APMA 0160 (A.Yew) Spring 2011

Solving linear systems: iterative methods

Recall that one of the ways to find a solution of a scalar equation f(z) = 0 was to rewrite the equation
in the form of a fixed point equation z = ¢(x). Then we iterate the map ¢, i.e. use the recursive formula

Tpr1 = O(xg) with an initial guess xg,

to generate a sequence 1, 9,3, ... that, under certain conditions, converges to a fixed point x* of ¢,
which will be a solution of the original equation f(z) = 0.

In a similar manner, we can use an iterated matrix formula to generate a sequence of vectors

<D 5@ @

3 5 P

to approximate the solution of a linear system Ax = b.

Note that it is customary to reserve subscripts for denoting the components of a vector (e.g. z; denotes
the ith component of the vector x), so the iterate number (i.e. the index of the sequence) is usually
written as a superscript within parentheses.

To derive a recursive formula from Ax = b, we try to rewrite it in the form
Px=Qx+b

so that x appears on both sides of the equation (in other words, split A into a difference of two matrices
P and Q). Then, we iterate the formula

(%) Px) = Qx®) 4+ b

and hope that it generates a sequence which converges to the solution x* of Ax = b.
Depending on the choice of P and @, it is sometimes straightforward to write (x) more explicitly as

xFD = px®) 4 ¢,

which makes it easier to perform the iterations. M is called the “iteration matrix”.

The simplest iterative method is the Jacobi iteration scheme.
For example, consider the linear system

Tx1+ 220 —3x3 +x4 = —1 7 2 -3 1 -1

—4x1 4+ 8x9 + x3 — 224 = 16 —4 8 1 -2 16
h A= =

321 — 229 + Ozg + 214 =—3 o0 5 —2 9 2| P73

r1—To+x3+4x4 =5 1 -1 1 4 5

We rewrite each equation by moving all the off-diagonal terms to the right-hand side:

7.%'1 =—-1- (21‘2 — 31‘3 + a;4)
8xry = 16 — (—4.%'1 + x3 — 21’4)
9r3 = -3 — (31‘1 — 2x9 + 2$4)

4x4:5—(x1—x2+x3)

The recursive formula is then

k k k
:L,(k‘H) _ (()_31.() EL))_l
(k+1) (k o (k) weny (4?2l — 22y 16
8y —(—4azy —2x,") + 16 T = 2 + <
or
S R ey~ 2 2 3
5 —
) (B g0 4 g 9 9
4y — (] r3')+5 o B N B NP
Ly - 4 + Z

Here P is a diagonal matrix whose elements are just the diagonal entries a;; of A, and @ is a matrix
with zeros along the diagonal and whose other terms are negative the corresponding terms in A (i.e.
—a;;). In this case, it is easy to see that the iteration matrix M is just @) with each term divided by
the diagonal element of A in that row (i.e. —a;;/a;).

We shall write Matlab code to perform Jacobi iterations and test it on this system.

What happens if we switch the first two equations around (i.e. interchange row 1 and row 2 of A)?

Under what conditions does an iterative method converge?

THEOREM An iterative method with iteration matrix M converges if and only if all the eigenvalues of
M have magnitude strictly less than 1.

DEFINITION The matrix A is said to be strictly diagonal dominant by row if, in each row, the magnitude
of the diagonal term is strictly greater than the sum of the magnitudes of the off-diagonal terms:

|a“\>2|a”| fori=1,...,n.
J#l

THEOREM If A is strictly diagonal dominant by row, then the Jacobi iteration scheme converges to the
solution of Ax = b.

An important enhancement of the Jacobi scheme is the Gauss—Seidel iteration scheme. For the
example above, the Gauss—Seidel formula is

7m§k+1 —(2zy — 3m(k) + xik)) -1
ngkﬂ —(- 4$1k+1) + xé) 2x51k)) + 16
02+ — (3 (1) _ 9 0 | 9 () 5
4%(11@“ ((k+1) n (k+1)) 45

In other words, we update the components of x one by one, starting with x1, and use the updated value
of x1 to compute the new x9, then use the updated values of x1 and x5 to compute the new x3, and so
on. If we move the “new” (k + 1)th iterates back to the left-hand side, the system looks like

7x§k+1) = —(2x§k) — 3x§k) + a:flk)) -1

—4mgk+1) + 8x§k+1) = —(l’ék) — Qmik)) + 16
32D _ gg D) g (D) _ (9,0 _ g

2D _ k) +x§k+1) + 4zt —p

So P is a lower triangular matrix tril (A) while @ is upper triangular with zeros along the diagonal.

Measuring magnitude, distance and error for vectors

For two- or three-dimensional vectors, the most common way of measuring magnitude is based on the
Pythagorean theorem:

ifu= < z) € R2, then the magnitude of u is \/22 + y2

x
ifv=| y | €R3 then the magnitude of v is \/a2 + 32 + 22
z

We can generalize this to n-dimensional vectors:

I
- T2 n - - 2, 2 2
it x =) € R", then the magnitude of x is \/:E1+x2+---+:n3
In
This measure of magnitude is called the “Euclidean norm”, denoted by || - ||2, so

n 1/2
1|2 = (Z w?)
i=1

There are many other “norms” (ways of measuring magnitude).
For each p=1,2,3,...,00, the “p-norm” of x in R™ or C" is defined as

n 1/1’
Ixllp = (Z ymm’)
i=1

Important special cases are:
e p=1: [x|l1 => 7", |z;| (the “grid” norm)
e p=2: |x]2 =+/> iy |zi|* (the “Euclidean” norm)

e p =00 [X|loc =maxj—12, n|zi| (the “max” norm—picks out the maximum absolute value of
the vector’s components)

Different norms may be suitable for different applications, but the 1-norm, 2-norm and oco-norm are
the most frequently used. They are accessed in Matlab using norm(x,1), norm(x) and norm(x,inf),
respectively (the default is the 2-norm).

The distance between two vectors v and w is ||[v — w||, i.e. the norm of the difference of the vectors.

Recall the various stopping criteria that we used for iteratively generated (scalar) sequences; these all
have vector analogues, where the absolute values are replaced by norms. For instance:

||X(k) - X(k_l)H < tolerance

|x®) — x(E=1)||
[x®)

Ir]| = |Ib — Ax®)|| < tolerance

< tolerance

The vector r := b — Ax(¥) is called the “residual” (we expect it to be the zero vector if x() is equal to
the exact solution).

