seen in Fig. 4,

our results indicate that as Pa increases, the outflow pressure of the afferent

arteriole increases. The predicted myogenic response lies below the line repre-200

senting perfect autoregulation (i.e. independence of outflow from inflow pres-
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Figure 4: Predicted myogenic response (blue) compared to perfect autoregulation (red) and

no autoregulation (purple) of blood flow through the vessel for a range of blood pressures.

sure) for small inflow pressures, coincides with the line for a wide range of

inflow pressures (80–180 mmHg), and then lies above the line for large inflow

pressures. A similar autoregulatory plateau is predicted for QAA (not shown).

Hence our model is able to achieve almost perfect autoregulation for a larger205

range of inflow pressures compared to the models of [16, 12]. The blue curve

is also significantly different than the slope 1 line representing the case of no

autoregulation (purple).

Fig. 5 shows the mean time-averaged diameters across afferent arteriole cells

for different constant inflow pressures. As in [16, 12], the model predicts va-210

sodilation for small inflow pressures and vasoconstriction for large inflow pres-

sures. Our model predicts a larger mean diameter for small inflow pressures

(≤ 80 mmHg) than [16, 12] and approximately the same mean diameter for

large inflow pressures (≥ 160 mmHg).

3.2. Responses to a Step Perturbation215

To gain insights into the behavior of the model under time dependent pres-

sure perturbations we simulate changes in inflow pressure as illustrated in Fig. 6,
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Figure 5: Predicted space- and time-averaged diameters across the afferent arteriole cells for

a range of time independent blood pressures.

first row. We simulate a pressure pulse by introducing an almost instantaneous

rise (respectively drop) in inflow pressure, maintaining the pulse pressure for

20 seconds, and returning back to the baseline through an almost instantaneous220

drop (respectively rise). The system is then allowed to stabilize after the return

to the baseline inflow pressure over a period of 50 seconds. This framework

allows us to analyze the predicted responses of the model afferent arteriole over

a short-term period for both increases and decreases in blood pressure and is

intended to simulate step-pressure experimental conditions [30].225

Rows 2–5 of Fig. 6 show the evolution of flow QAA, membrane potential,

cytosolic Ca2+ concentration, and diameter for the first cell in the modeled af-

ferent arteriole under a pressure pulse decrease to 80 mmHg (left) and a pressure

pulse increase to 120 mmHg (right). The pressure decrease leads to a reduc-

tion in membrane potential, which triggers a rapid decrease in the amplitude of230

the Ca2+ concentration oscillations and subsequently a slower drop in the cell

diameter [11, 12]. This reduction in the cell diameter corresponds to passive

constriction of the model afferent arteriole due to the sudden pressure drop,

which is followed by a slower dilation due to the activation of the myogenic

14



response (see Fig. 6, A5) [11]. The short pressure pulse does not allow the di-235

ameter of the cell to fully dilate to a diameter larger than the baseline 20.1 µm

during the pressure decrease. However, the diameter of the cell returns to a

larger mean amplitude of oscillations after the return to baseline pressure at

40 s that stabilizes slowly (�40 s) to the pre-step value.

In the pressure pulse increase, pressure-activated Ca2+ and Na+ membrane240

channels open up, allowing the influx of cations, which in turn lead to an in-

crease in membrane potential, as well as cytosolic Ca2+ concentration [11, 12].

Following the initial passive dilation, this triggers a rapid active constriction

(see Fig. 6, B4, at 20 s). The short pulse period does not allow us to visualize

complete constriction in the case of this pressure up-step.245

To investigate the propagation of the pressure pulses (Fig. 6, first row)

throughout the length of the model afferent arteriole, we show the time evo-

lution of membrane potential, cytosolic Ca2+ concentration, and diameter of 5

different cells located throughout the length of the model vessel during a pres-

sure pulse increase to 140 mmHg in Fig. 7. As a result of including the gap250

junctions (see Section 2.1.2), the membrane potential profiles are similar for all

cells. On the other hand, the Ca2+ concentration amplitude oscillations after

the pulse show that the distal cells (cells spanning the terminal ∼20% of the

afferent arteriole) differ considerably from their neighbors. The Ca2+ fluctua-

tions further affect the local muscle dynamics, so that the diameters of the last255

model afferent arteriole cells also illustrate larger differences from the proximal

and middle cells.

Fig. 8 further illustrates the effect of the myogenic response on the outflow

diameter and pressure for the short pulse simulations. Fig. 8A corresponds to

the time- and space- averaged (across all cells) diameter of the afferent arteriole.260

These predictions show that some vasodilation at small inflow pressure pulses

and vasoconstriction at large inflow pressure pulses are observed even when

investigating short-term responses to pressure changes. Fig. 8B shows that a

similar behavior is observed for the time-averaged diameter of the last cell in

the model afferent arteriole, as predicted in [16] as well. We note that the265
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Figure 6: Predicted time profiles of (1) inflow pressure; (2) blood flow; (3) membrane potential;

(4) cytosolic Ca2+ concentration; and (5) local diameter for the first cell in the model afferent

arteriole under (A) pressure pulse decrease to 80 mmHg; and (B) pressure pulse increase to

120 mmHg.
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Figure 7: Predicted time profiles of (A) membrane potential; (B) cytosolic Ca2+ concentration;

and (C) diameter for five cells in the afferent arteriole at an inflow pressure pulse increase to

140 mmHg.

curves in Fig. 8 would be considerably smoother if long-term, fully stabilized

responses to pressure pulses were considered instead. These results show that

the autoregulation curve behavior is conserved even when considering short-term

model afferent arteriole responses.

3.3. Responses to Sinusoidal Perturbation270

We next examined the model afferent arteriole’s behavior under sinusoidal

perturbations in the inflow pressure Pa(t). After setting the inflow pressure to

a constant value of P ref
a for t < 0, we perturb the inflow pressure in the form

Pa(t) = P ref
a +A sin(2πft), t ≥ 0 (26)

where A is the amplitude of the sinusoidal inflow pressure and f is the fre-

quency. We studied the model’s response to the perturbations for amplitudes275

A = 10 mmHg and A = 20 mmHg and for a range of frequencies between

0.01 Hz (slower) and 1 Hz (faster).
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Figure 8: Predicted (A) space- and time-averaged diameter (across all cells); and (B) time-

averaged outflow pressure (for the last afferent arteriole cell), for a range of luminal pressure

pulses.

For each inflow amplitude A and frequency f , we observe that the oscilla-

tions in the outflow pressure contain two or more different frequencies. Three

such examples are given in Fig. 9, where the first row shows the perturbed280

inflow pressure, the second row shows oscillations in the afferent arteriole cell

diameters, and the third row shows the resulting outflow pressure. To facilitate

the comparison between the induced Pa(t) and predicted QAA(t) perturbations

we normalize the corresponding time courses by their respective baseline values

and combine them in Fig. 10.285

The outflow pressure curves (Fig. 9, third row) show that there is a “faster

oscillation” with a larger frequency as well as a “slower oscillation” with a

smaller frequency. The faster oscillation has approximately the same frequency

as the inflow frequency f , and the slower oscillation increases and then plateaus

for f ≥ 0.5 Hz around the value of approximately 0.15 Hz (for both amplitudes290

A = 10 mmHg and A = 20 mmHg), which is the natural frequency of the

afferent arteriole spontaneous vasomotion reported in Section 3.1.

The amplitude of the outflow pressure is larger than the inflow amplitude A

for small frequencies and decreases as the inflow frequency f increases. When

the inflow frequency f is greater than or equal to 0.25 Hz, for A = 10 mmHg,295

the outflow amplitude converges to approximately 7.8 mmHg, and for A =

20 mmHg, the outflow amplitude converges to approximately 13.5 mmHg. Thus,

for smaller inflow frequencies f , the sinusoidal perturbation leads to irregular
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Figure 9: (1) Inflow luminal pressure; and predicted oscillations in (2) local diameter for

the first and last cells in the afferent arteriole; and (3) outflow pressure when a sinusoidal

perturbation is applied to the inflow pressure with amplitude A = 10 mmHg and frequency

(A) 0.01 Hz; (B) 0.1 Hz; and (C) 1 Hz.
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oscillations in the afferent arteriole cell diameters and outflow pressure, and

for large inflow frequencies f , the perturbation leads to sustained vasoconstric-300

tion [6, 16, 7, 8].

Assuming that the afferent arteriole behaved like a rigid tube, a linear rela-

tionship between Pa and QAA is expected. To see this, we note that (7) reduces

to a constant resistance WAA, and therefore (6) implies the linear dependence.

For example, under the assumption of a rigid afferent arteriole, a 10% increase of305

inflow pressure Pa, as in Figs. 9 and 10, would result in a 10% increase of QAA

and the sinusoidal oscillations in Pa and QAA would be in phase. However,

the afferent arteriole is not a rigid tube, so our simulations indicate a non-

linear relationship between these variables. We find that, similar to the outflow

pressure amplitude, the amplitude of the normalized blood flow QAA/Q
ref
AA de-310

creases as the inflow frequency f increases and plateaus to approximately 0.17

for A = 10 mmHg and approximately 0.29 for A = 20 mmHg. Thus, a 10%

increase in inflow pressure results in a 17% increase in blood flow rate, and a

20% increase in inflow pressure results in a 29% increase in blood flow rate.

For small input frequencies f , QAA has a phase shift in front of Pa, but as f315

increases, QAA is shifted after Pa.

4. Discussion

We have developed a mathematical model of the afferent arteriole of the rat

kidney. The model represents detailed Ca2+ trafficking in each of the afferent

arteriole smooth muscle cells, as well as the kinetics of myosin light chain phos-320

phorylation, the mechanical behavior of the cell, and vascular blood flow. The

multi-cell afferent arteriole model is an extension of our preliminary arteriolar

model [12], which does not include conduction via the endothelial layer. As of

that, the model in [12] might underestimate the effects of conducted myogenic

responses [19] and the impact on the overall autoregulatory behavior of the325

model vessel [16].

The afferent arteriole segment model of the present study was constructed by
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connecting NAA afferent arteriole smooth muscle cell models and NAA endothe-

lial compartments in series. Intercellular coupling allows the representation of

ions diffusion and electric conduction along the afferent arteriole. Further, a330

fluid dynamics model was included to relate fluid pressure, fluid flow, and vas-

cular resistance so as to allow accurate prediction of all variables required for

the activation of the myogenic response.

At physiological blood pressures, the model predicts spontaneous oscillations

in cytosolic [Ca2+] and in vascular diameter. Those oscillations arise from the335

dynamic exchange of Ca2+ between the cytosol and the sarcoplasmic reticulum,

coupled to the stimulation of Ca2+-activated potassium and chloride channels,

and the modulation of voltage-activated L-type channels [12, 11]. These spon-

taneous oscillations of the afferent arteriole muscle tone result in oscillations in

vascular resistance, fluid pressure, and flow [9].340

By a mechanism known as the myogenic response, the afferent arteriole reg-

ulates renal blood flow: it reacts to an elevation in blood pressure with an

increase in muscle tone and a decrease in luminal diameter. The purpose of

the myogenic response is believed to be the stabilization of glomerular filtration

and the protection of the vulnerable glomerular capillaries from barotrauma345

arising from exceedingly high systolic blood pressure, especially in hyperten-

sion [31]. The model represents the myogenic response by assuming that the

response is initiated by pressure-activated Ca2+ and Na+ membrane channels

[11]. Through its myogenic response, the model afferent arteriole is able to sta-

bilize, to a significant degree, outflow pressure for a range of steady-state inflow350

pressure, from 80 to 180 mmHg (see Fig. 4).

The afferent arteriole model described here reproduces the myogenic re-

sponse even when considering short-term pulses in the inflow pressure. Differ-

ences in the distal cells in the model vessel are observed, and may be explained

by the fluctuations in Ca2+ due to the pressure pulses. Sinusoidal perturbations355

in the inflow pressure are also investigated, and the responses are found to de-

pend on the amplitude and frequency of the perturbation. Since the afferent

arteriole is not a rigid tube, the effect of different amplitude oscillations are
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found to influence both the increase in the blood flow rate and the phase shift

between inflow pressure and flow rate.360

Another contributing mechanism in renal hemodynamic control, besides the

myogenic response, is the tubuloglomerular feedback mechanism. In tubu-

loglomerular feedback, the afferent arteriolar muscle tone, and thus blood flow

and glomerular filtration rate, is adjusted based on salt reabsorption by the

downstream nephron. A useful extension of the present afferent arteriole seg-365

ment model would be to include a model of nephron transport (e.g., [32, 33]) and

tubuloglomerular feedback (e.g., [34, 9]). That would result in an integrative

model of renal hemodynamics regulation model that can be used for studying

the interactions between the myogenic and tubuloglomerular feedback mecha-

nisms in the context of renal autoregulation, and for investigating changes in370

renal hemodynamics in pathophysiological conditions, especially under circum-

stances (e.g., diabetes and hypertension) involving complex cellular responses

[5].
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