Homework #11

Deadline: May 15 (Sunday) 4:00am EST

Problem 1

(a) Consider the second-order linear differential equation

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + \frac{x^2}{4}y = -e^{-x^2} \qquad \text{for } -1 \le x \le 1$$

subject to the boundary conditions

$$y(-1) = 2.5,$$
 $y(1) = 3$

Compute the solution of this boundary value problem with the method of finite differences. Take $\Delta x = 0.04$, and use $O(\Delta x^2)$ centered difference formulas to approximate the derivatives y'' and y'. Save the y values of the computed solution at x = -1:0.04:1 as a column vector in A11.dat. Find the maximum point on the computed solution curve, and save its x and y coordinates as a row vector in A12.dat.

(b) Consider the second-order linear differential equation

$$\frac{d^2y}{dx^2} + \frac{x^2}{4}y = -e^{-x^2} \qquad \text{for } -1 \le x \le 1$$

subject to the boundary conditions

$$y'(-1) = 1.5,$$
 $y(1) = 3$

(note that the condition at the left endpoint involves the *derivative* of y).

Compute the solution of this boundary value problem with the method of finite differences. Take $\Delta x = 0.04$, and use the $O(\Delta x^2)$ centered difference formula to approximate y''. To approximate the boundary condition at the left end, use an $O(\Delta x^2)$ formula also.

Save the y values of the computed solution at x = -1:0.04:1 as a column vector in A13.dat.

Find the maximum point on the computed solution curve, and save its x and y coordinates as a row vector in A14.dat.

(PLEASE TURN OVER)

Problem 2

The partial differential equation

$$(\star) \qquad \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + (\kappa - 1) \frac{\partial u}{\partial x} - \kappa u$$

is a scaled version of the Black-Scholes equation from financial mathematics.

(a) With $\kappa = 1$, compute an approximation of the function u(t, x) which satisfies the PDE (\star) together with the initial condition

$$u(0,x) = 1 + \frac{x}{5}$$
 for $0 \le x \le 10$

and the Dirichlet boundary conditions

$$u(t,0) = 1,$$
 $u(t,10) = 3$ for all $t > 0$

Choose the spatial grid points x_j so that $x_0 = 0$ and $x_{51} = 10$.

Use $O(\Delta x^2)$ centered difference formulas to approximate the spatial derivatives $\frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial u}{\partial x}$.

Then use ode45 with default tolerances to do the time-stepping, asking Matlab to record the approximate solution values at t = 0:0.2:5.

Save the computed approximate solution, u(t,x) for t=0:0.2:5 and $x=x_0,x_1,x_2,\ldots,x_{51}$, as a 26×52 matrix in A21.dat (where each row represents a time slice and each column represents a particular spatial position).

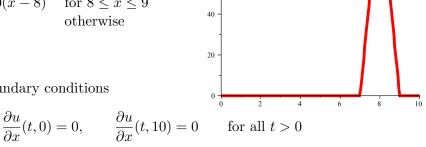
Find the minimum value of u at t=5, as well as the x-value at which this minimum occurs; save these x and u values (in that order) as a row vector in A22.dat.

(b) Do the same as in part (a), but this time with $\kappa = 0.2$. Save the computed solution in A23.dat, and save the x and u values of the minimum point at t = 5 in A24.dat.

(c) With $\kappa=0.2$, compute an approximation of the function u(t,x) which satisfies the PDE (\star) together with the initial condition

$$u(0,x) = \begin{cases} 100(x-7) & \text{for } 7 \le x \le 8\\ 100 - 100(x-8) & \text{for } 8 \le x \le 9\\ 0 & \text{otherwise} \end{cases}$$

and the Neumann boundary conditions



Choose the spatial grid points x_j so that $x_0 = 0$ and $x_{51} = 10$.

Use $O(\Delta x^2)$ centered difference formulas to approximate the spatial derivatives $\frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial u}{\partial x}$. Also use $O(\Delta x^2)$ formulas to approximate the boundary conditions at both ends.

Then use ode45 with default tolerances to do the time-stepping, asking Matlab to record the approximate solution values at t=0:0.2:5. Save the computed solution as a 26×52 matrix in A25.dat. Find the maximum value of u at t=5, as well as the x-value at which this maximum occurs; save these x and u values as a row vector in A26.dat.