
Research Statement • Ben Whitney

Abstract

My research primarily concerns data compression, specifically multilevel compression methods. The
ballooning scale of scientific simulations motivates the use of compression in scientific workflows, and
the heterogeneous storage media of extant petascale and planned exascale machines are well-matched to
multilevel methods, which split their input into components of varying priorities to be stored on devices
of varying capacities and speeds. My work in this field began with an analysis of a lossless compression
method based on decimation, a commonly used lossy technique [AKW17]. We derived bounds and
computed expectations for compression ratios achieved with deterministic and probabilistic data,
respectively. Subsequently, we began work on a suite of original multilevel compression methods called
MGARD (MultiGrid Adaptive Reduction of Data). MGARD is designed to compress scientific data while
preserving the features of interest to application scientists. Our initial efforts focused on compression
with control of error as measured in L2 [Ain+18c] and L∞ [Ain+18a], and a third paper [Ain+18b]
added the ability to control the effects of compression on quantities of interest relevant to the data.
We paid special attention to the efficient implementation of the method, providing optimal complexity
algorithms of the central decomposition and recomposition procedures, and demonstrated its feasibility
with applications to a variety of real world datasets. Recent work [Ain+18d] has focused on the case of
unstructured grids and on incorporating the numerical methods used to generate simulation data into
the compression process. I also have one paper, [Cho+18], in algebraic geometry, which was the result
of a project begun while I was an undergraduate and completed during the final year of my graduate
studies.

Multilevel Splitting

MGARD is applicable to data u given on a nested hierarchy of grids. Such hierarchies are frequently
encountered in practice – for instance, when multigrid methods or adaptive mesh resolution is used –
and can also be introduced at the compression stage by means of an interpolation from the simulation
grid to the compression grid. Let P0, . . . ,PL be the levels in such a hierarchy, with V0, . . . , VL associated
function spaces, assumed to be piecewise linear finite element spaces. At the heart of MGARD is the
multilevel splitting

VL 3 u←→ ((I −Π−1)Q0u, . . . , (I −ΠL−1)QLu) ∈ V0 × · · · × VL (∗)

where Π`−1 is the piecewise linear interpolant onto V`−1 (with Π−1 defined to be zero) and Q` is
the L2 projection onto V`. The splitting (∗) combines the ease of representation of the hierarchical
decomposition (with components (Π` − Π`−1)u) and the superior stability properties of the orthogonal
decomposition (with components (Q` −Q`−1)u). It is in fact closely tied to the orthogonal splitting,
with efficient O(N) algorithms available for obtaining (Q`−Q`−1)u from (I −Π`−1)Q`u and vice versa.
This leads to optimal complexity algorithms for reconstructing Q`u from the first ` + 1 multilevel
components (I − Π−1)Q0u, . . . , (I − Π`−1)Q`u and a simple, nonadaptive compression procedure:
replace u with its multilevel splitting (an efficient and lossless transformation) and, when a compressed
dataset is required, use the first `+ 1 components (with ` chosen according to a storage or accuracy
constraint) to reconstruct the projection Q`u. The connection to the orthogonal decomposition leads
to a quasioptimality result [Ain+18c] which establishes that no linear, nonadaptive reduction technique
can outperform MGARD in the univariate setting by more than a constant factor. This result is extended
to the case of general dimension in [Whi18].

Though the methods given in [Ain+18c], being nonadaptive, make limited use of the particulars of
the data being reduced, they may still be used to good effect on real datasets. For example, Figure 1
presents the results of compressing the output of a turbulence simulation using nonadaptive MGARD.
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Figure 1: Results of compressing the output of a pseudospectral simulation of forced isotropic turbulence
with nonadaptive MGARD, taken from [Ain+18c]. The relative errors achieved are 1% for the center plot
and 25% for the righthand plot.

The one-dimensional method is applied to the four-dimensional output by fixing points in the spatial
domain and gathering the flowfield values observed at those points into timeseries.

Adaptive Reduction

The quasioptimality results and optimal complexity algorithms given in [Ain+18c] suggested that the
multilevel splitting (∗) could be a fruitful basis for more advanced methods. The following project,
[Ain+18a], expands on its predecessor in three aspects: from L2 to L∞ error control, from the univariate
to the multivariate setting, and from nonadaptive to adaptive reduction. The adaptivity is achieved
using the multilevel coefficients u_mc, a particular representation of the components (I − Π`−1)Q`u
of the multilevel splitting. As in [Ain+18c], we give optimal complexity algorithms for transforming
the input data u to its multilevel coefficients, with one coefficient u_mc[x] for each node x of the
mesh PL. Whereas we previously faced a binary choice to retain or discard each multilevel component
(I −Π`−1)Q`u in its entirety, we can now make that decision about each multilevel coefficient u_mc[x]
individually. To inform these decisions, we provide reliable and realistic indicators, which suggest
which of the coefficients contribute most to the components, and estimators, which relate changes
in the components to changes in the original data u. These functions, and the associated reliability
and realism bounds, underlie adaptive reduction algorithms for data given on tensor product grids in
multiple dimensions. Figure 2 illustrates an application of these algorithms.

Quantities of Interest

Our most recent paper, [Ain+18b], builds on this work by proving the reliability and realism estimates
needed for adaptive reduction in a family of Sobolev norms ‖ · ‖r. More interestingly, we present
a technique for compression allowing the preservation of user-specified quantities of interest, like
spatiotemporal averages or power spectra. Let Q be some quantity of interest depending linearly on
the data u. If u is to be replaced by some compressed output ũ, we might ask that the compression
have limited impact on the quantity of interest: that

|Q(u)−Q(ũ)| ≤ τ

for some user-prescribed tolerance τ . The ability to produce output respecting such bounds, added
without sacrificing the optimal complexity implementation first introduced in [Ain+18c] or the guar-
anteed error bounds presented in [Ain+18a], is, to the best of our knowledge, unique to MGARD. In
a demonstration of the flexibility of the technique, we apply it to experimental fusion data while
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Figure 2: Results of compressing the output of a nonlinear chemical oscillator, the Brusselator, with
the adaptive MGARD reduction techniques developed in [Ain+18a]. The original data is represented by
4225 degrees of freedom; the compressed output uses only 1000. The third plot from left indicates the
multilevel coefficients retained with black squares. The retained values are clustered in the regions
where the data is least regular.

preserving spatial averages to allow ‘blob identification’ (a procedure of interest to practitioners) to
be carried out on the compressed data and to a turbulent combustion simulation while preserving
streamlines, an important diagnostic tool similar in spirit to wind tunnel experiments (see Figure 3).

Current Work

Recent work has focused on expanding MGARD to general mesh hierarchies and incorporating the
numerical method used to generate the original data into the compression and reconstruction procedures.
Consider, for example, a numerical method outputting a timeseries u0, u1, u2, . . .. MGARD can be applied
to each timestep separately, yielding a compressed series ũ0, ũ1, ũ2, . . ., but this approach does not take
advantage of any redundancy between the timesteps. One possible remedy, which was investigated
in [Ain+18a], is to apply MGARD in time as well as space. This method yields good results as long as
multiple timesteps (ideally the entire timeseries) can be loaded into system memory at once. For data
too large for this approach, we propose to compute from each compressed timestep ũi an approximation
ui+1 to the following timestep, and to then apply MGARD to the delta ui+1 − ui+1 rather than to ui+1

itself. Preliminary results suggest that this technique can improve compression ratios while requiring
only moderately more memory and FLOPs than the original strategy of compressing each timestep
separately.

Conclusion

My research to date has been born of a marriage between the pursuit for rigorous theoretical bounds and
estimates and attention to efficient implementation and real world applicability. I enjoy the interplay
between the two sides and find that the theory, in particular, improves the software. I believe that
mathematically rigorous compression methods have a basic, foundational place in the future of scientific
computing, and I look forward to playing a role in that field’s development.
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(a) Original dataset. (b) Reduced dataset with relative error
tolerance τ = 5× 10−4 and compres-
sion ratio 1701.

Figure 3: Results of streamline analysis on the original output of a turbulent combustion simulation
(left) and a compressed dataset produced by MGARD (right). Careful consideration of the quantity of
interest at hand results in streamlines more accurately reproduced than those generated using datasets
compressed to similar compression ratios but with compression parameters chosen a priori (not pictured;
see [Ain+18b]).
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