
APMA 0160 (A. Yew) Spring 2011

Numerical solution of ordinary differential equations: multistep methods

Recall that by integrating both sides of the ODE u′(t) = f
(
t, u(t)

)
from t = tn to t = tn+1, we got

u(tn+1)− u(tn) =
∫ tn+1

tn

f
(
t, u(t)

)
dt

and used this to derive several numerical methods in the form of

un+1 = un +
{
approximation of area under the F (t) ≡ f

(
t, u(t)

)
curve between t = tn and t = tn+1

}
or

(†) un+1 = un +
∫ tn+h

tn

{approximation of the F (t) curve} dt︸ ︷︷ ︸
(?)

Approximating F (t) by a straight line gave the Euler, backward Euler, midpoint, trapezoidal and Heun
methods. Approximating F (t) by a parabola through the three points (tn, F (tn)), (tn + h

2 , F (tn + h
2 )),

(tn + h, F (tn + h)) and then integrating this quadratic interpolating polynomial (i.e. Simpson’s rule)
formed the basis of the 4-stage Runge–Kutta method.

So far, all the methods we have considered are one-step methods in that the computation of un+1

depends only on knowledge of the most recently computed point un and not on any of the points before
that (un−1, un−2 etc.).

Adams–Bashforth methods
Approximate F (t) ≡ f

(
t, u(t)

)
by a polynomial of degree k (with k+1 coefficients) fitted using the k+1

previously computed points, up to and including (tn, un); that is, the polynomial should go through the
points

(
tn, f(tn, un)

)(
tn−1, f(tn−1, un−1)

)
...(

tn−k, f(tn−k, un−k)
) or


(
tn, fn

)(
tn−1, fn−1

)
...(

tn−k, fn−k

) where we have used the shorthand fj ≡ f(tj , uj)

For example, using a degree-1 polynomial (straight line) At + B, we require{
Atn + B = fn

Atn−1 + B = fn−1

Solve these two simultaneous equations for A,B in terms of tn, tn−1, fn and fn−1, which are all already
known; then compute

∫ tn+h
tn

At + B dt and plug this in for (?) in the formula (†). This yields

un+1 = un +
1
2
h

(
3fn − fn−1

)
,

which is a 2-step method, because the computation of un+1 depends on knowledge of two previously
computed points, un and un−1.
By fitting a degree-2 (quadratic) polynomial we obtain a 3-step Adams–Bashforth method:

un+1 = un +
h

12
(
23fn − 16fn−1 + 5fn−2

)
By fitting a degree-3 (cubic) polynomial we obtain a 4-step Adams–Bashforth method:

un+1 = un +
h

24
(
55fn − 59fn−1 + 37fn−2 − 9fn−3

)



Adams–Moulton methods

Approximate F (t) ≡ f
(
t, u(t)

)
by a polynomial of degree k (with k + 1 coefficients) fitted using k

previously computed points and 1 future (unknown) point; that is, the polynomial should go through
the points 

(
tn+1, f(tn+1, un+1)

)(
tn, f(tn, un)

)(
tn−1, f(tn−1, un−1)

)
...(

tn−k, f(tn−k, un−k)
)

or



(
tn+1, fn+1

)(
tn, fn

)(
tn−1, fn−1

)
...(

tn−k+1, fn−k+1

)
For example, using a degree-1 polynomial At + B, we require{

Atn+1 + B = fn+1

Atn + B = fn

Solve these two simultaneous equations for A,B in terms of tn, tn+1, fn, which are already known, and
fn+1 ≡ f(tn+1, yn+1), which is not known; then compute

∫ tn+h
tn

At + B dt and plug this in for (?) in the
formula (†) to get

un+1 = un +
1
2
h

(
fn + fn+1

)
, where fn+1 = f(tn + h, un+1),

which is actually a one-step method.
By fitting a degree-2 (quadratic) polynomial we obtain a 2-step Adams–Moulton method:

un+1 = un +
h

12
(
5fn+1 + 8fn − fn−1

)
By fitting a degree-3 (cubic) polynomial we obtain a 3-step Adams–Moulton method:

un+1 = un +
h

24
(
9fn+1 + 19fn − 5fn−1 + fn−2

)
Note that the usage of one future (unknown) point to fit the polynomial will always result in a un+1 on
the right-hand side of the formula; so Adams–Moulton methods are all implicit methods.

Adams predictor–corrector methods

In the same way as we converted the implicit Crank–Nicolson (trapezoidal) method into an explicit
predictor–corrector method, namely the Heun method, we can convert an Adams–Moulton method into
an explicit predictor–corrector method by replacing the “un+1” in the right-hand side of the formula by
an approximation that comes from an explicit method.
For instance, we can use an Adams–Bashforth method as the “predictor” to make an “intermediate”
approximation of un+1, and then substitute this intermediate approximation for “un+1” in the right-hand
side of an Adams–Moulton formula (“corrector”).

Initializing multistep methods

With multistep methods, such as most of the Adams methods above, to compute un+1 we need informa-
tion about more than just one previously computed value. Therefore, to initialize a multistep algorithm,
we also need more than just the initial condition (t0, u0).
Usually, we compute a few points in addition to the initial u0 by using a one-step method, and use these
points to get the multistep method started. For example, with a 3-step method we need to compute
two points in addition to u0 before entering the main time-stepping loop.
Note that which one-step method you choose to start off from can affect the overall order of the algorithm.


