APMA 0160 (A.Yew) Spring 2011

Homework #1

Deadline: February 23 (Wednesday) 4:00am EST
Scorelator will begin accepting submissions from February 15 (Tuesday)

Problem 1

Geometrically, the act of computing a square root of a positive number A is the act of constructing
a square with area equal to A. Note that if a square has the same area A as a rectangle of length
L and width W, then the side-length v/A of the square must lie between L and W. Also, observe
that we can make any rectangle “more square” (while maintaining the same area) by replacing its
length L by the averaged value (L + W)/2 =: Lyey and replacing its width W by A/Lpew =: Whew-
This averaging process can be iterated to generate a sequence of rectangles that become more and
more square. The value of v/A will always be sandwiched between the length and the width of each
rectangle; so if we think of the sequence of rectangle lengths as converging to v/A, then the absolute
error of the approximation will be bounded by the difference of the length and width of each rectangle.

(a) Write a function new_sqrt that:
e takes as input a positive real number A followed by a tolerance level;
e starts with a rectangle of length A and width 1;

e generates sequences of lengths L and widths W of rectangles that are getting “more and more
square”, using the averaging process described above;

e continues until the absolute error is no more than the given tolerance;
e returns the sequence of L-values as an approximation to v/A.
(b) Write a script that calls new_sqrt to compute sequences that tend to

V10, V3141, V55555

with absolute error not exceeding 10~7.
Save the sequences as column vectors (i.e. vertical lists) in three ASCII files: A11.dat for /10, A12.dat

for v/3141 and A13.dat for v/55555.

Problem 2

The value of v/21 can be approximated by fixed-point iterations using the following maps:
. 1 21

(i) ¢1(x) = 1 (203} + 902>

3 —21
32

(i) ¢o(z) =2 —
(i) és(z) = 1/ =

X

Write Matlab code (scripts or a script that calls a function) to compute the sequence {x,,} generated by

<1077,

Tn

each of these iterated maps, starting with 1 = 1. For the stopping criterion, use |1 —
Tn—1
Save the sequences as column vectors (i.e. vertical lists) in three ASCII files: A21.dat for ¢, A22.dat

for ¢9 and A23.dat for ¢s.

(PLEASE TURN OVER)



Problem 3

The secant method for finding a root of f(x) = 0 is a modification of Newton’s method where the
flan) = flop—1)

Tk — Tk—1

derivative f’(zy) is replaced by the difference quotient . Thus, the recursive formula

for the secant method is

(T — Tk—1)
fxk)
flzr) = f(zr-1)
Note that, like for the Fibonacci sequence, to compute the next term in the sequence (zp11), we need
the term just computed (zy) and the preceding term (xy_1). Therefore, two initial guesses are needed
to get the process started.

Th+1 = Tk —

Write Matlab code that computes the sequence {xy} generated by the secant method to approximate:
(i) V10, starting with 21 = 3 and 29 =4

(ii) the solution of x3 + 422 — 10 = 0, starting with z; = 1 and x5 = 2

(iii) the solution of e* = tanx, starting with 1 = —4 and 9 = —2

For the stopping criterion, use |f(z})| < 10714,

Save your sequences as column vectors (i.e. vertical lists) in three ASCII files: A31.dat for part (i),
A32.dat for part (ii) and A33.dat for part (iii).

Note: If you use fprintf to save your output, make sure you format it with at least 8 digits after the
decimal point. You do not need to worry about specifying the format if you use the save command.



