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Abstract—As we continue toward exascale, scientific data
volume is continuing to scale and becoming more burdensome
to manage. In this paper, we lay out opportunities to enhance
state of the art data management techniques. We emphasize well-
principled data compression, and using it to achieve progressive
refinement. This can both accelerate I/O and afford the user
increased flexibility when she interacts with the data. The
formulation naturally maps onto enabling partitioning of the
progressively improving-quality representations of a data quan-
tity into different media-type destinations, to keep the highest
priority information as close as possible to the computation, and
take advantage of deepening memory/storage hierarchies in ways
not previously possible. Careful monitoring is requisite to our
vision, not only to verify that compression has not eliminated
salient features in the data, but also to better understand
the performance of massively parallel scientific applications.
Increased mathematical rigor would be ideal, to help bring
compression on a better-understood theoretical footing, closer to
the relevant scientific theory, more aware of constraints imposed
by the science, and more tightly error-controlled. Throughout, we
highlight pathfinding research we have begun exploring related
these topics, and comment toward future work that will be
needed.

I. INTRODUCTION

As scientific projects continue to get larger, more complex,

and more data-intensive, high performance scientific data man-

agement is becoming more important to a larger community.

However, it is a challenging endeavor, presenting a number of

difficulties derived from both the domain science and computer

science aspects of the problem. Supercomputing environments

are ever-changing, and solutions should be mindful of this, to

benefit from the latest technologies and to harness the full

potential of current-to-future leadership computing facilities.

We begin with a discussion of ongoing data management

challenges, noting hardware trends, then present ideas for new

techniques to address the problems.

Not to be overlooked is that scientific data is rich and

diverse; it comes in many forms, where very different physical

scales, subtle sensitivities to various operators, or correlations

among variables may be crucial. Related, the utility of different

pieces of data, driven by their intended uses and lifetimes, is

starkly varied. For example, quantities needed for statistical

inference over the experiment’s variables may be needed at

high precision for the duration of entire campaigns, while

other data for near real-time diagnostics or visualization might

only be needed at low quality for short times, but at high

frequencies.

Scientific data management, particularly in high perfor-

mance simulations, entails storing substantial sized datasets as

intermediate outputs before analyzing them for insight. Com-

plicating storage is the data-compute gap, shown in Fig. 1. The

current trend among leadership class machines is that increases

in the bandwidth to storage systems are comparatively much

smaller than the growth in the computational throughput (e.g.

[1]–[3] and references therein), and this trend is expected to

continue1. Thus, there is a growing disparity between how

much can be computed and how much can be saved. Increased

FLOPS enable scientists to calculate previously unstudied,

more computational demanding components of the problem at

hand. However, if I/O is not to become more of a bottleneck,

a reduced ratio in the number of bits/FLOP that can be saved

means that more of the data generated during computation

would be lost, possibly preventing diagnostic output and

degrading the sensitivity of the scientific analyses.

Recently, high-throughput, lossy compression has been

gaining traction as a means to bridge the data-compute gap.

1The following is an outlook from Lucy Nowell, the Department of
Enerergy’s Advanced Scientfic Computing Research program manager:
http://www.mcs.anl.gov/∼hereld/doecgf2014/slides/ScienceAtExtremeScale
DOECGF Nowell 140424v2.pdf.
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Fig. 1. Data-compute gap. Plotted is how the total filesystem throughput
of leadership class facilities compares to the total number of floating point
operations per second that can be perfomed. The I/O throughput is not scaling
as quickly as computational speed.

Indeed, several compression algorithms have generated interest

for potential use within high performance applications, in-

cluding ISABELA [4], ZFP [5], SZ [6], and parallel tensor

decomposition [7], among others. The idea is to write fewer

bits, but retain adequate information content not to impact

analysis. However, given the breadth of scientific data, with

very different salient features necessary to retain in different

applications, guaranteeing adequate quality for derived quan-

tities in the general case is no easy matter.

Looking forward, an important direction to consider is that

memory and storage hierarchies are deepening, offering more

levels of progression of speed-size tradeoff in computing envi-

ronments. Fig. 2 shows a simple illustration: with faster layers

toward the top, and the slower, larger capacities ones toward

the bottom. High bandwidth memory (HBM) is emerging with

GPU devices, offering higher throughput and lower power

consumption than more traditional dynamic random-access

memory (DRAM) for CPUs. (See e.g. the work of Lee et

al. [8] as an example of recent progress.) Furthermore, non-

volatile random-access memory (NVRAM) is now common

on personal computers, and becoming more available at scale:

e.g. the burst buffer at NERSC on Cori2 or the one planned

for Summit3 at the Oak Ridge Leadership Computing Facility.

These solid state devices (SSDs) are intended to accelerate

high-priority I/O operations, and offer performance advantages

over the usual parallel filesystems (e.g. Lustre [9], GPFS [10])

alone. Finally, campaign storage or tape (HPSS [11]) can

accommodate the most data and still factors in when archiving

or backing up data for very long periods of time.

To follow, we lay out a vision for scientific data manage-

ment, which is forward-looking toward leveraging deepening

storage hierarchies to emphasize data utility level. It shifts

away from the paradigm of thinking of data quantities in

terms of a single type (usually 64-bit floating point numbers),

in favor of offering multiple “views” of the data, available

at different precision and latency. Compression plays an im-

2http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
3https://www.olcf.ornl.gov/kb articles/summitdev-quickstart/#System

Overview

Fig. 2. Example memory/storage layout for future computing systems.
Throughput increases toward the top and capacity increases toward the bottom.
(HBM = high bandwidth memory, DRAM = dynamic random access memory,
NVRAM = non-volatile random access memory)

portant role, as a means to help overcome the data-compute

gap. However, it needs to be monitored closely and developed

cooperatively with scientific applications, to make sure not to

inadvertently reduce-away vital features. More generally, we

advocate an increased emphasis on mathematical awareness

and rigor as the field of scientific data compression continues

to gain further traction. Overall, our goal is to facilitate a faster,

easier, more flexible path to insight, which fully capitalizes on

forthcoming new technologies.

The document is organized as follows. Section II further

exemplifies current-to-next generation high performance scien-

tific applications. To this point, the discussion has been rather

general, and it is beneficial to add more concrete, real-world

details. Section III describes the idea of organizing scientific

data in a progressively refined way, with examples from

preliminary work we have undertaken. Section IV focuses on

achieving robust, efficient compression in scientific data, again

highlighting pathfinding work. Section V concludes.

II. MOTIVATING EXAMPLES

To elucidate some of the needs of current-to-future gener-

ation high performance scientific applications, we offer two

illustrative examples: one from plasma physics and the other

from combustion science, both relevant within the context

of the Exascale Computing Project4 (ECP). Most CPU-hours

on leadership class machines are devoted to large-scale sim-

ulations, and both workflows include simulations. However,

experimental data is also important, and the second touches

on this category as well. The two examples help motivate the

visions for scientific data management that we will describe

in Section III and Section IV, and data products described

in Section II-A are used throughout the paper to exemplify

relevant work.

A. High-Fidelity Tokamak Whole Device Modeling

ITER5 is currently under construction, whose intent is to

demonstrate the capability to harness energy from nuclear

4https://exascaleproject.org/
5https://www.iter.org/
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fusion, with a ten-fold power yield compared to the input oper-

ating power. ITER and next-step machines will operate under

regimes never previously achieved, and predictive numerical

simulations are needed to help design future experiments.

Tokamaks like ITER have toroidal designs, where the plasma

is confined by a strong magnetic field, whose direction is

nearly aligned with the toroidal axis. However, turbulence

driven by micro-instabilities leads to disruptions in the plasma

that dissipate the confinement. Tokamak simulations allow us

to better understand the turbulent behavior.

Different phenomena present modeling challenges in either

the inner core or the outer edge of the tokamak, and current-

day simulations usually only accurately predict one of the two

regimes. ECP’s whole device modeling project6 targets the first

ever high-fidelity full-tokamak simulation framework, by self-

consistently coupling two individually developed applications:

the Gyrokinetic Plasma Turbulence Code (GENE) [12]–[14],

a continuum code that has been optimized for the core, and X-

point included Guiding Center (XGC) [15], [16], a particle-in-

cell code that has been designed to study the outer edge. Both

solve the same underlying gyrokinetic equations, but using

quite different strategies. Developing a mathematically robust,

stable coupling approach is a challenge itself, but here we

focus on the data management aspects of the problem.

A run at modern-day leadership scale (� 1M CPU-hours)

would consist of GENE and XGC running simultaneously,

sharing one or more quantities (e.g. the plasma distribution

function) back and forth in an overlap region between the

core and the edge. The exchange will be frequent, possibly

needing to occur as often as every time step (∼ seconds

walltime), and must be fast enough not to significantly impact

performance. Furthermore, both codes must periodically save

large checkpoint/restart files to disk, ∼ 10 TB/hour in the

larger-size case of XGC. Not all this data can be kept on the

parallel filesystem and needs to be migrated elsewhere. Addi-

tionally, other diagnostic quantities (such as electromagnetic

potentials) must be saved to yield any insight from the run,

as they are the data products used for downstream scientific

studies. These have a much smaller data volume per time

step, but are written at a higher frequency. As much output

as possible is best, as it allows either more precise versions

of existing analyses or enables otherwise impossible ones,

dependent on a previously unwritten variable. Ideally, in situ

analysis/visualization would be enabled as well, for near real-

time monitoring of the run, especially throughout early stages

of the coupling development, while identification of the most

robust mathematical approach to the coupling is still under

investigation. From a scientific data management perspective,

it is a challenge with both high volume and high frequency

I/O operations, and the problem will continue to compound as

computational power continues to outgrow I/O throughput.

6https://exascaleproject.org/2016/11/05/high-fidelity-whole-device-model-
of-magnetically-confined-fusion-plasma/

B. Experimental+Simulation Combustion Science

The typical workflow in the combustion community is

highly collaborative. They often consists of one or more

groups of experimentalists, experimental data analysts, model-

ers, computationalists, and project coordinators. These teams

are typically composed of specialized groups built to solve the

specific problem at hand, and they disband and re-form with

different participants as new projects arise. The scientific goals

of such teams are to develop models of the combustor physics

that scientist can understand then use to make predictions,

and often to construct physics-based engineering tools. The

work cycle to develop these models/tools requires detailed

quantitative measurements of the combustor physics, many of

which can be experimentally measured, but some of which

cannot. The physics that cannot be experimentally measured

is computed in high fidelity simulations, which rely on experi-

mental data for boundary conditions and validation/refinement.

Cutting-edge combustion programs largely focus on re-

search and development of reduced-emissions combustion

systems. The work relies heavily on fluid dynamics mea-

surements in combustors, using state of the art laser-based

diagnostics, such as particle image velocimetry (PIV). The PIV

measurement consists of seeding a combustor flow with small

tracer particles, illuminating the small particles with short-

duration, rapid bursts of a planar laser light sheet, and then

photographing the illuminated particles at a high rate. A single

experiment in a campaign might have 5-10 cameras capturing

full-resolution images at >10,000 frames per second. These

series of photographs are then analyzed by an algorithm that

uses the space-time history of the tracer particles to compute

velocity vector fields within the illumination plane, potentially

using multi-camera viewpoints to deduce 3D flow informa-

tion. The PIV algorithm is computationally expensive, and

its successful implementation relies on many critical tuning

parameters as well as very high quality photographs.

In order for this work cycle to proceed to its scientific goals,

the experimental campaign must be completed and validated

across all the various cameras and sensors, and its results

must be reduced and efficiently distributed. This creates a

highly varied data problem, with several different types of files

(images, simulation checkpoints, analysis output) to manage,

as well as timeliness concerns. There are also significant

difficulties in terms of understanding data cleanliness; on the

experimental side, data may suffer from a number of possible

failures, such as misalignment of lasers or failure of the

particle injector to get a uniform distribution. However, all

this complexity is necessary to enable the intended collabora-

tive science workflow, which is to allow the leadership-scale

simulation results to help interpret, analyze, and inform the

experimental campaigns, as well as vice versa.

Here, we identify another complication for future scien-

tific data management. The length and time scales that are

accessible with modern high speed cameras are still almost

impossibly long by simulation time frames. Cutting-edge re-

search is studying how to best calculate observable properties

170216991929



from the millisecond-scale time frame of the experiments that

are relatable to properties that can be evaluated in the 10’s

to 100’s of nanoseconds that exist in full simulation runs.

For a direct numerical simulation (DNS) chemistry code like

S3D [17], [18], this means calculating temporal and spatial

autocorrelation functions, as well as computational geometries

and more, over the 10’s and 100’s of TBs of data that come

from the multiple simulation outputs.

III. PROGRESSIVELY REFINED DATA ORGANIZATION

As exemplified above, production-scale scientific datasets

are already large. Exascale datasets will only continue to grow

in size. Reading in such data is potentially time consuming

and wasteful, especially if more than is actually required is

returned. In this section, we describe new strategies for refac-

toring scientific data to attempt to make the read process more

seamless, highlighting preliminary work we have undertaken,

discussing several challenges presented, and citing examples

for context.

A. Motivation

One familiar read scenario is two-dimensional images.

When trying to visualize this data, one does not necessarily

need information from every bit in every pixel to reconstruct

an image good enough for human consumption. If quality
of service is too low, and constructing the full resolution

version will take too long, users could benefit from the option

of relaxing the full quality demand, and instead returning

a degradation of the original in a shorter time, where the

degradation may not even be visually perceptible. This is the

main advantage of the JPEG 2000 standard [19] compared to

the original standard [20]; JPEG 2000 uses decimation and

a wavelet-based compression method, such that truncation of

the codestream at any position still yields a signal that can be

decoded into an image resembling the original, at the penalty

of reduced resolution for increased truncation. Developed at

a time when network bandwidth was much lower than today,

this was a natural enhancement to consider.

In our case, we are targeting scientific data instead of

JPEG images, and it is filesystem bandwidth that can be at

a premium. Contention with other jobs causes variation in the

quality of service delivered by the filesystem, and it would be

ideal to be able to access different quality views of the data

depending on this contention, analogous to how services like

Netflix are able to deliver reduced-quality streams when there

are bandwidth interruptions from the internet service provider,

instead of imposing long buffering times.

What we seek is progressive refinement of the data –

a scheme presenting variable-fidelity versions of the data,

at different quality resolutions. ViSUS [21] and related

projects [22], [23] in the visualization community have un-

dertaken efforts to define one such scheme for scientific data

on grids, using hierarchical Z-ordering [24] to to efficiently

subsample the data to grids courser than the full original.

We are currently developing our own progressive organiza-

tion schemes. We are interested in techniques beyond grid

decimation alone to enable more flexibility in how to define

which information has priority. Eventually, we will need to

support several methods, as different scientific application will

have different requirements. We will make related comments

about this topic in Section IV. We are also mindful that the

data’s reorganization should be aware of the possibility of

multi-tiered storage to fully support current and future storage

systems.

B. Refactoring Progress

Initial work we have begun exploring includes two refac-

toring techniques: a “precision-based” approach that utilizes

adjustable floating point compression for each data value, and

“feature-based” approach that organizes the data into bins

according to some calculation over the grid values. Fig. 3 and

Fig. 4 show examples using data from XGC, one of the ECP

fusion applications we discussed in Section II-A. Choosing a

single time step, we plot deviations from background in the

electric potential, one of the many grid quantities calculated

by XGC. Rotating the plane about x = 0 would generate the

shape of the torus.

The precision-based approach is a modification of ZFP, a

high-throughput lossy compression algorithm (with variance-

bounded errors) for floating-point arrays, whose encoder ap-

plies a highly-optimized, nearly-orthogonal transformation,

analogous to the discrete cosine transform [5]. A full treat-

ment of the technical details of our modifications is beyond

the scope of this paper, and will be included as part of a

publication in preparation. Here, we summarize conceptually.

We have extended ZFP such that the encoded signal can

be split into N progressive streams, which are all saved

to different files. Reading additional files beyond the first

“appends” more accuracy, further reducing the error upon

decompression. Importantly, the compression kernel only runs

a single time during the encoding process, and no duplicate

data is written multiple times. Fig. 3 shows an example using

an initial stream with 4 bits/value precision, and a second

stream adding 8 more bits/value. A user now has access to

progressive levels of compression, without having to run ZFP

independently for each level.

Our feature-based approach calculates the data vector’s

gradient over the grid, and specifies that cells whose gradient

values are large enough in magnitude will be grouped into a

priority level, with the values over that portion of the grid

saved exactly. The rest of the grid is decimated. Different

levels of decimation and/or gradient magnitudes form the

progressive-quality versions of the data. Reusing the same

dataset as Fig. 3, the middle panel of Fig. 4 shows the XGC

data from the left panel with |∇(Δφ)| > 0.003 (where Δφ
was normalized between -1 and 1), decimating to a factor of

4 compression. The right panel only decimates to a factor

of 2 compression. The gradient threshold is such that a little

more than one percent of the area has been retained exactly.

Here, the gradient serves as an example placeholder operator

to identify and retain high variation regions in the data as

important, though more generally one could define other

170317001930



Fig. 3. Progressive error-level “views” of XGC simulation data, using ZFP compression. In the top row, the color scale shows how the scalar potential (φ)
deviates from the nominal background level, normalizing by the largest magnitude deviation in the first panel. Each panel is the same planar-slice through
the torus, at the same time step, but reduced differently. We have included three precision levels: (left) full precision of 64 bits/value, (middle) 4 bits/value,
and (right) 12 bits/value. The 12 bit version reads the first 4 bits from the same file as the middle panel, extending by an additional 8 bits from a separate
file, possibly saved to a different storage type than the first file. In the bottom row, the colors encode the ZFP-compression error levels; note, the scale is
not linear.

features and tag those instead. (Again, a full discussion of

the technical implementation of the approach described here is

beyond the scope of this paper, but will be further documented

in our subsequent publication.)

Importantly, the different levels in both our data organi-

zation schemes can be mapped to different partitions of the

storage hierarchy. This facilitates storing the most important

subset of the much larger total dataset as close to the pro-

cessors as possible, accelerating access to it. For example,

to facilitate in situ visualization or analysis, one might direct

relatively few bits to an SSD, because all the data would be

too large for the SSD’s storage quota. The middle panel in

Fig. 3 could be saved to the SSD, and then the extra bits

added in right panel saved to the parallel file system. We are

now beginning to undertake performance impact evaluations

under such scenarios, testing against different partitions with

different latency and bandwidth for different compression

resolution progressions, and will present our findings in a

forthcoming publication.

C. Challenges, Research, and Development

The primary technical challenges facing the methodology

we have presented so far originate from how the data model is

not the way scientific data has typically been framed. Current

parallel I/O packages were not designed conceiving of data as

multiple related, yet distinct units to be selected in different

read contexts. Considerable infrastructure development has

been needed, and will continue to be needed in the future

as progressive refinement methodology matures We have used

the Adaptable I/O System (ADIOS) [25] as the basis for

our work, as its framework does provide some support for

adding extensions of research methods to the code base.

However, “splitting” the output buffer to write to disk breaks

expectations of what is natively expected in the code, so extra

workarounds were needed. ADIOS-27, an ECP-funded project

to rewrite ADIOS in C++ and much further enhance user-

defined customization, including the kinds of transports we

have described in this section, will assist in exploring new

organization schemes in years to come.

7https://github.com/ornladios/ADIOS2
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Fig. 4. Feature-driven“views” of the same XGC simulation data as Fig. 3. Here, features are defined with a threshold in gradient magnitude, and grid cells
exceeding that threshold are saved with full precision. The remainder of the grid is decimated: to either (middle) a compression factor of 4 or (right) a
compression factor of 2.

Longer term, we envision a full software environment (SIR-

IUS [26]), capable of managing data organized in the ways we

have described, which would optimize and automate several

features, which we will highlight to come. For example, a

user could enter a maximum time constraint, and the system

would return the best-quality data available within that time.

One might instead prefer to retrieve a version of the data,

with at least 95 percent precision compared to the original.

We would like to support numerous access options.

A system like SIRIUS presents opportunities for data place-

ment optimizations. Where in the filesystem (SSD, parallel

filesystem, etc.) to save each level of the data is currently a

decision for the user, and this can have a significant impact

on read performance, (see e.g. the work of Jin et al. [27]

studying data placement in staging scenarios for scientific

simulations). If the data is being accessed frequently, it would

be convenient to automatically move it into faster storage.

Similarly, if it is saved to a scratch parallel filesystem and

about to be purged, it would be natural to back up to tape.

Automated migration in multi-device filesystem operations is

not a novel idea; features of this kind existed in Unitree [28]

years ago, but the software suffered from high latency. Modern

research filesystems, such as Sirocco [29] or Ceph [30], offer

appealing technology to explore, but an end-to-end system of

the kind we have described still needs further development.

Complicating the placement problem, users typically only

need to read a set of variables at once, not all of them.

Moving the entire file, instead of only the portion of it that

is relevant, could be non-ideal and wasteful. This motivates

deconstructing the files into objects (or even sub-objects for

portions of a variable), and SIRIUS will maintain an object

store to manage the data, leveraging technology such as Ceph’s

Controlled Replication Under Scalable Hashing (CRUSH [31])

for scalable, predictable performance.

One final longer term consideration that we highlight here

is designing the metadata service. When refactoring datasets,

one challenge is incorporating enough information in the

storage system so future clients are able to recreate the data

structures, but not too much to bloat the metadata overhead.

Also, different kinds of storage media usually have indepen-

dent namespaces, so distributing related data across multiple

devices makes locating it more difficult.

IV. ROBUST COMPRESSION

In Section III we emphasized read scenarios. Compression

was primarily framed as a means to help achieve progressive

refinement. However, lossy compression for scientific data

170517021932



beckons further discussion, which we will pursue in this

section.

We reiterate that compression’s potential impact on the write

side should not be overlooked. Checkpoint/restart data for

simulations is typically written infrequently, because it tends to

be large. If one were willing to accept lossy checkpoints, more

time steps could be saved. However, since many scientists

would be opposed to lossy restart data, we will downplay

any importance there. Many other quantities (in simulations

or experiments – which do not have checkpoint/restart data in

the first place) are saved at higher frequency, and these are

the ones that drive the analyses that ultimately extract new

insight. Likely not all these data products need to be saved at

full 64-bit precision. One could write out reduced precision,

and budget the time saved to perform more frequent output of

the current variables or to enable dumps of new quantities that

were previously uncalculated/unsaved. Though the methods

described in Section III-B were both defined in terms of spatial

quantities, one can also envision beginning to think of different

time steps in the data as a dimension that one can compress

over for further potential gain.

Ultimately, the scientific applications are what drives what is

required of the compression techniques, and what determines if

compression is robust enough to make it into production. Many

questions arise. Is the compression-accuracy precise enough?

Is it fast enough? Does it preserve important relationships?

Is it clear how it will affect downstream analytics? Keeping

all these in mind, we emphasize the need for careful quality

monitoring, both error- and performance-wise. We are also in-

terested in exploring how to best utilize hardware technologies

for acceleration. It is beneficial to closely scrutinize any com-

pression technique, even common ones such as decimation,

and pursue an increased level of rigor in the methods.

Overall, we advocate increased co-design in scientific data

management. This is a shift away from designing applications

and general-purpose software completely decoupled from each

other, and realizing that there is benefit for them to co-evolve;

hardware must factor in to the evolution as well. As we con-

tinue toward exascale, the need for more reduction and other in

situ processing is anticipated among many computer scientists,

and co-design can widely help facilitate solutions, capitalizing

on the interrelatedness between the domain sciences, computer

science, and vendor product development.

A. Science-driven Constraints

Section III-B alluded to how compression in scientific data

management will need to support several schemes, because

different applications are sensitive to different types of op-

erations. It is unlikely there will ever be a one-size-fits-all

solution. Already, several different classes of lossy floating

point compressors exist. Four examples are included in those

listed in Section I alone: ISABELA is effectively a smoothing

kernel [4], ZFP is a spectral method [5], SZ is a form of curve-

fitting [6], and parallel tensor decomposition is a statistical

reduction of several quantities simultaneously [7].

We assert, there is almost certainly a need for non-

uniform/adaptive techniques, which produce different reso-

lutions in different regions of the domain; this is why we

included the feature-based approach among our initial two

in Section III-B. Science is inherently multi-scaled, where

much more variation can occur in very small regions com-

pared to the total system size, and resolving such features is

critical. This is the motivation for adaptive mesh refinement

(AMR, e.g. [32]), which has numerous applications throughout

science: galaxy formation simulations in astrophysics and

fracture/fragmentation studies in material sciences to name

two.

Typically, compression in computer science has been for-

mulated in a quantity-agnostic way, meaning no distinction

is made about what is being reduced. For a compressor

which operates on one-dimensional arrays, it is not particularly

important whether a collection of energy values, momenta

components, or anything else is given, only the floating-point

values are significant. There is no notion of relationships

between variables. We caution that this may not be most

appropriate when working with scientific data. Conservation

laws are pervasive throughout science, and mathematical

constraints must be satisfied. Quantity-agnostic compression

could interfere here. For instance, certain problems might

require momentum conservation, but the chosen compres-

sion kernel suffers correlated errors when operating over the

dimensions separately, such that globally momentum is no

longer conserved after the compression. Concerns of these

kind contribute to why it is important to better understand

the mathematics of compression algorithms, and the explicit

or implicit assumptions they make, related to the discussion

in Section IV-D.

B. Careful Monitoring

To further exemplify possible pitfalls of compression, we

return to the case of tokamak simulations. One relevant derived

quantity is the outward velocity driven in the plasma by the

electric field:

v⊥ = ∇φ× B̂, (1)

where φ is the electric scalar potential, B̂ is the direction

of the magnetic field, and ∇ is the gradient operator. Near

the wall of the tokamak, electromagnetic “islands” or “blobs”,

small regions with significantly different potentials compared

to background, are found to develop. Kress et al. [33] demon-

strated that uniform mesh decimation is enough to make

features in v⊥ driven by these blobs completely disappear

from XGC data. One needs sufficient resolution in the outer

regions to resolve the derivatives in the gradient, and uniform

decimation breaks this condition.

This example reinforces a need for quality monitoring in

future online systems. Scientists need to be able to verify new

reduction methods, and having a common harness through

which do to this would be ideal. Here, several authors are

beginning work in the Co-Design Center for Online Data
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Analysis and Reduction at the Exascale (CODAR) project8.

We stress the importance of meaningful metrics to evaluate the

impact of the errors. Like in the XGC blob-feature example,

point-wise differences, or statistical calculations over them,

do not necessarily directly translate to what is most critical.

Once the mapping in errors from fundamental data products

to derived data products is understood, progressive reduction

along the lines outlined in Section III becomes more attractive,

because scientists can proceed with analyses using a smaller-

size view for performance, but maintain firm uncertainty

bounds. At any rate, as reduction becomes more common

in high performance applications, the application scientists

need to provide feedback to the computer scientist concerning

relevant quality checks to implement.

In addition to error-performance monitoring, future simu-

lation data management systems should also include built-

in time-performance tracking. This is useful not only for

benchmarking the reduction, but for diagnosing other possible

bottlenecks as well. Those, in turn, could become the subject

of acceleration/optimization exercises. The challenge with

performance monitoring is not to incur significant overhead

in collecting the statistics compared to the application’s usual

run time. Saving too much information can be burdensome to

write to disk, and effective reduction of the performance data

is a topic of research. The work of Nataraj et al. [34] is one

example using TAU [35], (one of several popular performance

monitoring tools), and three statistical filtering schemes to

reduce the output to different verbosity levels. Unlike the

scientific portions of the data, the peformance data is “non-

physical”, so we are interested in researching machine learning

reduction techniques for use within future monitoring systems.

C. Acceleration

Something that we have largely glossed over to this point

is that compression/decompression does not come for free;

it takes time. It is only worth compressing if the extra time

to compress and decompress is not prohibitive and/or gain is

to be had by reducing the data volume that will need to be

written. Accordingly, compression kernels are a natural target

for hardware acceleration.

Focusing the scope to GPU acceleration, compression on

GPUs is one direction of interest. For example, O’Neil and

Burtscher developed GFC [36], improving upon the CPU-

based performance of the FPC family of lossless floating-

point compressors [37], [38] by factors of several. Similarly

motivated, we have begun investigating a GPU implementation

of ZFP. GPUs factor in to system design as we build toward

exascale, and other GPU ports should be pursued as well.

A little longer term, it also worthwhile to consider other

hardware acceleration options. For instance, we are undertak-

ing a project with Mellanox to study offloading the compres-

sion into the FPGA environment embedded into the network-

ing hardware. It would also be interesting to investigate disk

storage technology that has some kind of compression-aware

8https://exascaleproject.org/2016/11/11/ecp co-design centers/

hardware embedded. Research along these lines is a largely

unexplored topic, but offers a unique opportunity to leverage

technology advances in other areas to possibly accelerate I/O.

Complicating hardware acceleration with compression for

big scientific data at leadership computing facilities, not all

hardware technologies will be available everywhere. Some

compression algorithms may only be performant enough if

run on the appropriate hardware, which again emphasizes the

need for careful performance monitoring. Different hardware

options could also put more onus on the user to understand

what is available and what are the possible consequences of

the different choices, so where possible, automating the “best”

implementation would be ideal.

Representation is another matter to consider. Typically

codes decompress a compressed quantity before working with

it, so the same routines can be used with the original or

reduced quantities. However, the possibility of working di-

rectly with the reduced representation is an alternative that

skips decompression altogether, which could offer another

level of optimization. ZFP, for example, builds with code to

allow arithmetic over the compressed arrays themselves from

C++. As compression enters into more scientific workflows,

thought should be spent if the workflows could benefit from

computing in non-standard representations, such as that of ZFP

or unum 2 [39]. This is almost never done today; the IEEE

754 floating-point standard [40] is ubiquitous to say the least.

However, the original specification [41] was designed over

30 years ago, when computers were much different than they

are today. Newer ideas are not without merit.

D. (Lossless) Decimation Mathematics

A commonly adopted approach to data reduction that has

been mentioned several times throughout this paper is decima-

tion. To conclude this section, we highlight early work toward

better understanding and controlling error effects of decima-

tion. It is an example of attempting to approach compression

from a well-principled standpoint, and not overlooking implicit

assumptions.

Consider data {uj} produced by a computational simulation

at a sequence of times {tj}. Decimation consists of retaining

say, every 10-th datum and discarding the remainder. This

decimation clearly gives a guaranteed 10 times reduction of

the data and is easy to apply. However, the procedure also has

drawbacks, most notably that 90 percent of the data is simply

discarded and lost irretrievably.

Fundamentally, discarding 90 percent of the data seems

unacceptable. As such, it is perhaps rather surprising that

decimation is commonly used. However, this view fails to

recognize the fact that many simulations are performed at

resolutions or time step sizes that are dictated by the need to

maintain stability of the underlying computational algorithm

rather than by the nature of the underlying data per se. Indeed,

many simulations model localized phenomena for which the

data is smooth in large portions of the (space or time) domain.

As a result, the full dataset can often be well-represented by

the decimated data, with the implicit assumption that if a
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Fig. 5. Comparison of lossless decimation and a selection of general-purpose and specialized compressors. The data used is a 1024× 256× 768 timeslab of
single-precision pressure values (768 MB in total) taken from a simulation of flow in a turbulent channel [42]–[44]. For each stride, the data is decimated, linear
interpolation is used to calculate a surrogate for each discarded value, and the residuals are compressed with lzip [45]. For this data, lossless decimation
achieves a larger compression factor than bzip2 [46], gzip [47], and SPDP [48], and is comparable to that of lzip. The specialized floating point
compressors SZ [6] (run in near-lossless mode by requiring that the absolute error be at most 2−149) and fpzip [49] (run in lossless 1D mode) outperform
lossless decimation in compression ratio. A unique advantage of lossless decimation is that the decimated data, which is stored uncompressed in the output,
can be interpolated to generate a surrogate dataset, without the need to decompress the entire dataset when full reproduction is not required.

discarded datum is needed, then a surrogate or replacement

can be regenerated by carrying out linear interpolation of the

retained values.

For the moment, let us assume that the above argument

is valid, such that the replacement data obtained by lin-

ear interpolation provides an acceptable surrogate for the

discarded data. This means that the difference between the

original discarded data and the surrogate data is “small”. More

precisely, one would expect the information or entropy of

these differences to be small, which means that the differences

could, if necessary, be compressed effectively. Accordingly,

one could augment the decimated dataset with the encoded

differences and thereby try to retain benefits of the decimation

procedure without losing 90 percent of the data – in essence,

employing a “lossless decimation” technique.

Now we return to the more realistic setting in which the

reconstructed values might be an acceptable surrogate in

certain parts of the data, but in regions of localized features

or where interesting physics is occurring, the reconstructed

values are inadequate. (Of course, if the latter condition holds

for the entire dataset, one must accept that decimation is

not an appropriate tool and seek other, more sophisticated

means by which to reduce the data. However, this worst-case

scenario is generally not the norm in cases where practitioners

currently employ decimation.) While the differences between

the reconstructed values and the discarded values will be

large in regions where interesting phenomena are occurring,

they will be small over large portions of the original data

points, again meaning that the differences are amenable to

compression through entropy encoding, and that the lossless

decimation procedure can be anticipated to be an effective

compressor.

This lossless decimation is considered in the recent work

of Ainsworth et al. [50]; expected compression rates are

quantified in terms of smoothness measures of the data.

For instance, the smoothness of deterministic data might be

measured in terms of the size of the derivatives or difference

quotients of the underlying function representing the data.

Alternatively, non-deterministic data or data otherwise subject

to large noise or random fluctuations might be measured in

terms of statistics of the data such as the variance. Fig. 5

is a plot of compression rates obtained using the lossless

decimation procedure compared with other compressors; the

lossless decimation results are comparable to those obtained

using the alternatives.

Of course, lossless decimation is not and never will be

a panacea. Nevertheless, given the widespread use of dec-

imation, it does offer a practical, simple, and competitive

alternative to other compression techniques that are currently

available. The decimated data is stored uncompressed in the

output, allowing one to to bypass decompressing the entire

dataset in certain scenarios where full reproduction is not

necessary and/or interpolation suffices. Also, the difference

encoding explicitly acknowledges that decimation discards

data, which is commonly overlooked with decimation.

V. CONCLUSION

Building upon motivation of concrete current-to-next gener-

ation high performance scientific workflows in Section II, we

have described several directions that we believe will increase

in importance as scientific data management continues toward

exascale, and presented ideas for how to improve state of the
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art techniques. These were grouped into two broad, overlap-

ping categories:

1) Data organization: Storage hierarchies are deepening.

Users should to be able to seamlessly distribute various

pieces of their data across the hierarchy, with accelerated

access to the most important data from storage levels

closer to the processors and automatic migration across

levels according to the data’s usage and life cycle.

Progressive refinement – presenting users with multiple

views of their data, at various resolutions – affords

increased flexibility when filesystem bandwidth can be

at a premium.

2) Compression: Smaller fractions of a job’s total data

volume can be saved compared to before. Compression

can reduce the I/O load and mitigate the imbalance, but

must be robust and error-controlled. Compression for

scientific data should be closely monitored to safeguard

against the many potential pitfalls, including feature loss

and performance degradation. Compression kernels need

to be performant and are a natural target for hardware

acceleration.

Early progress has been made toward these goals, and

throughout the paper, we highlighted initial work we have

undertaken related to these two categories including:

• Two progressive compression techniques, exemplified

with simulation data in Fig. 3 and Fig. 4.

• The SIRIUS system, for managing multi-level, mulit-

view data (Section III-C).

• A co-design initiative dedicated to online reduction, anal-

ysis, and monitoring (Section IV-B).

• GPU and FPGA studies for compression kernel acceler-

ation (Section IV-C).

• An error-aware approach for “lossless decimation” (Sec-

tion IV-D).

Of course, unforeseen obstacles are likely to occur as we

approach closer to exascale computing, and considerations

beyond what we have addressed here may very well be

essential to tackle. However, we believe that ideas that we

have laid out in this paper would help facilitate significant

enhancements to the science output of future high performance

workflows.
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