### Numerical solution of ODEs: multistage and predictor-corrector methods

Continuing with the idea of approximating the integral on the right-hand side of

$$u_{n+1} \approx u_n + \int_{t_n}^{t_{n+1}} f(t, u(t)) dt,$$

we can derive some further methods for computing approximate solution values  $u_n \approx u(t_n)$  of

$$\frac{du}{dt} = f(t, u)$$

at a sequence of t-values  $t_0, t_1, t_2, \ldots, t_N$ , given that  $u(t_0) = u_0$ .

### Midpoint method

If we approximate the integral  $\int_{t_n}^{t_{n+1}} f(t, u(t)) dt$  by the *midpoint* rule, we get

$$u_{n+1} = u_n + h f\left(t_n + \frac{h}{2}, u(t_n + \frac{h}{2})\right)$$

Unfortunately, the  $u(t_n + \frac{h}{2})$  on the right-hand side is unknown, and since it does not also appear on the left-hand side, we cannot obtain either  $u(t_n + \frac{h}{2})$  or  $u_{n+1}$  by solving an equation as in the backward Euler or Crank–Nicolson cases.

To get around this problem, we approximate  $u(t_n + \frac{h}{2})$  with Euler's method, taking just a "half step"  $\frac{h}{2}$  from  $t_n$ :  $u(t_n + \frac{h}{2}) \approx u_n + \frac{h}{2} f(t_n, u_n)$ 

Substituting this approximation into the previous formula gives the midpoint method, also called the "modified Euler" method:

$$u_{n+1} = u_n + h f\left(t_n + \frac{h}{2}, u_n + \frac{h}{2} f(t_n, u_n)\right)$$

Note that this is an explicit method. It is also a so-called "two-stage" method because the algorithm involves computing two "slopes", with the first being fed into the second one:

$$s_1 = f(t_n, u_n)$$
 and  $s_2 = f(t_n + \frac{h}{2}, u_n + \frac{h}{2}s_1).$ 

#### Improved Euler (Heun) method

The Crank-Nicolson (trapezoidal) method

$$u_{n+1} = u_n + \frac{h}{2} \left[ f(t_n, u_n) + f(t_n + h, u_{n+1}) \right]$$

is implicit because the unknown  $u_{n+1}$  appears on both sides of the formula, but we can convert it to an explicit method if we replace the  $u_{n+1}$  in the right-hand side by its approximation obtained from Euler's method, namely  $u_n + h f(t_n, u_n)$ . The formula then becomes

$$u_{n+1} = u_n + \frac{h}{2} \left[ f(t_n, u_n) + f(t_n + h, u_n + hf(t_n, u_n)) \right],$$

which is known as the "improved Euler" or Heun's method. This method again has two stages:

$$s_1=f(t_n,\,u_n)$$
 
$$s_2=f\big(t_n+h,\,u_n+h\,s_1\big)$$
 and then 
$$u_{n+1}=u_n+\frac{h}{2}\left[s_1+s_2\right]$$

Heun's method is the simplest example of a **predictor**—**corrector method**, where an approximation generated by an *explicit* method (Euler's in this case), called the "predictor", replaces the unknown  $u_{n+1}$  in the right-hand side of an *implicit* formula (Crank–Nicolson method in this case), called the "corrector". The formula that results from such a substitution is explicit.

# Four-stage Runge-Kutta method

Write F(t) = f(t, u(t)). Approximating the integral  $\int_{t_n}^{t_{n+1}} F(t) dt$  by Simpson's rule gives

$$\int_{t_n}^{t_{n+1}} F(t) dt \approx \frac{1}{3} \cdot \frac{(t_{n+1} - t_n)}{2} \Big[ F(t_n) + 4 F\Big(\frac{t_n + t_{n+1}}{2}\Big) + F(t_{n+1}) \Big]$$

$$= \frac{h}{6} \left[ F(t_n) + 4 F\Big(t_n + \frac{h}{2}\Big) + F(t_n + h) \right]$$

Then, approximate  $F(t_n) = f(t_n, u(t_n))$  by  $f(t_n, u_n) \equiv s_1$ .

Split the middle term  $4F\left(t_n+\frac{h}{2}\right)$  into  $2F\left(t_n+\frac{h}{2}\right)+2F\left(t_n+\frac{h}{2}\right)$ ;

approximate the first two  $F(t_n + \frac{h}{2}) = f(t_n + \frac{h}{2}, u(t_n + \frac{h}{2}))$  by  $f(t_n + \frac{h}{2}, u_n + \frac{h}{2}s_1) \equiv s_2$ ; approximate the second two  $F(t_n + \frac{h}{2}) = f(t_n + \frac{h}{2}, u(t_n + \frac{h}{2}))$  by  $f(t_n + \frac{h}{2}, u_n + \frac{h}{2}s_2) \equiv s_3$ .

Finally, approximate  $F(t_n + h) = f(t_n + h, u(t_n + h))$  by  $f(t_n + h, u_n + h s_3) \equiv s_4$ .

The formula for the method is then

$$u_{n+1} = u_n + \frac{h}{6} \left[ s_1 + 2s_2 + 2s_3 + s_4 \right]$$

# General Runge-Kutta methods

A general Runge–Kutta method with k stages is characterized by a set of parameters  $\alpha_i$ ,  $\beta_{ij}$  and  $\gamma_i$  for i = 1, 2, ..., k. The ith stage computes a slope  $s_i$  by evaluating f at a value of t in  $[t_n, t_{n+1}]$  and a value of u obtained by adding to  $u_n$  a linear combination of the previously computed slopes:

$$s_i = f\left(t_n + \alpha_i h, \ u_n + h \sum_{j=1}^{i-1} \beta_{ij} s_j\right)$$

The next approximate solution value  $u_{n+1}$  is also computed by adding to  $u_n$  a linear combination of slopes:

 $u_{n+1} = u_n + h \sum_{i=1}^{\kappa} \gamma_i s_i$ 

Euler's method uses just one slope and overestimates or underestimates the true solution (depending on whether the solution curve is concave down or up); we can think of Runge–Kutta methods as attempts to improve upon Euler's method by calculating several "adjusted" slopes and then taking a weighted average of them.

The parameters defining a Runge–Kutta method are often presented in a "Butcher tableau"

$$\begin{array}{c|cccc} \alpha_1 & & & & \\ \alpha_2 & \beta_{21} & & & \\ \alpha_3 & \beta_{31} & \beta_{32} & & \\ \vdots & \vdots & & \ddots & \\ \alpha_k & \beta_{k1} & \cdots & \beta_{k,k-1} \\ \hline & \gamma_1 & \cdots & \gamma_k \end{array}$$

For example, the 4-stage method above is

and there are 3-stage methods given by

The midpoint and Heun methods are both 2-stage Runge–Kutta methods.