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Curve fitting: polynomial interpolation

In least squares fitting, we try to fit a curve y = f(x) to a set of data points

(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)

by minimizing the 2-norm of the residual vector r, whose components are ri = yi− f(xi), i = 1, 2, . . . n.

We have seen that, quite often, by choosing a function form f(x) that contains more parameters (“degrees
of freedom”), it is possible to obtain a closer fit. So one might ask: is it possible to choose f(x) so that
the curve goes through all of the data points exactly, giving a fitting error of zero?

The answer should be “yes” if f(x) has the form of a polynomial: a polynomial of degree n − 1 has
n coefficients, and it depends linearly on each of these coefficients; so if we require f(xi) = yi for
i = 1, 2, . . . , n, we get n linear equations for the n unknown coefficients, and in general such a linear
system can be solved. In fact, for a polynomial
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or, in matrix form, Vα = β where
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
V is called a Vandermonde matrix.

It is also possible to write down an explicit formula for the polynomial that goes through all the data
points. The idea is to express f(x) as

f(x) = y1L1(x) + y2L2(x) + · · ·+ yn−1Ln−1(x) + ynLn(x) =

n∑
i=1

yiLi(x)

where each Li(x) is a polynomial of degree n− 1 with the property that

Li(xj) =

{
1 if j = i
0 if j 6= i

Lagrange’s formula for Li(x) is:

and then this f(x) is called the “Lagrange interpolating polynomial”.


