Derivation of macroscopic equations for individual cell-based models: A formal approach

Bodnar and Velasquez, 2005

November 10, 2015

Notations and a few assumptions

Notations

- N = number of cells
- V: potential
- $X_k(t)$: position of the center of cell k at time t
- $\xi_k(t)$: uncorrelated white noises
- d: average distance between cells
- R: range of interactions of potentials

Notations and a few assumptions

Assumptions

- $\rho(x, t) = \frac{\text{the number of cells in } [x, x + \Delta x] \text{ at time } t}{N}$
- d ~ 1/N
- $d \ll \Delta x \ll 1$

I.e., consider $X_N(t)=\frac{1}{N}\sum_{k=1}^N \delta_{X_k^N(t)}$ and consider the weak limit $X_N(t)\to \rho(x,t) dx$ as $N\to\infty$.

- $R \approx d$: short range interactions
- $R \gg d$: long range interactions

Main model equation

Model equation:

$$\frac{dX_{k}^{N}(t)}{dt} = -\frac{1}{N} \sum_{\substack{i=1 \ i \neq k}}^{N} \nabla V_{N}(X_{k}^{N}(t) - X_{i}^{N}(t)) + \sigma \xi_{k}(t), \quad k = 1, \dots, N$$

Scaling of potential:

$$V_N(x) = N^{\beta} V_1(N^{\beta x}), \qquad 0 < \beta \leq .$$

Summary of results

Table I. Summary of the macroscopic limits.

V(x)	σ	Range	Limit equation	Derivation—in section
†	0	$d \ll R$	$\rho_t = D_1(\rho^2)_{xx}$	3.1
\wedge	0	$d \simeq R$	$ \rho_t = \frac{1}{2} (\rho D(\rho))_{xx} $	3.1
	$\neq 0$	$s\gg R$	$\rho_t = D_1(\rho^2)_{xx} + \sigma^2 \rho_{xx}$	3.2
1 1	0	$d \simeq R$	$\rho_t = 0$	3.2.2
	$\neq 0$	$d \simeq R$	$\rho_t = \left(\sigma^2 \frac{\rho_x}{(1 - c\rho)^2}\right)_x$	3.2.2
	<i>≠</i> 0	$d\gg R$	$\rho_t = D_1(\rho^2)_{xx} + \sigma^2 \left(\frac{\rho_x}{(1 - c\rho)^2}\right)_x$	3.2.3
-	0	$d\gg R$	$\rho_t = \left(\rho \int V(x - y)\rho(y) \mathrm{d}y\right)_x$	4