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Curve fitting: piecewise polynomial interpolation (splines)

We have seen that, unless n is quite small, trying to make a polynomial go through all the data points

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)

can result in a very poor fit (i.e. the curve does a bad job of describing the trend in the data), even
though the fitting error is nominally zero. This is due to polynomial wiggle, also known as Runge’s
phenomenon.

To get around this problem, while still requiring that the fitted curve go through all data points, we
can instead fit a low-degree polynomial (called a spline) between each pair of consecutive data points.
In other words, the fitted curve will be defined piecewise on the subintervals

x1 ≤ x ≤ x2, x2 ≤ x ≤ x3 . . . xn−2 ≤ x ≤ xn−1, xn−1 ≤ x ≤ xn,

which means that it may have a different formula on each of the n − 1 subintervals. The data points
(xi, yi), where adjacent splines join up, are called “knots”.

The simplest piecewise fit is obtained by connecting each pair of consecutive data points with a straight
line, i.e. using a degree-1 polynomial on each subinterval. Indeed, this is what Matlab’s plot command
does by default with the arrays of x and y values that you give it. This piecewise linear fit is easy
to implement but has the drawback that there will usually be “corners” at the data points, i.e. the
gradients of adjacent line segments do not match, so the fitted “curve” is not smooth.

To get a smoother fit, we can use a quadratic or cubic polynomial on each subinterval (but generally
not a polynomial of degree higher than three, because then the wiggle problem will arise again, and the
extra coefficients would also make the calculations more complex).

Let S(x) be the piecewise polynomial fit composed of S1(x), S2(x), . . . , Sn−1(x), where Sk(x) denotes
the spline on the kth subinterval [xk, xk+1], for k = 1, 2, . . . , n− 1.
If each Sk(x) is a cubic polynomial, with four coefficients, then we have a total of 4(n− 1) coefficients
to determine. We impose the following conditions:

1 Sk(xk) = yk for k = 1, . . . , n− 1 and Sn−1(xn) = yn

(the fitted curve S(x) must go through all the data points: n conditions)

2 Sk(xk+1) = Sk+1(xk+1) for k = 1, . . . , n− 2
(adjacent splines join up at the interior knots: n− 2 conditions)

3 S′
k(xk+1) = S′

k+1(xk+1) for k = 1, . . . , n− 2
(the gradients of adjacent splines match at the interior knots: n− 2 conditions)

4 S′′
k (xk+1) = S′′

k+1(xk+1) for k = 1, . . . , n− 2
(the second derivatives of adjacent splines match at the interior knots: n− 2 conditions)

Conditions 3 and 4 are for ensuring smoothness of the fitted curve.
This makes a total of 4n− 6 conditions, whereas we have 4n− 4 unknown coefficients, so another two
conditions are needed. There are a variety of choices, with the most common being:

• zero second derivative at the endpoints: S′′(x1) = 0 and S′′(xn) = 0 (“natural” boundary)

• gradient specified at the endpoints: S′(x1) = γleft and S′(xn) = γright (“clamped” boundary)



• the third derivatives of adjacent splines match at the knots x2 and xn−1 (this is equivalent to using
a single cubic polynomial on the first two subintervals, x1 ≤ x ≤ x3, and a single cubic polynomial
on the last two subintervals, xn−2 ≤ x ≤ xn; so, in effect, x2 and xn−1 are not knots, and this is
called the “not-a-knot” condition)

For k = 1, . . . , n− 1, we can write each cubic polynomial Sk(x) in the form

Sk(x) = ak + bk(x− xk) + ck(x− xk)2 + dk(x− xk)3 for xk ≤ x ≤ xk+1,

and hence S′
k(x) =

S′′
k (x) =

Let hk = xk+1 − xk denote the successive “step sizes” in the x-direction from one knot to the next.

Condition 1 gives

Condition 2 gives

Condition 3 gives

Condition 4 gives

Note that all the “a”s have already been determined from 1 .
From the equation of 4 , we express the “d”s in terms of the “c”s:

dk =

Then 3 becomes

and 2 becomes

Solve for the “b”s in terms of the “a”s and “c”s:

bk =

Note that
ak+1 − ak

hk
=

yk+1 − yk

xk+1 − xk
is the gradient of the line segment joining the kth and the (k + 1)st

data points. Denote this gradient by gk, i.e. define gk =
ak+1 − ak

hk
=

yk+1 − yk

xk+1 − xk
.



Then we have

bk =

bk+1 =

Substitute these expressions into the equation from 3 :

Multiply through by 3 and bring all “c”s to the left-hand side and all “g”s to the right-hand side of the
equation:

Re-organise the left-hand side:

The index k can range from 1 to n− 3, so we have a system of n− 3 equations for the n− 1 unknown
“c”s. In matrix form Mc = β:

h1 2(h1 + h2) h2 0 · · · · · · · · · 0
0 h2 2(h2 + h3) h3 0 · · · · · · 0
0 0 h3 2(h3 + h4) h4 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0

0 0 0 · · · 0 hn−3 2(hn−3 + hn−2) hn−2





c1

c2

c3

c4
...
...

cn−3

cn−2

cn−1


=



3(g2 − g1)

3(g3 − g2)

...

...
3(gn−2 − gn−3)


M and β currently have only n− 3 rows. The extra two conditions that we need in order to determine
all n− 1 of the “c” coefficients go in the top and bottom rows.

Once the ck have been determined, we can then find the bk and dk using the formulas derived from
conditions 4 and 2 . Remember, however, that these formulas are valid only for k = 1, . . . , n − 2, so
how do we find bn−1 and dn−1?
We haven’t yet used the rightmost equation in condition 1 , Sn−1(xn) = yn. This gives

Now apply the extra boundary conditions. For “natural” boundary conditions,

S′′
n−1(xn) = 0 =⇒

and so the previous equation becomes


