
APMA0160 (A.Yew) Spring 2011

Curve fitting: piecewise polynomial interpolation (splines), part 2

The formulas

dk =
ck+1 − ck

3hk
(∗)

and

bk = gk −
(2ck + ck+1)

3
hk (†)

derived from conditions 2 , 3 and 4 for cubic spline interpolation were valid only for k = 1, . . . , n−2.
But note that the formulas for dn−1 and bn−1 that we derived from the boundary condition S′′n−1(xn) = 0

and equation Sn−1(xn) = yn from condition 1 are actually just (∗) and (†) with k = n − 1, provided
we take the undefined coefficient “cn” to be zero.

This suggests a simpler way of constructing the piecewise cubic interpolant S(x): pretend that there is
an nth spline with left endpoint at (xn, yn), whose formula is

Sn(x) = an + bn(x− xn) + cn(x− xn)2 + dn(x− xn)3

so that S′n(x) = bn + 2cn(x− xn) + 3dn(x− xn)2

S′′n(x) = 2cn + 6dn(x− xn)

Therefore an = yn, bn = S′(xn) and cn = 1
2S
′′(xn), i.e. the coefficients of Sn(x) encode the boundary

conditions at the right end of the data set.
This fake extra spline has to connect smoothly with Sn−1(x) at xn, so conditions 2 , 3 and 4 can be
extended to k = n− 1. Thus formulas (∗), (†) and also

bk + (ck + ck+1)hk = bk+1 (?)

are now valid for k = 1, . . . , n − 1. Therefore, upon substituting the expressions for bk and bk+1 from
(†) into (?), we get that

hkck + 2(hk + hk+1)ck+1 + hk+1ck+2 = 3(gk+1 − gk) holds for k = 1, . . . , n− 1.

We write the extended system as M̃c = rhs:

h1 2(h1 + h2) h2 0 · · · · · · · · · 0
0 h2 2(h2 + h3) h3 0 · · · · · · 0
0 0 h3 2(h3 + h4) h4 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0

0 0 0 · · · 0 hn−2 2(hn−2 + hn−1) hn−1





c1
c2
c3
c4
...
...

cn−2
cn−1
cn


=



3(g2 − g1)
3(g3 − g2)

...

...

...

3(gn−1 − gn−2)


where M̃ is an n× n matrix and rhs is a length-n column vector.
For “natural” boundary conditions, put 1 0 · · · 0 as the first row and 0 · · · 0 1 as the last row of M̃ ,
and put 0 as both the first and the last entry of rhs. This says that c1 = 0 (left boundary condition
S′′(x1) = 0) and cn = 0 (right boundary condition S′′(xn) = 0).



For “clamped” boundary conditions,

S′(x1) = γleft =⇒ b1 = γleft

and then (†) with k = 1 gives

b1 = g1 −
(2c1 + c2)

3
h1 = γleft

which can be rearranged to
2h1c1 + h1c2 = 3(g1 − γleft)

Similarly,
S′(xn) = γright =⇒ bn = γright

and (†) with k = n− 1 gives

bn−1 = gn−1 −
(2cn−1 + cn)

3
hn−1

So (?) with k = n− 1 becomes

bn−1 + (cn−1 + cn)hn−1 = bn

gn−1 −
(2cn−1 + cn)

3
hn−1 + (cn−1 + cn)hn−1 = γright

gn−1 +
(cn−1 + 2cn)

3
hn−1 = γright

which can be rearranged to
hn−1cn−1 + 2hn−1cn = 3(γright − gn−1)

Therefore, put 2h1 h1 0 · · · 0 as the first row and 0 · · · 0 hn−1 2hn−1 as the last row of M̃ , and put
3(g1 − γleft) as the first entry and 3(γright − gn−1) as the last entry of rhs.

When writing code to construct a spline interpolant for a data set of size n, it is simpler to tag on the
extra nth spline and then discard the coefficients an, bn etc. at the end.

We will test our code by constructing spline interpolants for the top portion of the following picture of
a duck in flight. A sequence of coordinates along the profile that we want to approximate is given in
ducktop.dat.

rII 0r-6-'8 L

rnfrF

.,,{yrrols e.rou Bur8uuqc
sr lr ueq,$ ueql ,{lprdur SurSuuqc sr e^rnc oql uoq,&\ pesn ore slurod eroru 13q1 ocrloN

'0I'g erffird ur u^\oqs ruels,,{s
elBurprooc pasodrurJedns eql o1 o^uelor slurod ulup IZ Jo solBurpJooc eql stsll gI.E elqeJ

,r*

r5ruoga1o("ta1u1 auy{g 4qng b.e


