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Stiff problems

Matlab’s workhorse ODE solver ode45 does a good job of computing approximate solutions for a wide
range of ODE systems. However, for certain problems it works very inefficiently. Matlab has several
ODE-solving functions (ode15s, ode23s, ode23t, ode23tb—all implicit methods) that are specially
designed to deal efficiently with these so-called “stiff” problems.

Examples

Simple model of flame growth
Suppose you light a match. This produces a ball of flame which grows rapidly until it reaches a certain
size; it then remains at this critical size as the amount of oxygen being consumed by combustion inside
the ball balances the amount available through the surface of the ball. A simplified scaled model of the
process is du

dt
= u2 − u3, u(0) = u0

where u represents the radius of the ball of flame relative to the critical radius. The u2 and u3 terms
come from the surface area and volume. We consider the solution of this problem over a length of time
inversely proportional to u0.

For u0 = 0.01, 0.001 and 0.0001, use ode45 with relative tolerance 10−4 to compute the solution from
t = 0 to t = 2/u0. What do you observe?
Try computing the solution with u0 = 0.0001 using ode23s and ode15s instead.

Gear’s example
The linear first-order scalar ODE u′(t) = λ

(
u − g(t)

)
+ g′(t) with initial condition u(0) = u0 has an

exact solution given by u(t) =
(
u0 − g(0)

)
eλt + g(t). Taking λ = −100 and g(t) = t, the ODE becomes

u′(t) = −100(u− t) + 1, and the exact solution is u(t) = u0 e
−100t + t. What do you expect the solution

for t > 0 to look like?
Use ode45 with default tolerances to compute the solution from t = 0 to t = 100, starting from the
initial condition u(0) = 1. How many time steps did the code use? What is the average step size?
Compute the solution using ode15s instead, and compare the number of steps and average step size.

Robertson’s chemical reaction model
Robertson proposed the following equations to model a certain reaction between three chemicals X,Y
and Z: dx

dt
= −0.04x+ 104yz

dy

dt
= 0.04x− 104yz − 3× 107 y2

dz

dt
= 3× 107 y2

The dependent variables x, y and z represent the concentrations of chemicals X,Y and Z.

Use ode45 with default tolerances to compute the solution from t = 0 to t = 3, starting from the initial
conditions x(0) = 1, y(0) = 0, z(0) = 0. Plot the graph of y(t). How many time steps did the code use?
What is the average step size?
Compute the solution using ode15s instead, and compare the number of steps and average step size.

From these examples it can be seen that stiff problems often arise when there are multiple time scales
in the physical process being modelled by the differential equation(s).



Detecting events

Sometimes we may need to determine the time(s) of occurrence of some special “event” in the solution
of an ODE system; often we would even want to terminate the computation once this event is detected.
For example, if you have an ODE system that models the trajectory of an object moving under the
influence of gravity, you would be interested in the time at which the object hits the ground, and you
would not want to keep computing the (spurious) solution after that time.
With the Matlab ODE solvers, you can turn on event detection by specifying

’Events’,@<function name> in options=odeset(...)

<function name> refers to a function that defines the event. It has three output arguments:

value is a formula whose zeros correspond to occurrences of the event

isterminal is set to 1 if you want the computation is to terminate at the first zero of value;
set it to 0 if you want the computation to continue until the end of tspan, detecting any further
zeros of value if they exist

direction specifies the direction of zero-crossing in order for a zero of value to be registered as an event:
direction=1 means that value must be increasing through zero; direction=-1 means that value
must be decreasing through zero; direction=0 allows for any type of zero

With event detection turned on, the output of the ODE solver will take the form [tout,uout,te,ue],
where te is an array of event times detected and ue contains the corresponding u-values.

Examples

A pursuit problem
Let R(t) describe the path taken by a rabbit running in a meadow. A fox chases the rabbit in such a way
that its velocity is directed along the vector from its current position to the position of the rabbit, with
magnitude being a constant times the speed of the rabbit. The path F(t) of the fox is then determined
by the ODE

d

dt
F(t) = k‖R′(t)‖2

R(t)− F(t)

‖R(t)− F(t)‖2
This is in fact a system of two ODEs, because each of F(t) and R(t) have two components.
Suppose that

R(t) =

(√
1 + t cos t√
1 + t sin t

)
and F(0) =

(
3
0

)
If k = 0.8, does the fox catch the rabbit? What about if k = 1.1?

Period of a periodic solution
Some ODE systems have periodic solutions, such that u(t+ p) = u(t) for some non-zero constant p and
all values of t. The minimal positive value of p is called the period. For the simple harmonic oscillator
mx′′+ kx = 0, we can solve the equation exactly and find that all nontrivial solutions are periodic with
period 2π√

k/m
. For nonlinear systems such as the predator–prey equations

dV

dt
= rV − a V P

dP

dt
= −sP + ba V P

the periods of periodic solutions are usually difficult or impossible to determine exactly, but they can
be estimated by using event detection with a Matlab ODE solver.


