APMA 0160 (A. Yew) Spring 2011

Numerical solution of ordinary differential equations

Differential equations-equations that relate one or more functions and their derivatives-frequently arise as models of physical processes (because derivatives measure rates of change). However, most problems originating from the study of real-world phenomena cannot be solved exactly, with the solution expressed in terms of elementary functions. Therefore, obtaining approximate solutions to differential equations is a very important area of scientific computing.

If a differential equation involves only one independent variable, it is an ordinary differential equation (ODE); if there are two or more independent variables, it is a partial differential equation (PDE). We will begin by considering the problem of approximating the solution $u(t)$ to an ODE

$$
\frac{d u}{d t}=f(t, u), \quad \text { given that } u\left(t_{0}\right)=u_{0}
$$

where t_{0} and u_{0} are fixed values. The techniques developed will also be useful for obtaining numerical solutions to PDEs.

Time-stepping

We will call the independent variable t and think of it as "time". The basic idea is to choose a sequence of t-values

$$
t_{0}, t_{1}, t_{2}, \ldots, t_{N}
$$

and "step" from one to the next, computing the approximate value of u at each successive t_{n}.
We will use u_{n} to denote the approximate value of $u\left(t_{n}\right)$, for $n=1,2, \ldots, N$.
Supposing that we have already computed $u_{n} \approx u\left(t_{n}\right)$, the aim is to derive formulas/algorithms for obtaining $u_{n+1} \approx u\left(t_{n+1}\right)$.
The formulas to be discussed will be interpreted in one or both of the following ways:

- The ODE $\frac{d u}{d t}=f(t, u(t))$ says that the slope of the solution curve $u(t)$ at any point t is given by $f(t, u)$; values of f are slopes in the (t, u) plane.
- By the fundamental theorem of calculus, $\int_{t_{n}}^{t_{n+1}} u^{\prime}(t) d t=u\left(t_{n+1}\right)-u\left(t_{n}\right)$, so integrating both sides of the ODE $u^{\prime}(t)=f(t, u(t))$ from $t=t_{n}$ to $t=t_{n+1}$ gives

$$
u\left(t_{n+1}\right)-u\left(t_{n}\right)=\int_{t_{n}}^{t_{n+1}} f(t, u(t)) d t
$$

and hence

$$
u_{n+1} \approx u_{n}+\int_{t_{n}}^{t_{n+1}} f(t, u(t)) d t
$$

The integral on the right-hand side is the area bounded by the $f(t, u(t))$ curve and the t-axis between $t=t_{n}$ and $t=t_{n+1}$.

Systems

Although we shall derive the numerical methods by thinking of scalar first-order ODEs, i.e. ODEs having just one dependent variable and containing only first-order derivatives, the algorithms will also be applicable to ODE systems with more than one dependent variable. In particular, higher-order ODEs can always be rewritten as systems and then solved numerically using the same algorithms.

ExAMPLES

The simple harmonic oscillator (spring-mass system with no damping) is described by the second-order ODE $m x^{\prime \prime}+k x=0$ where ' denotes differentiation with respect to time t.

The two-body problem describes the orbit of one body under the gravitational attraction of another, much heavier, body. The scaled equations of motion are

$$
x^{\prime \prime}+\frac{x}{r^{3}}=0, \quad y^{\prime \prime}+\frac{y}{r^{3}}=0, \quad \text { where } r=\sqrt{x^{2}+y^{2}}
$$

Euler's method

If we approximate the integral $\int_{t_{n}}^{t_{n+1}} f(t, u(t)) d t$ by the area of the left-hand rectangle, we get Euler's method. The height of the left-hand rectangle is $f\left(t_{n}, u\left(t_{n}\right)\right)$, which we approximate by $f\left(t_{n}, u_{n}\right)$, and its width is $t_{n+1}-t_{n}$, usually denoted by h. Therefore the formula for Euler's method is

$$
u_{n+1}=u_{n}+h f\left(t_{n}, u_{n}\right)
$$

This is the simplest example of an explicit method, where the "next" approximation u_{n+1} is given explicitly in terms of values that are already known, namely t_{n} and the previously computed u_{n}.
From the "slope" viewpoint, Euler's method can be interpreted as approximating the solution curve $u(t)$ between $t=t_{n}$ and $t=t_{n+1}$ by the tangent line at t_{n}, i.e. we advance from t_{n} to t_{n+1} by following the slope at t_{n}, which is given by $f\left(t_{n}, u\left(t_{n}\right)\right) \approx f\left(t_{n}, u_{n}\right)$.

Backward Euler method

If we approximate the integral $\int_{t_{n}}^{t_{n+1}} f(t, u(t)) d t$ by the area of the right-hand rectangle, we get the backward Euler method. The height of the right-hand rectangle is $f\left(t_{n+1}, u\left(t_{n+1}\right)\right)$, which we approximate by $f\left(t_{n}+h, u_{n+1}\right)$, and its width is h. Therefore the formula for the backward Euler method is

$$
u_{n+1}=u_{n}+h f\left(t_{n}+h, u_{n+1}\right)
$$

This is the simplest example of an implicit method, because the quantity that we want to find, namely u_{n+1}, appears on both sides of the formula. To obtain the value of u_{n+1}, we need to solve the above equation. Because of this extra equation-solving step, implicit methods generally require more computational effort and are much slower.

Crank-Nicolson method

If we approximate the integral $\int_{t_{n}}^{t_{n+1}} f(t, u(t)) d t$ by the trapezoidal rule, and then substitute the approximations $u\left(t_{n}\right) \approx u_{n}$ and $u\left(t_{n+1}\right) \approx u_{n+1}$, we get the Crank-Nicolson formula

$$
u_{n+1}=u_{n}+\frac{h}{2}\left[f\left(t_{n}, u_{n}\right)+f\left(t_{n}+h, u_{n+1}\right)\right]
$$

This is also an implicit method that requires us to solve the equation for u_{n+1}.

