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Numerical solution of ODEs: adaptive algorithms and Matlab’s ODE solvers

So far, all the programs we have written perform time-stepping with a fixed step size h. However, the
numerical methods implemented in modern software packages are mostly adaptive algorithms where, at
each step, h is adjusted based on an estimate of the error at that step.

The error estimation formulas that adaptive algorithms rely on are usually obtained by comparing
expressions for the error (derived from Taylor series expansions) associated with different methods.

For example, Matlab’s built-in Runge–Kutta solver ode23 uses an error estimator obtained by comparing
a second-order Runge–Kutta error formula with a third-order one (hence the “23” in the function name).
The method (see rk3bs.m) has three stages:
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Then, the approximate slope at the right endpoint is computed: s4 = f(tn + h, un+1), and the error
estimator is given by
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If en+1 is within the specified tolerance, then the step is considered successful, the value of un+1 is
accepted, and Matlab proceeds to the next step; if en+1 is not within the tolerance, then h is decreased
and the step is repeated.

To get a rough idea of how adaptive time-stepping algorithms are coded, look at ode23smp.m, which is a
simplified version of Matlab’s built-in ODE-solving function ode23. As with all adaptive codes, instead
of a step size h it takes a tolerance as input. Thus, ode23smp is called as follows:

[t,u]=ode23smp(f,tspan,u0,tol);

In fact, ode23smp takes a pair of tolerances as input: the absolute tolerance and the relative tolerance.
The default absolute tolerance is 10−6, and the default relative tolerance is 10−3. To enter tolerances
other than these, define tol=odeset(’RelTol’,...,’AbsTol’,...) before calling ode23smp.



Matlab’s ODE-solving functions

Matlab has a collection of built-in functions for approximating the solutions to ODEs; all are adaptive
algorithms. The most frequently used ones are the following:

ode23 explicit one-step three-stage Runge–Kutta method due to Bogacki and Shampine (error estimate
based on comparing 2nd-order and 3rd-order Runge–Kutta formulas)

ode45 explicit one-step four-stage Runge–Kutta method (error estimate based on comparing 4th-order
and 5th-order Runge–Kutta formulas); the “workhorse” ODE solver

ode113 explicit multistep predictor–corrector method that combines Adam–Bashforth and Adams–Moulton
algorithms

ode15s implicit multistep method for solving “stiff” problems

Each ODE-solving function takes input of the form (f,tspan,u0,options,...) where:

f is a function with at least two input arguments t,u which outputs a column vector of the same
length as u (f may also have additional input arguments that are parameters)

tspan is a row vector [t0 T] of initial and final times, or a row vector [t0:increment:T] of times
at which to record solution values (note: these are not the actual tn’s that Matlab uses for
time-stepping, which are determined adaptively based on the error estimate at each step)

u0 is a vector of initial values of u

options consists of optional arguments—such as absolute tolerance, relative tolerance, events—that should
be specified in a statement of the form options=odeset(’RelTol’,1e-4,’AbsTol’,1e-7,...)

(the default relative tolerance is 10−3, and the default absolute tolerance is 10−6)

There may be further input arguments after options, which are parameters of the ODE system.

The output of an ODE-solving function is of the form [tout,uout,...] where:

tout is a column vector of t-values at which the approximated solution value is recorded

uout is a matrix whose nth row contains the components of the computed solution corresponding to
the nth row of tout

There may be further output arguments if you want to locate special “events”.

If no output arguments are given, Matlab will plot the different solution components as functions
of time while the solution is being computed.


