APMA 0160 (A. Yew) Spring 2011

Numerical differentiation: finite differences

The derivative of a function f at the point x is defined as the limit of a difference quotient:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In other words, the difference quotient $\frac{f(x+h)-f(x)}{h}$ is an approximation of the derivative $f^{\prime}(x)$, and this approximation gets better as h gets smaller.
How does the error of the approximation depend on h ?
Taylor's theorem with remainder gives the Taylor series expansion

$$
f(x+h)=f(x)+h f^{\prime}(x)+h^{2} \frac{f^{\prime \prime}(\xi)}{2!} \text { where } \xi \text { is some number between } x \text { and } x+h .
$$

Rearranging gives

$$
\frac{f(x+h)-f(x)}{h}-f^{\prime}(x)=h \frac{f^{\prime \prime}(\xi)}{2},
$$

which tells us that the error is proportional to h to the power 1 , so $\frac{f(x+h)-f(x)}{h}$ is said to be a "first-order" approximation.
If $h>0$, say $h=\Delta x$ where Δx is a finite (as opposed to infinitesimal) positive number, then

$$
\frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

is called the first-order or $O(\Delta x)$ forward difference approximation of $f^{\prime}(x)$. If $h<0$, say $h=-\Delta x$ where $\Delta x>0$, then

$$
\frac{f(x+h)-f(x)}{h}=\frac{f(x)-f(x-\Delta x)}{\Delta x}
$$

is called the first-order or $O(\Delta x)$ backward difference approximation of $f^{\prime}(x)$.
By combining different Taylor series expansions, we can obtain approximations of $f^{\prime}(x)$ of various orders. For instance, subtracting the two expansions

$$
\begin{array}{ll}
f(x+\Delta x)=f(x)+\Delta x f^{\prime}(x)+\Delta x^{2} \frac{f^{\prime \prime}(x)}{2!}+\Delta x^{3} \frac{f^{\prime \prime \prime}\left(\xi_{1}\right)}{3!}, & \\
\xi_{1} \in(x, x+\Delta x) \\
f(x-\Delta x)=f(x)-\Delta x f^{\prime}(x)+\Delta x^{2} \frac{f^{\prime \prime}(x)}{2!}-\Delta x^{3} \frac{f^{\prime \prime \prime}\left(\xi_{2}\right)}{3!}, &
\end{array} \xi_{2 \in(x-\Delta x, x)}
$$

gives $f(x+\Delta x)-f(x-\Delta x)=2 \Delta x f^{\prime}(x)+\Delta x^{3} \frac{\left(f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right)\right)}{6}$, so that

$$
\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}-f^{\prime}(x)=\Delta x^{2} \frac{\left(f^{\prime \prime \prime}\left(\xi_{1}\right)+f^{\prime \prime \prime}\left(\xi_{2}\right)\right)}{12}
$$

Hence $\frac{f(x+\Delta x)-f(x-\Delta x)}{2 \Delta x}$ is an approximation of $f^{\prime}(x)$ whose error is proportional to Δx^{2}. It is called the second-order or $O\left(\Delta x^{2}\right)$ centered difference approximation of $f^{\prime}(x)$.

If we use expansions with more terms, higher-order approximations can be derived, e.g. consider

$$
\begin{aligned}
& f(x+\Delta x)=f(x)+\Delta x f^{\prime}(x)+\Delta x^{2} \frac{f^{\prime \prime}(x)}{2!}+\Delta x^{3} \frac{f^{\prime \prime \prime}(x)}{3!}+\Delta x^{4} \frac{f^{(4)}(x)}{4!}+\Delta x^{5} \frac{f^{(5)}\left(\xi_{1}\right)}{5!} \\
& f(x-\Delta x)=f(x)-\Delta x f^{\prime}(x)+\Delta x^{2} \frac{f^{\prime \prime}(x)}{2!}-\Delta x^{3} \frac{f^{\prime \prime \prime}(x)}{3!}+\Delta x^{4} \frac{f^{(4)}(x)}{4!}-\Delta x^{5} \frac{f^{(5)}\left(\xi_{2}\right)}{5!} \\
& f(x+2 \Delta x)=f(x)+2 \Delta x f^{\prime}(x)+4 \Delta x^{2} \frac{f^{\prime \prime}(x)}{2!}+8 \Delta x^{3} \frac{f^{\prime \prime \prime}(x)}{3!}+16 \Delta x^{4} \frac{f^{(4)}(x)}{4!}+32 \Delta x^{5} \frac{f^{(5)}\left(\xi_{3}\right)}{5!} \\
& f(x-2 \Delta x)=f(x)-2 \Delta x f^{\prime}(x)+4 \Delta x^{2} \frac{f^{\prime \prime}(x)}{2!}-8 \Delta x^{3} \frac{f^{\prime \prime \prime}(x)}{3!}+16 \Delta x^{4} \frac{f^{(4)}(x)}{4!}-32 \Delta x^{5} \frac{f^{(5)}\left(\xi_{4}\right)}{5!}
\end{aligned}
$$

Taking $8 \times$ (first expansion - second expansion) - (third expansion - fourth expansion) cancels out the Δx^{2} and Δx^{3} terms; rearranging then yields a fourth-order centered difference approximation of $f^{\prime}(x)$.
Approximations of higher derivatives $f^{\prime \prime}(x), f^{\prime \prime \prime}(x), f^{(4)}(x)$ etc. can be obtained in a similar manner. For example, adding

$$
\begin{aligned}
& f(x+\Delta x)=f(x)+\Delta x f^{\prime}(x)+\Delta x^{2} \frac{f^{\prime \prime}(x)}{2!}+\Delta x^{3} \frac{f^{\prime \prime \prime}(x)}{3!}+\Delta x^{4} \frac{f^{(4)}\left(\xi_{1}\right)}{4!} \cdots \\
& f(x-\Delta x)=f(x)-\Delta x f^{\prime}(x)+\Delta x^{2} \frac{f^{\prime \prime}(x)}{2!}-\Delta x^{3} \frac{f^{\prime \prime \prime}(x)}{3!}+\Delta x^{4} \frac{f^{(4)}\left(\xi_{2}\right)}{4!} \cdots
\end{aligned}
$$

gives $f(x+\Delta x)+f(x-\Delta x)=2 f(x)+\Delta x^{2} f^{\prime \prime}(x)+\Delta x^{4} \frac{\left(f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{2}\right)\right)}{24}$, so that

$$
\frac{f(x+\Delta x)-2 f(x)+f(x-\Delta x)}{\Delta x^{2}}-f^{\prime \prime}(x)=\Delta x^{2} \frac{\left(f^{(4)}\left(\xi_{1}\right)+f^{(4)}\left(\xi_{2}\right)\right)}{24}
$$

Hence $\frac{f(x+\Delta x)-2 f(x)+f(x-\Delta x)}{\Delta x^{2}}$ is a second-order centered difference approximation of the second derivative $f^{\prime \prime}(x)$.

Here are some commonly used second- and fourth-order "finite difference" formulas for approximating first and second derivatives:
$O\left(\Delta x^{2}\right)$ centered difference approximations:
$f^{\prime}(x): \quad\{f(x+\Delta x)-f(x-\Delta x)\} /(2 \Delta x)$
$f^{\prime \prime}(x): \quad\{f(x+\Delta x)-2 f(x)+f(x-\Delta x)\} / \Delta x^{2}$
$O\left(\Delta x^{2}\right)$ forward difference approximations:

$$
\begin{aligned}
f^{\prime}(x): & \{-3 f(x)+4 f(x+\Delta x)-f(x+2 \Delta x)\} /(2 \Delta x) \\
f^{\prime \prime}(x): & \{2 f(x)-5 f(x+\Delta x)+4 f(x+2 \Delta x)-f(x+3 \Delta x)\} / \Delta x^{3}
\end{aligned}
$$

$O\left(\Delta x^{2}\right)$ backward difference approximations:

$$
\begin{aligned}
f^{\prime}(x): & \{3 f(x)-4 f(x-\Delta x)+f(x-2 \Delta x)\} /(2 \Delta x) \\
f^{\prime \prime}(x): & \{2 f(x)-5 f(x-\Delta x)+4 f(x-2 \Delta x)-f(x-3 \Delta x)\} / \Delta x^{3}
\end{aligned}
$$

$O\left(\Delta x^{4}\right)$ centered difference approximations:

$$
\begin{aligned}
f^{\prime}(x): & \quad\{-f(x+2 \Delta x)+8 f(x+\Delta x)-8 f(x-\Delta x)+f(x-2 \Delta x)\} /(12 \Delta x) \\
f^{\prime \prime}(x): & \quad\{-f(x+2 \Delta x)+16 f(x+\Delta x)-30 f(t)+16 f(x-\Delta x)-f(x-2 \Delta x)\} /\left(12 \Delta x^{2}\right)
\end{aligned}
$$

In science and engineering applications it is often the case that an exact formula for $f(x)$ is not known. We may only have a set of data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ available to describe the functional dependence $y=f(x)$. If we need to estimate the rate of change of y with respect to x in such a situation, we can use finite difference formulas to compute approximations of $f^{\prime}(x)$. It is appropriate to use a forward difference at the left endpoint $x=x_{1}$, a backward difference at the right endpoint $x=x_{n}$, and centered difference formulas for the interior points.

