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Iterated matrices and eigenvectors

We have looked at a couple of examples of sequences generated by iterated transition matrices:

xk+1 = Mxk, where the initial state vector x0 is given.

Instead of writing a loop to perform the repeated matrix multiplications, we could use matrix powers
to calculate the iterates:

x1 = Mx0,

x2 = Mx1 = MMx0 = M2x0,

x3 = Mx2 = MM2x0 = M3x0,

and so on. Thus, xn = Mnx0.

If the sequence of vectors {xk} converges (i.e. all of the entries settle down), then the limit must be a
vector x∗ that satisfies

x∗ = Mx∗

Eigenvalues and eigenvectors
Suppose that A is a square (n× n) matrix. If there is a non-zero vector v of length n such that

Av = λv

for some scalar (constant) λ, then we say that v is an eigenvector of A corresponding to the eigenvalue
λ. An eigenvalue can be a real or complex number, or zero. An eigenvector may also have real, complex
or zero entries, but it cannot have all its entries equal to zero.
Geometrically, the relation Av = λv means that multiplying v by the matrix A results in a vector
that is in the same direction as v, with magnitude scaled by λ.
Note that if v is an eigenvector of A corresponding to eigenvalue λ, then so is any non-zero constant
multiple of v, because A(cv) = cAv = cλv = λ(cv).

Eigenvalues and eigenvectors come up in a huge number of application-oriented problems.
For instance, the behavior of solutions of systems of linear differential equations

dy
dt

= Ay

or sequences generated by iterated matrices

xk+1 = Axk

is determined by eigenvalues and eigenvectors of the matrix A.

In particular, if a sequence {xk} generated by iterating a transition matrix M converges, then the
limit must be an eigenvector of M corresponding to the eigenvalue 1.



Example 1
Recall the Fibonacci numbers f0, f1, f2, . . . defined via the recursion relation

fn+1 = fn + fn−1 for n = 1, 2, 3, . . .

with f0 = 1 and f1 = 1. As n → ∞, the ratios rn =
fn

fn−1
converge to a limit, which is the so-

called “golden ratio”
1 +

√
5

2
. This limiting ratio can be found from an eigenvalue/eigenvector if we

formulate the problem as a matrix iteration:
Define the nth “state vector” to be

xn =
(

fn

fn−1

)
Then

xn+1 =
(

fn+1

fn

)
and these “current” and “next” state vectors are related via matrix multiplication:

xn+1 = Axn, i.e.
(

fn+1

fn

)
=

( ) (
fn

fn−1

)

The nth ratio rn =
fn

fn−1
is obtained by dividing the first component of xn by the second component.

For almost all initial conditions, the long-term behavior of {xn} follows the eigenvector corresponding
to the eigenvalue of greatest magnitude.

Example 2
The following table shows population data for a certain country in the year 1990.

Juveniles Adults
(aged under 15 years) (aged 15 years and over)

Subpopulation size (millions) 10.92 46.49
Proportionate birth rate 0.0000 0.0172
Proportionate death rate 0.0008 0.0136

Let Jn and An denote the sizes (in millions) of the subpopulations of juveniles and adults, respectively,
n years after 1990. Assume that in any year 1

15 of surviving juveniles become adults. The population
growth model can be written as a matrix equation(

Jn+1

An+1

)
= M

(
Jn

An

)
(a) Fill in the entries of the matrix M to 4 decimal places.
(b) Find the sizes of the subpopulations of juveniles and adults predicted by the model for the years
2010 and 2030.
(c) Predict the ratio of adults to juveniles in the long term.


