Iterated maps

Consider a sequence defined by a recursion relation of the form

$$x_{k+1} = \phi(x_k)$$
, where x_0 is given.

In this context, the function ϕ is usually referred to as a "map". We have

$$x_1 = \phi(x_0),$$

 $x_2 = \phi(x_1) = \phi(\phi(x_0)),$
 $x_3 = \phi(x_2) = \phi(\phi(x_1)) = \phi(\phi(\phi(x_0))),$

and so on. So we can think of x_n as the result of applying the map ϕ repeatedly for n times. In other words, the sequence is generated from an "iterated map".

Example

The logistic equation

$$x_{k+1} = rx_k(1 - x_k)$$
 with $r > 0$

was originally proposed as a model of population growth. Here the map is $\phi(x) = rx(1-x)$. Starting with $x_1 = 0.5$, take r to be each of the values

and iterate the map to generate the sequence $x_1, x_2, x_3, \ldots, x_{50}$; then plot the sequence. Put the six sequences (one for each r-value) into a 6×50 matrix, and save it as an ASCII data file.

Fixed points

A fixed point of a map ϕ is a number p for which $\phi(p) = p$.

Geometrically, a fixed point is an intersection of the graph of $y = \phi(x)$ with the line y = x.

If a sequence generated by the relation $x_{k+1} = \phi(x_k)$ converges, then its limit must be a fixed point of ϕ .

THEOREM

- (a) Suppose ϕ is continuous on [a,b] and that $a \leq \phi(x) \leq b$ for all $x \in [a,b]$ (i.e. the range of ϕ is contained in its domain). Then ϕ has a fixed point in [a,b].
- (b) If, in addition, ϕ is differentiable on (a,b) and there exists a positive constant L<1 such that

$$|\phi'(x)| \le L$$
 for all $x \in (a, b)$,

then the fixed point p is unique and the sequence generated by $x_{k+1} = \phi(x_k)$ converges to p for any choice of the initial point x_0 in [a, b].