Curve fitting: piecewise polynomial interpolation (splines), part 2

The formulas

$$d_k = \frac{c_{k+1} - c_k}{3h_k} \tag{*}$$

and

$$b_k = g_k - \frac{(2c_k + c_{k+1})}{3} h_k \tag{\dagger}$$

derived from conditions $\boxed{2}$, $\boxed{3}$ and $\boxed{4}$ for cubic spline interpolation were valid only for $k=1,\ldots,n-2$. But note that the formulas for d_{n-1} and b_{n-1} that we derived from the boundary condition $S''_{n-1}(x_n)=0$ and equation $S_{n-1}(x_n)=y_n$ from condition $\boxed{1}$ are actually just (*) and (\dagger) with k=n-1, provided we take the undefined coefficient " c_n " to be zero.

This suggests a simpler way of constructing the piecewise cubic interpolant S(x): pretend that there is an nth spline with left endpoint at (x_n, y_n) , whose formula is

$$S_n(x) = a_n + b_n(x - x_n) + c_n(x - x_n)^2 + d_n(x - x_n)^3$$
so that
$$S'_n(x) = b_n + 2c_n(x - x_n) + 3d_n(x - x_n)^2$$

$$S''_n(x) = 2c_n + 6d_n(x - x_n)$$

Therefore $a_n = y_n$, $b_n = S'(x_n)$ and $c_n = \frac{1}{2}S''(x_n)$, i.e. the coefficients of $S_n(x)$ encode the boundary conditions at the right end of the data set.

This fake extra spline has to connect smoothly with $S_{n-1}(x)$ at x_n , so conditions 2, 3 and 4 can be extended to k = n - 1. Thus formulas (*), (\dagger) and also

$$b_k + (c_k + c_{k+1})h_k = b_{k+1}$$
 (*)

are now valid for k = 1, ..., n - 1. Therefore, upon substituting the expressions for b_k and b_{k+1} from (\dagger) into (\star) , we get that

$$h_k c_k + 2(h_k + h_{k+1})c_{k+1} + h_{k+1}c_{k+2} = 3(g_{k+1} - g_k)$$
 holds for $k = 1, \dots, n-1$.

We write the extended system as $\widetilde{M}\mathbf{c} = \mathbf{rhs}$:

$$\begin{pmatrix} h_1 & 2(h_1 + h_2) & h_2 & 0 & \cdots & \cdots & 0 \\ 0 & h_2 & 2(h_2 + h_3) & h_3 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & h_3 & 2(h_3 + h_4) & h_4 & 0 & \cdots & 0 \\ \vdots & \vdots & & \ddots & & \vdots \\ \vdots & \vdots & & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \\ \vdots \\ \vdots \\ c_{n-2} \\ c_{n-1} \\ c_n \end{pmatrix} = \begin{pmatrix} 3(g_2 - g_1) \\ 3(g_3 - g_2) \\ \vdots \\ \vdots \\ c_{n-2} \\ c_{n-1} \\ c_n \end{pmatrix}$$

where \widetilde{M} is an $n \times n$ matrix and **rhs** is a length-n column vector.

For "natural" boundary conditions, put $1 \ 0 \cdots 0$ as the first row and $0 \cdots 0 \ 1$ as the last row of \widetilde{M} , and put 0 as both the first and the last entry of **rhs**. This says that $c_1 = 0$ (left boundary condition $S''(x_1) = 0$) and $c_n = 0$ (right boundary condition $S''(x_n) = 0$).

For "clamped" boundary conditions,

$$S'(x_1) = \gamma_{\text{left}} \implies b_1 = \gamma_{\text{left}}$$

and then (†) with k = 1 gives

$$b_1 = g_1 - \frac{(2c_1 + c_2)}{3}h_1 = \gamma_{\text{left}}$$

which can be rearranged to

$$2h_1c_1 + h_1c_2 = 3(g_1 - \gamma_{\text{left}})$$

Similarly,

$$S'(x_n) = \gamma_{\text{right}} \implies b_n = \gamma_{\text{right}}$$

and (†) with k = n - 1 gives

$$b_{n-1} = g_{n-1} - \frac{(2c_{n-1} + c_n)}{3}h_{n-1}$$

So (\star) with k = n - 1 becomes

$$b_{n-1} + (c_{n-1} + c_n)h_{n-1} = b_n$$

$$g_{n-1} - \frac{(2c_{n-1} + c_n)}{3}h_{n-1} + (c_{n-1} + c_n)h_{n-1} = \gamma_{\text{right}}$$

$$g_{n-1} + \frac{(c_{n-1} + 2c_n)}{3}h_{n-1} = \gamma_{\text{right}}$$

which can be rearranged to

$$h_{n-1}c_{n-1} + 2h_{n-1}c_n = 3(\gamma_{\text{right}} - g_{n-1})$$

Therefore, put $2h_1$ h_1 $0 \cdots 0$ as the first row and $0 \cdots 0$ h_{n-1} $2h_{n-1}$ as the last row of \widetilde{M} , and put $3(g_1 - \gamma_{\text{left}})$ as the first entry and $3(\gamma_{\text{right}} - g_{n-1})$ as the last entry of **rhs**.

When writing code to construct a spline interpolant for a data set of size n, it is simpler to tag on the extra nth spline and then discard the coefficients a_n, b_n etc. at the end.

We will test our code by constructing spline interpolants for the top portion of the following picture of a duck in flight. A sequence of coordinates along the profile that we want to approximate is given in ducktop.dat.

