## Homework #3

Deadline: March 10 (Thursday) 4:00am EST Scorelator will begin accepting submissions from March 3 (Thursday)

## Problem 1

Consider the linear system  $A\mathbf{x} = \mathbf{b}$  where

$$A = \begin{pmatrix} 3 & 3 + 10^{-13} & 1.7 & -5 \\ 2 & 2 & 21 & 8 \\ 3 & 6 & 4 & -10 \\ -1 & 1 & 8.6 & 7 \end{pmatrix}, \qquad \mathbf{b} = \begin{pmatrix} 2.7 \\ 33 \\ 3 \\ 15.6 \end{pmatrix}$$

- (a) Find the LU factorization of A using step-by-step Gaussian elimination without any row pivoting. Save the lower triangular matrix in All.dat and the upper triangular matrix in All.dat.
- (b) Using the factorization you found in part (a), solve  $A\mathbf{x} = \mathbf{b}$  by forward and backward substitution. Save the solution as a column vector in A13.dat.
- (c) Now solve  $A\mathbf{x} = \mathbf{b}$  by LU factorization with partial pivoting (you may use the built-in Matlab command). Save the solution of  $L\mathbf{y} = P\mathbf{b}$  in A14.dat and the solution of  $U\mathbf{x} = \mathbf{y}$  in A15.dat.

## Problem 2

Recall the system of equations

$$R_6I_1 + R_1(I_1 - I_2) + R_2(I_1 - I_3) = V_1$$
  

$$R_3I_2 + R_4(I_2 - I_3) + R_1(I_2 - I_1) = V_2$$
  

$$R_5I_3 + R_4(I_3 - I_2) + R_2(I_3 - I_1) = V_3$$

from Homework #2, where the resistances are  $R_1 = 20$ ,  $R_2 = 10$ ,  $R_3 = 25$ ,  $R_4 = 10$ ,  $R_5 = 30$ ,  $R_6 = 40$  and the voltages are  $V_2 = 0$  and  $V_3 = 200$ , while  $V_1$  is variable. The currents  $I_1$ ,  $I_2$  and  $I_3$  are the unknowns. In this form, the coefficient matrix is strictly diagonal dominant by row.

- (a) Increase  $V_1$  from 0 to 100 in steps of 4 (i.e. take  $V_1 = 0, 4, 8, ..., 96, 100$ ) and for each  $V_1$  value calculate  $I_1, I_2$  and  $I_3$  by solving the system with the **Jacobi iteration scheme**. Begin with the initial guess  $(I_1, I_2, I_3) = (0, 0, 0)$ ; for the stopping criterion, require that the 2-norm of the difference between successive iterates be no more than  $10^{-6}$ . Save your results in A21.dat as a  $3 \times 26$  matrix, where the first column contains the  $I_1, I_2, I_3$  values corresponding to  $V_1 = 0$ , the second column contains the  $I_1, I_2, I_3$  values corresponding to  $V_1 = 4$ , and so on. Also, for each  $V_1$  value record the number of iterations needed to solve the linear system to the given accuracy, and save these numbers as a length-26 row vector in A22.dat.
- (b) Repeat part (a), but this time with the **Gauss–Seidel iteration scheme**. Use the same initial guess and the same stopping criterion, and save the solutions  $(I_1, I_2, I_3)$  for the increasing  $V_1$  values as a  $3 \times 26$  matrix in A23.dat. Save the number of iterations needed at each  $V_1$  value as a length-26 row vector in A24.dat.
- (c) Finally, based on the data in A22.dat and A24.dat, calculate the *average* number of iterations needed by each of the Jacobi and Gauss-Seidel methods (find a suitable Matlab command or commands to do this). Save these numbers in A25.dat as a row vector with two components (Jacobi first and Gauss-Seidel second).