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Abstract. We use a polyhedral criterion for the existence of diagonal split-
tings to investigate which toric varieties X are diagonally split. Our results
are stated in terms of the vector configuration given by primitive generators of
the 1-dimensional cones in the fan defining X. We show, in particular, that X
is diagonally split at all q if and only if this configuration is unimodular, and
that X is not diagonally split at any q if this configuration is not 2-regular.
We also study implications for the possibilities for the set of q at which a toric
variety X is diagonally split.

1. Introduction

Toric varieties over fields of positive characteristic are Frobenius split, and even
globally F -regular [Smi00], and the Frobenius morphisms of toric varieties are de-
fined over Z, leading to a well-behaved notion of splittings and diagonal splittings
of toric varieties at an arbitrary integer q ≥ 2, with all of the usual formal proper-
ties [BK05,Pay09a]. Here we say that a variety X is diagonally split if there exists
a splitting of X × X that is compatible with the diagonal Δ ⊂ X × X. If X is
diagonally split at some q ≥ 2, then every ample line bundle on X is very ample
and even normally generated. We recall that the existence of diagonal splittings
on a toric variety is controlled by the vector configuration given by the primitive
generators of the 1-dimensional cones in the corresponding fan, as follows.

Let N ∼= Z
n be a lattice, let Σ be a complete fan in NR = N ⊗Z R, and

let X = X(Σ) be the corresponding toric variety. We write Σ(1) for the set of
primitive generators in N of 1-dimensional cones in Σ, and M = Hom(N,Z) for
the dual lattice. By [Pay09a, Theorem 1.2], X is diagonally split at q ≥ 2 if and
only if the open polytope in MR = M ⊗Z R,

FΣ = {u ∈ MR | |〈u, v〉| < 1 for all v ∈ Σ(1)},
contains representatives of every equivalence class in 1

qM/M , where Σ(1) denotes

the set of primitive generators of the 1-dimensional cones in Σ.
The main purpose of this paper is to give efficient criteria for determining whether

a toric variety is diagonally split in terms of basic properties of Σ(1), and to study
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implications for the set of q ≥ 2 such that X is diagonally split at q. Our main
results are as follows.

Recall that Σ(1) is said to be unimodular if every maximal independent subset
generates the lattice N .

Theorem 1.1. If Σ(1) is unimodular, then X is diagonally split at q for all q ≥ 2.

Remark 1.2. The vector configuration Σ(1) is unimodular if and only if there is a
choice of coordinates N ∼= Z

n such that the matrix A whose columns are the vectors
in Σ(1) is totally unimodular, meaning that the determinant of any square submatrix
is in {−1, 0, 1}. Such matrices are well studied from many points of view, including
those of integer programming and matroid theory; see [Sch86, Chapters 19–20] for
details. Totally unimodular matrices have several equivalent characterizations, and
there is a polynomial time algorithm for determining whether a matrix is totally
unimodular. It therefore follows from Theorem 1.1 that there is a polynomial time
algorithm for determining whether X is diagonally split at q = 2.

For q = 2, we have the following converse.

Theorem 1.3. If Σ(1) is not unimodular, then X is not diagonally split at q = 2.

Combining Theorems 1.1 and 1.3 gives the following equivalent characterizations
of toric varieties that are diagonally split at q = 2.

Corollary 1.4. The following are equivalent:

(1) Σ(1) is unimodular.
(2) X is diagonally split at q for all q ≥ 2.
(3) X is diagonally split at some even q ≥ 2.
(4) X is diagonally split at q = 2.

We investigate cases where X is not diagonally split at q = 2, using relaxations
of the condition of unimodularity, as follows.

Choose coordinates N ∼= Z
n and let A be the matrix whose columns are the

vectors in Σ(1). Recall that Σ(1) is unimodular if and only if every maximal non-
singular square submatrix of A is invertible over Z. Following Appa and Kotnyek,
we say that Σ(1) is k-regular if every maximal nonsingular square submatrix of A
is invertible over Z[ 1k ] [AK04]. Equivalently, Σ(1) is k-regular if and only if, for
any maximal independent subset {v1, . . . , vn} of Σ(1), the quotient N/〈v1, . . . , vn〉
is k-torsion. We say that X is not diagonally split if there is no q such that X is
diagonally split at q.

Theorem 1.5. If Σ(1) is not 2-regular, then X is not diagonally split.

When Σ(1) is 2-regular, but not unimodular, the problem of determining the set
of q at which X is diagonally split is more subtle. In dimension 2, the solution is
as simple and affirmative as possible.

Theorem 1.6. If Σ(1) is 2-regular and dim(X) = 2, then X is diagonally split at
q, for all odd q ≥ 3.

Combining Theorems 1.1, 1.3, and 1.6 gives the following classification of possi-
bilities for the set of q at which X is diagonally split, when dim(X) = 2.

Corollary 1.7. If dim(X) = 2, then exactly one of the following holds:

(1) Σ(1) is unimodular and X is diagonally split at all q ≥ 2.
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(2) Σ(1) is 2-regular but not unimodular, and X is diagonally split at q if and
only if q is odd.

(3) Σ(1) is not 2-regular and X is not diagonally split.

Similar results hold for other special classes of 2-regular vector configurations.
For instance, a matrix is binet if the sum of the absolute values of the entries in each
column is at most 2, and binet matrices are 2-regular [AK04, Theorem 25]. If Σ(1)
is a binet configuration, i.e., the set of column vectors in a binet matrix, then X is
diagonally split at all odd q ≥ 3. See Proposition 6.2. However, there are examples
in dimensions 4 and higher where Σ(1) is 2-regular, but X is not diagonally split.
See Example 6.3.

In Section 7, we give a characterization of splittings of Xn that are compatible
with certain unions of subdiagonals, correcting an error from [Pay09a]. The exis-
tence of such splittings has strong consequences, for example, that every ample line
bundle gives rise to an embedding that is defined by quadratic equations, or even
that every section ring of an ample line bundle is Koszul; see Section 7 for further
details.

2. The unimodular case

We begin with a proof of Theorem 1.1, showing that X is diagonally split at all
q ≥ 2 when Σ(1) is unimodular.

Proof of Theorem 1.1. Let a be a vector in 1
qM . We must show that there is a

representative of the class [a] in 1
qM/M in the open polytope FΣ, defined in the

introduction.
Consider the polytope P in MR, given by

P = {u | 	〈a, v〉
 ≤ 〈u, v〉 ≤ �〈a, v〉
, for all v ∈ Σ(1)}.
Note that P is not empty, because it contains a. Since Σ(1) is unimodular, P has
integer vertices [Sch86, Theorem 19.3], so we can choose x ∈ P ∩M . Then a−x ≡ a
in 1

qM/M , and |〈a−x, v〉| < 1 for all v ∈ Σ(1). Therefore, a−x is a representative

for [a] in FΣ, and the theorem follows. �

3. Hermite normal form and 2-regularity

To investigate cases where Σ(1) is not unimodular, we find it helpful to consider
a matrix B whose columns are a maximal independent set of vectors in Σ(1), with
respect to a preferred choice of ordering of the vectors and a preferred choice of
coordinates N ∼= Z

n. Given such a maximal independent set {v1, . . . , vn}, we first
order the vectors so that N/〈v1, . . . , vr〉 is torsion free and N/〈v1, . . . , vr, vs〉 is not
torsion free, for all s > r.

After fixing such an ordering, we can choose coordinates so that the matrix
B with columns v1, . . . , vn is in Hermite normal form, meaning that B is upper
diagonal, with nonnegative integer entries, and the entries above diagonal in each
column are strictly smaller than the entry on the diagonal.

Due to our choice of ordering of the vectors, the first r diagonal entries of B are
1 and the rest are greater than 1. In other words, B is a nonnegative integer matrix
in the normal form

(1) B =

(
Ir C
0 B′

)
,
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where Ir is the r × r identity matrix, B′ is an upper triangular (d − r) × (d − r)
matrix with diagonal entries at least 2, and Bij < Bjj for i < j.

Note that Σ(1) is unimodular if and only if, for every maximal independent set of
vectors, the resulting matrix B is unimodular. Furthermore, a square nonsingular
matrix B is unimodular if and only if its normal form is the identity matrix In.

As mentioned in the introduction, we follow the terminology of [AK04] and say
that Σ(1) is k-regular if, for any maximal independent subset {v1, . . . , vn}, the
quotient N/〈v1, . . . , vn〉 is k-torsion. Note that Σ(1) is k-regular if and only if,
for every maximal independent subset, the resulting matrix B is k-regular, and a
square nonsingular matrix B is k-regular if and only if it is invertible over Z[ 1k ].

We have the following characterization of 2-regularity for B in terms of its normal
form.

Proposition 3.1. The matrix B is 2-regular if and only if B′ = 2Id−r.

Proof. Let {e1, . . . , en} be the basis of N bringing B into the normal form (1).
Note that the order of ei in N/〈v1, . . . , vn〉 is divisible by the diagonal entry Bii,
with equality for all i if B′ is diagonal. In particular, if B is 2-regular, then every
diagonal entry of B′ must be 2, and if B′ is 2Id−r, then N/〈v1, . . . , vn〉 is generated
by 2-torsion elements, and hence B is 2-regular.

It remains to show that B is not 2-regular if every diagonal entry of B′ is 2, but
B′ is not diagonal. To see this, choose j > r such that vj is the first column vector
of B that contains a nonzero entry of B′ above the diagonal. Then 2ej is not zero
in N/〈v1, . . . , vn〉, and hence B is not 2-regular. �

It will also be useful to consider the intersection of FΣ with coordinate subspaces
compatible with the normal form of B, as follows.

Choose a basis {e1, . . . , en} for N with respect to which B is in the normal form
(1), and let {f1, . . . , fn} be the dual basis for M . Let Mj be the sublattice of M
spanned by the basis vectors starting from fj , so Mj = 〈fj , . . . , fn〉.

Lemma 3.2. Fix q ≥ 2, and let [a] ∈ 1
qM/M be the class of an element a ∈ 1

qMj.

If [a] is represented by a point in FΣ, then it is represented by a point in FΣ ∩ 1
qMj.

Proof. Let a+u be a representative for [a] in FΣ, so u is a lattice point in M . Write
u = (u1, . . . , un), with respect to the basis {f1, . . . , fn}.

If j = 1, then there is nothing to show. Assume j ≥ 2. Then 〈a + u, v1〉 = u1.
Since u1 is an integer and a+ u is in FΣ, it follows that u1 is zero. Similarly, by an
induction on i, we conclude that 〈a + u, vi〉 = Biiui, and hence ui = 0, for i < j.
This shows that u ∈ Mj , as required. �

4. A converse theorem for q = 2

We have already shown that if Σ(1) is unimodular, then X is diagonally split for
all q ≥ 2. We now prove the converse for q = 2.

Proof of Theorem 1.3. Suppose Σ(1) is not unimodular. We must show that X is
not diagonally split at q = 2.

Choose a maximal independent subset {v1, . . . , vn} that does not generate N .
Reorder the vectors and choose a basis {e1, . . . , en} on N so that the matrix B
whose columns are v1, . . . , vn is in the normal form (1). Let {f1, . . . , fn} be the
dual basis for M . By Lemma 3.2, if the class [fn/2] in

1
2M/M is represented in
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FΣ, then it is represented by an odd multiple of fn/2. But this is impossible, since
〈fn, vn〉 = Bnn, which is at least 2. �

5. Configurations that are not 2-regular

We now consider the case where Σ(1) is not 2-regular, and we prove Theorem 1.5,
showing that X is not diagonally split in this case.

Proof of Theorem 1.5. Choose a maximal independent set {v1, . . . , vn} in Σ(1) such
that N/〈v1, . . . , vn〉 is not 2-torsion. After reordering the vectors and choosing
coordinates on N , we may assume that the matrix B with columns v1, . . . , vn is
in the normal form (1). By Proposition 3.1, either B has a diagonal entry that is
greater than 2 or the lower right square matrix B′ is not diagonal.

Suppose the diagonal entry Bjj is greater than 2. Let {e1, . . . , en} be the chosen
basis for N , with {f1, . . . , fn} the dual basis for M , and fix a = 1

q 	
q
2
fj . By

Lemma 3.2, if the class [a] ∈ 1
qM/M is represented by a point in FΣ, then it is

represented by a point in FΣ ∩ 1
qMj . Any such point u is of the form a + ajfj +

· · ·+anfn, for some integers aj , . . . , an, and hence 〈u, vj〉 is in the set Bjj(
1
q 	

q
2
+Z).

Since 1
q 	

q
2
 is in the interval [ 13 ,

1
2 ] and Bjj ≥ 3, it follows that |〈u, vj〉| ≥ 1, and

hence u is not in FΣ.
It remains to consider the case where all diagonal entries of B′ are 2 and where

B′ is not diagonal. Choose j as small as possible so that B′ contains a nonzero
off-diagonal entry in the jth column of B, and choose i as small as possible, with
j fixed, so that Bij is such an entry.

Let a = 1
q (fi + 	 q

2
fj), and suppose the class [a] ∈ 1
qM/M is represented by a

point u in FΣ. By Lemma 3.2, any such point u is of the form a+aifi+ · · ·+anfn,
for some integers ai, . . . , an. Note that 〈u, vi〉 = 2( 1q + ai), so |〈u, vi〉| < 1 implies

that ai = 0. Similarly, 〈u, v�〉 = 2a�, and hence a� = 0, for i < � < j. We then
compute that 〈u, vj〉 = 1

q + 2
q 	

q
2
+ 2aj . By Theorem 1.3, we may assume that q is

odd and thus conclude that 〈u, vj〉 = 1+ 2aj . In particular, |〈u, vj〉| cannot be less
than 1, so u is not in FΣ, and hence X is not diagonally split at q. �

6. Partial results in the 2-regular case

In this section, we investigate possibilities for the set of q at whichX is diagonally
split when Σ(1) is 2-regular but not unimodular. We show that if Σ(1) is as small
as possible, in the sense that it is contained in a basis for NR and its negatives, or
the dimension n is 2, or when Σ(1) forms the columns of a binet matrix, then X is
diagonally split for all odd q. Example 6.3 shows that, in dimensions 4 and higher,
X may not be diagonally split, even though Σ(1) is 2-regular.

We first consider the case where Σ(1) is as small as possible.

Proposition 6.1. Suppose Σ(1) is 2-regular and contained in {±v1, . . . ,±vn},
where {v1, . . . , vn} is a basis for NR. Then X is diagonally split at q, for all odd
q ≥ 3.

Proof. After permuting the vectors, we can choose coordinates N ∼= Z
n such that

the matrix B whose column vectors are v1, . . . , vn is in the normal form (1). Since
Σ(1) is 2-regular, the matrix B′ is 2In−r, by Proposition 3.1.
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Assume q is odd. Then we can represent any class in 1
qZ

n/Zn uniquely by a

vector a = (a1, . . . , an), where ai ∈ (−1, 1) and qai is even. Then |〈a, vj〉| < 1 for
1 ≤ j ≤ r. For j > r, we have 〈a, vj〉 ∈ 2

qZ. In particular, 〈a, vj〉 is not an odd

integer, so there is a unique integer uj such that |〈a, vj〉 − 2uj | < 1. Then

a+ (0, . . . , 0, ur+1, . . . , un)

is in FΣ and represents the class [a] ∈ 1
qM/M , so X is diagonally split at q. �

A matrix is called binet if the sum of the absolute values of the entries in each
column is at most 2 and if binet matrices are 2-regular [AK04, Theorem 25]. We
say that Σ(1) is binet if there is a choice of coordinates N ∼= Z

n such that the
matrix whose columns are the vectors in Σ(1) is binet.

Proposition 6.2. If Σ(1) is binet, then X is diagonally split at q, for all odd q ≥ 3.

Proof. Choose coordinates N ∼= Z
n so that the sum of the absolute values of the

coordinates of each vector in Σ(1) is at most 2. Then FΣ contains the open cube
with vertices (± 1

2 , . . . ,±
1
2 ), and hence contains all points of the form (a1

q , . . . , an

q ),

where |ai| < q
2 . These represent all equivalence classes in 1

qM/M when q is odd,

and the proposition follows. �
Next, we consider the case where the dimension is as small as possible.

Proof of Theorem 1.6. Suppose the dimension n is 2 and Σ(1) is 2-regular. We will
show that X is diagonally split at all odd q by classifying the possibilities for Σ(1)
and showing that they are all binet.

We first consider the cases where Σ(1) does not contain a basis for N . Fix
two independent vectors in Σ(1) and choose coordinates so that the corresponding
matrix is in Hermite normal form. In these coordinates, the two vectors must be
(1, 0) and (1, 2). Any other vector v that is not equal to these two or their negations
must be of the form (a,±2). The condition that v and (1, 2) generate a sublattice
of index 2 guarantees that a is even, which is impossible, since v must be primitive.
We conclude that Σ(1) ⊂ {±(1, 0),±(1, 2)}, which is binet with respect to the basis
{(1, 1), (0, 1)}.

Therefore, we may assume Σ(1) contains a basis for N and take these as coordi-
nates. Since FΣ is cut out by absolute values of pairings with vectors in Σ(1), we
may restrict our attention to configurations of vectors whose first nonzero coordi-
nate is positive. Then 2-regularity implies that the remaining vectors are a subset
of

{(1, 1), (1,−1), (1, 2), (1,−2), (2, 1), (2,−1)}.
Furthermore, Σ(1) can contain at most one vector from S = {(1, 2), (1,−2), (2, 1),
(2,−1)}, since the quotient of Z2 by any two of these contains 3-torsion or 4-torsion.
Similarly, if Σ(1) contains (1, 1) and (1,−1), then it cannot contain any vector from
S, since each vector with S, together with either (1, 1) or (1,−1), generates an index
3 sublattice. If Σ(1) does not contain any vector from S, then it is binet in the
given coordinates.

We therefore assume Σ(1) contains exactly one element of S. After permut-
ing the coordinates, we may suppose S contains (1, 2) or (1,−2). Since adding
vectors can only diminish the set of q at which X is diagonally split, we may as-
sume Σ(1) contains either (1, 1) or (1,−1), as well. This leaves two cases, namely
Σ(1) = {(1, 0), (0, 1), (1, 1), (1, 2)} and Σ(1) = {(1, 0), (0, 1), (1,−1), (1,−2)}, and
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both differ only by a change of coordinates from {(1, 0), (0, 1), (1, 1), (1,−1)}. We
conclude that Σ(1) is binet and hence X is diagonally split at all odd q ≥ 3. �

The following is a 4-dimensional example where Σ(1) is 2-regular but X is not
diagonally split. We do not know whether such examples exist in dimension 3.

Example 6.3. Consider a fan Σ in R
4 whose 1-dimensional cones are generated

by

Σ(1) = {e1, e2, e3 + e4, e3 − e4, e1 + e2 − e3, e1 − e2 + e3,−e1 + e2 + e3}.
We claim that X is not diagonally split. Note that Σ(1) is not unimodular, so, by
Theorem 1.3, X is not diagonally split at q when q is even. It remains to check that
X is not diagonally split at any odd q ≥ 3. Note that every maximal independent
subset generates either Z

4 or a sublattice of index 2, so Σ(1) is 2-regular and
Theorem 1.5 does not apply. Nevertheless, we verify that X is not diagonally split
at any odd q as follows.

Let q ≥ 3 be odd. We claim that the class of a = 1
q (	

q
2
(e1 + e2) − e3 + e4)

in 1
qZ

4/Z4 is not represented by any point in FΣ. To see this, suppose that a +

(a1, a2, a3, a4) is in FΣ, for some integers a1, . . . , a4. Pairing with e3+e4 and e3−e4
shows that a3 and a4 must vanish. Pairing with e1 and e2 then shows that a1 and
a2 are each either 0 or −1, and pairing with the remaining vectors eliminates these
four possibilities.

7. Compatibly split subdiagonals

As mentioned in the introduction, there is significant geometric interest in know-
ing whether a variety X is diagonally split because every ample line bundle on a
diagonally split variety is very ample and gives rise to a projectively normal em-
bedding. There are similar reasons for interest in compatible splittings of unions
of subdiagonals in higher products of X. Indeed, if X ×X ×X is split compatibly
with the union of Δ × X and X × Δ, then every ample line bundle on X gives
rise to an embedding that is normally presented, i.e., the homogeneous ideal of
the image is generated by quadrics. Linearity of subsequent steps in the minimal
free resolution of the ground field over the homogeneous coordinate ring of the
image are guaranteed by splittings of Xn compatible with the union of the higher
subdiagonals

Δi = Xi−1 ×Δ×Xn−i−1,

for 1 ≤ i < n. In particular, the homogeneous coordinate ring is Koszul if Xn is
split compatibly with Δ1 ∪ · · · ∪Δn−1, for all n.

Payne mistakenly stated that if a toric variety X is diagonally split, then Xn is
split compatibly with Δ1 ∪ · · · ∪Δn−1 for all n [Pay09a, Theorem 1.3]. The error
in the proof occurs in the middle of the second paragraph, with the false assertion
that a certain explicit splitting π is compatible with Δ1 ∪ · · · ∪ Δn−1. Indeed,
whenever n ≥ 3, the splitting described there fails to satisfy the necessary and
sufficient condition for compatibility with Δ1 ∪ · · · ∪Δn−1 given in Theorem 7.3.

Remark 7.1. Note that the error in [Pay09a, Theorem 1.3] also affects [Pay09b,
Theorems 1.1 and 1.3]. The main arguments in the latter paper show correctly that
if Σ(1) is contained in a root system of type A, B, C, or D, then the toric variety
X is diagonally split at q for all odd q ≥ 3. It follows that any lattice polytope
whose facet normals is in one of these root systems is normal, as are Cayley sums
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of polytopes whose Minkowski sum is such a polytope. However, it does not follow
that these polytopes are Koszul. The Koszulness of lattice polytopes whose facet
normals are contained in a root system of type A is known, by [BGT97]. The
corresponding statement for root systems of type B, C, or D is an open problem.

The following is an example of a diagonally split toric variety X such that X ×
X ×X is not split compatibly with the union of Δ×X and X ×Δ.

Example 7.2. The Birkhoff polytopeBn is the convex hull of the n×n permutation
matrices. It is a lattice polytope of dimension n2 − 2n + 1 cut out by inequalities
coming from a totally unimodular matrix [Sch86, §19]. In particular, if X(Σn) is
the toric variety corresponding to Bn, then Σn(1) is unimodular, and hence X(Σn)
is diagonally split at q, for all q ≥ 2, by Theorem 1.1.

However, as noted by Haase and Paffenholz [HP09], for n = 3, the polytope B3

corresponds to an embedding of X(Σ3) as the cubic hypersurface x0x1x2 = x3x4x5

in the projective space P5. Since the homogeneous ideal of this embedding is not
generated by quadrics, it follows that X ×X ×X has no splitting compatible with
(Δ×X) ∪ (X ×Δ).

In the remainder of this section, we characterize the splittings of Xn that are
compatible with Δ1 ∪ · · · ∪Δn−1. Recall that multiplication by an integer q ≥ 2 on
NR preserves the fan Σ and hence induces a morphism F : X → X, which agrees
with the absolute Frobenius morphism when q is prime and k is the field with q
elements.

A splitting of X at q is an OX -module map π : F∗OX → OX such that the
composition π ◦ F∗ is the identity on OX . Such a splitting is compatible with a
subvariety Z ⊂ X if π maps F∗(IZ) into IZ , and X is diagonally split if there is a
splitting of X ×X compatible with the diagonal Δ.

Following [Pay09a, Section 2], we recall that the global sections of F∗OT are
generated by monomials xb for b ∈ 1

qM , and a basis for Hom(F∗OT ,OT ) is given

by maps πa for a ∈ 1
qM , where

πa(x
b) =

{
xa+b if a+ b ∈ M,
0 otherwise,

and
∑

caπa extends to a map from F∗OX to OX if and only if supp(π) = {a | ca �=
0} is contained in the open polytope

P ◦
−K = {u ∈ MR | 〈u, v〉 < 1 for all v ∈ Σ(1)}.

Each map from F∗OX to OX is determined by its restriction to F∗OT , so
Hom(F∗OX ,OX) has a basis given by P ◦

−K ∩ 1
qM . Furthermore, a map

∑
caπa

is a splitting if and only if c0 = 1. It follows that the space of splittings compatible
with a given subscheme is an affine hyperplane in Hom(F∗OX ,OX).

The main result of [Pay09a] says that X × X is diagonally split if and only if
FΣ, which is equal to P ◦

−K ∩ −P ◦
−K , contains representatives of every equivalence

class in 1
qM/M . It generalises as follows.

Let L ⊂ Mn be the sublattice of tuples (u1, . . . , un) such that u1 + · · ·+ un = 0.
Note that L = L1 ⊕ · · · ⊕ Ln−1, where Li ⊂ L is the sublattice where uj = 0 for
j �∈ {i, i+ 1}.
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Theorem 7.3. A splitting of Xn given by

π =
∑

a∈ 1
qM

n

caπa

is compatible with Δ1 ∪ · · · ∪ Δn−1 if and only if, for any b and b′ in 1
qM

n such

that b ≡ b′ mod 1
qLi, and any class [u] ∈ Mn/Li, we have∑

a+b∈Mn

(a+b)modLi = [u]

ca =
∑

a′+b′ ∈Mn

(a′+b′)modLi = [u]

ca′ ,

for 1 ≤ i ≤ n− 1.

Remark 7.4. If X is diagonally split, then for all n and all i, Δi is compatibly split
in Xn. However, the Birkhoff polytope Example 7.2 shows that there need not be
a splitting that is simultaneously compatible for all i.

Remark 7.5. Note that 0 is the only lattice point in (P ◦
−K)n. Thus, setting [u] = 0

and b = 0 in Theorem 7.3 shows that a necessary condition for the existence of
such a splitting is that (P ◦

−K)n contains a representative of every equivalence class

of 1
qLi/Li. In particular, when n = 2, P ◦

−K × P ◦
−K must contain a representative

of every equivalence class of 1
qL/L, which is equivalent to the condition in [Pay09a,

Theorem 1.2].

Proof of Theorem 7.3. A splitting is compatible with Δ1 ∪ · · · ∪Δn−1 if and only
if it is compatible with Δi, for each 1 ≤ i ≤ n − 1 [BK05, Proposition 1.2.1].
Therefore, it will suffice to show that π is compatible with Δi if and only if, for any
b and b′ in 1

qM
n such that b ≡ b′ mod 1

qLi, and any [u] ∈ Mn/Li, we have∑
a+b∈Mn

(a+b)modLi = [u]

ca =
∑

a′+b′ ∈Mn

(a′+b′)modLi = [u]

ca′ .

The splitting π is compatible with Δi if and only if the restriction of π to Tn

is compatible with Δi ∩ Tn [BK05, Lemma 1.1.7]. The coordinate ring of Tn is
generated by monomials xu for u ∈ Mn, and the ideal I defining Δi∩Tn is generated
by differences xu − xu′

, for u, u′ ∈ Mn such that u ≡ u′ mod Li.
It follows that F∗I is generated by differences xb − xb′

, for b, b′ ∈ 1
qM

n such

that b ≡ b′ mod 1
qLi, and π is compatible with Δi if and only if it maps each of

these generators to a function that vanishes on Δi ∩ Tn. The coordinate ring of
Δi∩Tn is the group ring of Mn/Li, so the restriction of π(xb−xb′

) to Δi∩Tn can
be expressed uniquely as a linear combination of monomials x[u] for [u] ∈ Mn/Li.
Since restriction from the coordinate ring of Tn is induced by the projection Mn →
Mn/Li, the coefficient of x[u] in π(xb) is∑

a+b∈Mn

(a+b)modLi = [u]

ca,

and the theorem follows. �
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