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Introduction to Pedestrian Dynamics

Pedestrian dynamics

two-dimensional nature

should take into account interactions with other individuals
that might cross walking path

interactions may depend on the relative direction of the
velocities

Models mostly work with the operational level of behavior, which
deals with the actual walking behavior of pedestrians, including
interactions with others and collision avoidance.
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Observable quantities

Flow through a facility of width b is related to average density ρ
and with average speed v of the pedestrian stream:

J = ρvb = Jsb ,

where the specific flow Js = ρv is the flow per unit width (and is
measured in (m × s)−1.)
The density is obtained from

ρ =
N

A
,

where N is the number of pedestrians within a selected area A.
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Fundamental diagram

Still controversial whether have to distinguish between
unidirectional and bidirectional fundamental diagrams.
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Types of models

Individual-based models

Cellular automata

Social force models

Geometrical models

Optimal Velocity models

Lattice gas models

Macroscopic models

Fluid dynamics analogy → LWR type models
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Cellular automata models

Define a cell size for a pedestrian to be an area of 40X 40cm2.

Types of neighborhoods

Von Neumann neighborhood of a cell: all cells that share an
edge with it.

Moore neighborhood of a cell: all cells that share a corner
with it.

Factors that influence pedestrian motion:

Desired direction of motion toward the destination

Interactions with other pedestrians: repulsive (short-distance),
attractive (long-distance)

Interactions with infrastructure
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Floor field CA

The standard cellular automata approach to pedestrian
dynamics, able to reproduce collective effects.

Inspiration from the process of chemotaxis.

The purpose of this ’trace’ is to transform effects of
long-ranged interactions into a local interaction.

Implemented in a two-dimensional stochastic cellular
automaton: a floor field model.

The static floor field: constant in time, shows constant
properties of the infrastructure.

The dynamic floor field: models dynamic interactions
between pedestrians, but also has its own dynamics: diffusion
and decay → corresponds to the trace.
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Floor field CA

Transition probabilities for moving to the neighboring cells are
based on the floor fields.

May also have a matrix of preference, which can encode the
desired speed and direction of motion.
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Update rules

Transition probabilities pij for movement to neighboring cell in
direction (i , j) where i , j ∈ {−1, 0, 1} :

pij = NekDDij ekSSij Mij(1− nij)ξij ,

where

D = dynamic floor field matrix ,

S = static floor field matrix ,

M = matrix of preference for motion ,

N = normalization factor ,

nij = occupation number of the neighbor cell in the direction (i , j) ,

ξij = geometry/obstacle number, 0 for forbidden cells (walls), 1 else ,

kD , kS = coupling strengths .
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Observations - Dynamic Floor Field

Dynamic floor field is updated by the motion of the
pedestrians, and also subject to diffusion and decay.

When a particle moves from (x , y) to (x + i , y + j), update
Dxy → Dxy + 1.

Dxy has nonnegative integer values, which decay and diffuse
to the neighboring cells with certain parameter probabilities.

The rules have to be applied to all pedestrians at the same
time - parallel dynamics.
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Observations - Static Floor Field

Construction of static floor field
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Conflicts and friction

Conflict - occurs when more than one particle chooses the same
cell destination.
Introduce a friction parameter µ: if 2 or more pedestrians want to
move to the same target cell, all are denied with probability µ.
µ acts like a local pressure between the pedestrians.
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Evacuation simulation

For small kS (coupling to static field), particles perform a
random walk.
For large kS , particles will find the shortest possible path.
At high densities, a large jam forms quickly at the exit.
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Interactions with walls and other pedestrians

Interactions with walls - introduce an additional wall potential:

pW
ij = ekW min(Dmax,dij ) ,

with

kW = sensitivity constant ,

Dmax = range of wall potential ,

dij = minimum distance of pedestrian from all walls .

Interactions with pedestrians - introduce a politeness factor:

pP
ij = e−kPNp(i ,j) ,

where

NP(i , j) = number of pedestrians in the Moore neighborhood of (i , j) .
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Real-encoded CA

Options:

Rescale probabilities to use Moore neighborhoods.
Use real-coded cellular automata, where position and velocity
of pedestrians are real numbers (need rounding procedure).
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Vmax > 1 - movement beyond nearest neighbors

To reproduce asymmetry in the fundamental diagram, need
vmax > 1.
Neighborhood extended to all cells that can be reached in one
time step.
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Lane formation

Lane formation out of a randomly distributed group of pedestrians.
Even and odd number of lanes may form.
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Social force models

Continuum model for pedestrian dynamics
Interactions between pedestrians and influence from the
environment encoded in a social force/field.

The basic equation of motion is

mj
dvj
dt

= F
(pers)
j + F

(soc)
j + F

(phys)
j ,

where

mj = mass of pedestrian j ,

vj = velocity of pedestrian j ,

F
(pers)
j = personal force ,

F
(soc)
j = total force due to other pedestrians ,

F
(phys)
j = physical force such as friction and compression .
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Personal force

Personal force - driving term

F
(pers)
j =

mj

τj

(
v
(0)
j − vj

)
,

where

τj = reaction or acceleration time ,

v
(0)
j = preferred personal velocity .
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Social force

Social force - repulsive force between pedestrians

Pedestrians: disks of radius Rj and with position rj

F
(soc)
jl = Aje

Rjl−rjl
ξj njl ,

Aj = strength ,

ξj = range of the interactions ,

Rjl = Rj + Rl sum of the disk radii ,

rjl = |rj − rl | distance between centers of mass ,

njl =
rj − rl

rjl
normalized vector pointing from l to j .

May add anisotropy factor λj + (1− λj)
1+cosϕjl

2 .
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Physical force

When rjl ≤ Rjl (contact between pedestrians), physical force
becomes relevant.

It has two contributions:

F
(push)
jl = κΘ(Rjl − rjl)njl ,

F
(fric)
jl = κΘ(Rjl − rjl)tjl ,

where

F
(push)
jl = force that tries to prevent compression ,

F
(fric)
jl = sliding friction force in tangential direction tjl ,

κ = can be chosen as a function of the tangential velocity ,

Θ = Heaviside step function .
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Limitations: equations of motion describe particles with
inertia.

Can lead to violations of volume exclusion, or oscillations that
lead to velocities in the opposite direction.
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A class of nonlocal models for pedestrian traffic (Colombo
et al)

Starting point: Cauchy problem for the conservation law

∂tρ+ div(ρv(ρ)(ν(x) + I (ρ))) = 0 ,

ρ(0, x) = ρ0(x) ,

where

ρ(x , t) = density of the moving crowd ,

v(ρ(x , t)) = speed of the pedestrian at time t and position x ,

ν(x) = preferred direction of the pedestrian at x ,

I (ρ(t))(x) = how the pedestrian at x deviates from preferred direction,

given crowd distribution is ρ .
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First choice of I

Assume each pedestrian avoids high crowd densities.

Fix mollifier η.

ρ ∗ η is an average of crowd density around x .

Then take

I (ρ) = −ε ∇(ρ ∗ η)√
1 + ||∇(ρ ∗ η)||2

This leads to pattern formation (self-organization into lanes).

Can also test Braess-like paradox: careful positioning of
suitable obstacles near an exit might improve the outflow
through the exit.
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Second choice of I

Assume there are restrictions on the angle of vision of each
pedestrian.

Fix mollifier η.

Smooth function ϕ weights the deviation from the geodesic
g(x).

Then take

I (ρ) = −ε
∇
∫

R2 ρ(y)η(x − y)ϕ((y − x) · g(x))dy√
1 + ||∇

∫
R2 ρ(y)η(x − y)ϕ((y − x) · g(x))dy ||2
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Second choice of I

Re-write the deviation

I (ρ) = −ε
∇
∫

R2 ρ(y)η(x − y)ϕ(x , y)dy√
1 + ||∇

∫
R2 ρ(y)η(x − y)ϕ(x , y)dy ||2

with possible choices

ϕ(x , y) = ϕ̂((y − x) · g(x)), or

ϕ(x , y) = ϕ̂

(
(y − x) · g(x)√

1 + ||y − x ||2

)
,

with ϕ̂ ∈ C3(R, [0, 1]) and

ϕ̂(ξ) =

{
0 if ξ < 0

1 if ξ > V
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Cone of visibility

V > 0: related to the width of the cone of visibility for each
individual
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Numerical simulations

Choose ν = ν(x) the geodesic one (shortest path)

Use Lax-Friedrichs methods with dimensional splitting.

Consider first choice of I with:

ν(x) =

(
1
0

)
+ δ(x), η(x) =

(
1−

(x1
r

)2)3(
1−

(x2
r

)2)3

χ[−r ,r ]2(x) ,

v(ρ) =
1

2
(1− ρ), ρ0(x) = χ[3/5,4]×[−3/5,3/5](x) ,

r =
4

5
, ε =

2

5
.
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Lane formation
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Lane formation - parameter r

Parameter r : determines size of sppt of η, and leads to patterns
with different numbers of lanes.
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Lane formation - stable phenomenon

Different initial data leads to similar lane formation.
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Numerical simulations - Room evacuation

Standard application: minimization of exit times.

Consider a room with an exit, and ν = ν(x) is the unit vector
tangent at x to the geodesic connecting x to the exit.
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Room evacuation

Veronica Ciocanel Pedestrian traffic models



Introduction
Types of models

Models

Cellular automata models
Social force models
Macroscopic model example

Room evacuation

Careful introduction of suitable obstacles in suitable locations may
reduce the exit time.
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Thank you for your attention!
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