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Numerical solution of ordinary differential equations

Differential equations—equations that relate one or more functions and their derivatives—frequently
arise as models of physical processes (because derivatives measure rates of change). However, most
problems originating from the study of real-world phenomena cannot be solved exactly, with the
solution expressed in terms of elementary functions. Therefore, obtaining approximate solutions to
differential equations is a very important area of scientific computing.

If a differential equation involves only one independent variable, it is an ordinary differential equation
(ODE); if there are two or more independent variables, it is a partial differential equation (PDE).
We will begin by considering the problem of approximating the solution u(t) to an ODE

du

dt
= f(t, u), given that u(t0) = u0

where t0 and u0 are fixed values. The techniques developed will also be useful for obtaining numerical
solutions to PDEs.

Time-stepping
We will call the independent variable t and think of it as “time”. The basic idea is to choose a sequence
of t-values t0, t1, t2, . . . , tN

and “step” from one to the next, computing the approximate value of u at each successive tn.
We will use un to denote the approximate value of u(tn), for n = 1, 2, . . . , N .
Supposing that we have already computed un ≈ u(tn), the aim is to derive formulas/algorithms for
obtaining un+1 ≈ u(tn+1).

The formulas to be discussed will be interpreted in one or both of the following ways:

• The ODE
du

dt
= f

(
t, u(t)

)
says that the slope of the solution curve u(t) at any point t is given

by f(t, u); values of f are slopes in the (t, u) plane.

• By the fundamental theorem of calculus,

∫ tn+1

tn

u′(t) dt = u(tn+1) − u(tn), so integrating both

sides of the ODE u′(t) = f
(
t, u(t)

)
from t = tn to t = tn+1 gives

u(tn+1) − u(tn) =

∫ tn+1

tn

f
(
t, u(t)

)
dt

and hence

un+1 ≈ un +

∫ tn+1

tn

f
(
t, u(t)

)
dt

The integral on the right-hand side is the area bounded by the f
(
t, u(t)

)
curve and the t-axis

between t = tn and t = tn+1.

Systems
Although we shall derive the numerical methods by thinking of scalar first-order ODEs, i.e. ODEs
having just one dependent variable and containing only first-order derivatives, the algorithms will also
be applicable to ODE systems with more than one dependent variable. In particular, higher-order
ODEs can always be rewritten as systems and then solved numerically using the same algorithms.



Examples
The simple harmonic oscillator (spring–mass system with no damping) is described by the second-order
ODE mx′′ + kx = 0 where ′ denotes differentiation with respect to time t.

The two-body problem describes the orbit of one body under the gravitational attraction of another,
much heavier, body. The scaled equations of motion are

x′′ +
x

r3
= 0, y′′ +

y

r3
= 0, where r =

√
x2 + y2

Euler’s method

If we approximate the integral

∫ tn+1

tn

f
(
t, u(t)

)
dt by the area of the left-hand rectangle, we get Euler’s

method. The height of the left-hand rectangle is f
(
tn, u(tn)

)
, which we approximate by f

(
tn, un

)
, and

its width is tn+1 − tn, usually denoted by h. Therefore the formula for Euler’s method is

un+1 = un + h f(tn, un)

This is the simplest example of an explicit method, where the “next” approximation un+1 is given
explicitly in terms of values that are already known, namely tn and the previously computed un.

From the “slope” viewpoint, Euler’s method can be interpreted as approximating the solution curve
u(t) between t = tn and t = tn+1 by the tangent line at tn, i.e. we advance from tn to tn+1 by following
the slope at tn, which is given by f

(
tn, u(tn)

)
≈ f(tn, un).

Backward Euler method

If we approximate the integral

∫ tn+1

tn

f
(
t, u(t)

)
dt by the area of the right-hand rectangle, we get

the backward Euler method. The height of the right-hand rectangle is f
(
tn+1, u(tn+1)

)
, which we

approximate by f
(
tn + h, un+1

)
, and its width is h. Therefore the formula for the backward Euler

method is
un+1 = un + h f(tn + h, un+1)

This is the simplest example of an implicit method, because the quantity that we want to find,
namely un+1, appears on both sides of the formula. To obtain the value of un+1, we need to solve the
above equation. Because of this extra equation-solving step, implicit methods generally require more
computational effort and are much slower.

Crank–Nicolson method

If we approximate the integral

∫ tn+1

tn

f
(
t, u(t)

)
dt by the trapezoidal rule, and then substitute the

approximations u(tn) ≈ un and u(tn+1) ≈ un+1, we get the Crank–Nicolson formula

un+1 = un +
h

2

[
f(tn, un) + f(tn + h, un+1)

]
This is also an implicit method that requires us to solve the equation for un+1.


