Homework #10

Deadline: May 7 (Saturday) 4:00am EST

Problem 1

Consider the Van der Pol differential equation

(*)
$$\frac{d^2y}{dx^2} + \mu(y^2 - 1)\frac{dy}{dx} + y = 0 \quad \text{for } 0 \le x \le 2$$

with $\mu = -\frac{1}{2}$, subject to the boundary conditions

$$(\dagger) y(0) = 0, y(2) = 1$$

- (a) (i) Use ode45 with default tolerances to solve the initial value problem consisting of the ODE (\star) and the initial conditions y(0) = 0, y'(0) = 1. Find the value of the computed solution at x = 2.
- (ii) Use ode45 with default tolerances to solve the initial value problem consisting of the ODE (\star) and the initial conditions y(0) = 0, y'(0) = 2. Find the value of the computed solution at x = 2. Save the values at x = 2 of the computed solutions from (i) and (ii) as a row vector in A11.dat.
- (b) Use the shooting method to find an approximate solution of the boundary value problem consisting of the ODE (\star) and the boundary conditions (\dagger). Use ode45 with default tolerances for "time"-stepping, and use the information from part (a) together with the bisection method for root-finding. Stop iterating when the value of the computed solution at x=2 gets within 10^{-8} of the target value. Then save the number of iterations and the slope at the left boundary as a row vector in A12.dat, and save the y values of the computed solution at x=0:0.01:2 as a column vector in A13.dat.

Problem 2

Consider the differential equation

(*)
$$y'' = \frac{1}{8} (32 + 2x^3 - yy')$$
 for $1 \le x \le 3$

subject to the boundary conditions

(‡)
$$y(1) = 17, \quad y'(3) = 0$$

(note that the condition at the right endpoint involves the *derivative* of y).

- (a) (i) Use ode45 with default tolerances to solve the initial value problem consisting of the ODE (*) and the initial conditions y(1) = 17, y'(1) = 0. Find the slope of the computed solution at x = 3.
- (ii) Use ode45 with default tolerances to solve the initial value problem consisting of the ODE (*) and the initial conditions y(1) = 17, y'(1) = -40. Find the slope of the computed solution at x = 3. Save the slopes at x = 3 of the computed solutions from (i) and (ii) as a row vector in A21.dat.
- (b) Use the shooting method to find an approximate solution of the boundary value problem consisting of the ODE (*) and the boundary conditions (‡). Use ode45 with default tolerances for "time"-stepping, and use the information from part (a) together with the bisection method for root-finding. Stop iterating when the slope of the computed solution at x = 3 gets within 10^{-10} of the target value. Then save the number of iterations and the slope at the left boundary as a row vector in A22.dat, and save the y values of the computed solution at x = 1:0.02:3 as a column vector in A23.dat.

Problem 3

Download velocity.txt from the Homework section of the course webpage (the same file that was used in Homework #7). This file contains data on the velocity of an object (in meters per second) measured at a sequence of times (seconds). The first column lists the times and the second column the corresponding velocities.

Compute the approximate acceleration (rate of change of velocity) as a function of time. Do this in the following ways:

- (a) Apply a finite difference numerical differentiation scheme to the raw data. Use an $O(\Delta t^2)$ centered difference formula for the interior points, together with $O(\Delta t)$ forward and backward difference formulas for the boundary points. Save the results (a sequence of approximate accelerations at the data points) as a column vector in A31.dat.
- (b) Fit a clamped cubic spline interpolant through the data points, with slopes at the left and right endpoints set equal to the $O(\Delta t)$ forward and backward difference quotients at the boundary of the data set. Then evaluate the fitted curve at t=0:0.1:30 and apply a finite difference numerical differentiation scheme to this set of points.
 - (i) Use an $O(\Delta t^2)$ centered difference formula for the interior points, together with $O(\Delta t^2)$ forward and backward difference formulas at the boundaries. Save the results (a sequence of approximate accelerations at t=0:0.1:30) as a column vector in A32.dat.
 - (ii) Use an $O(\Delta t^4)$ centered difference formula for the interior points, together with $O(\Delta t^2)$ formulas at the boundaries—use forward and backward differences at t=0 and t=30, and centered differences at t=0.1 and t=29.9. Save the results (a sequence of approximate accelerations at t=0:0.1:30) as a column vector in A33.dat.