fp_iter1 ans = 1.5 -0.875 6.732421875 -469.720012001693 102754555.187385 -1.08493387053175e+24 1.27705559144438e+72 -2.08271290858103e+216 NaN fp_iter2 ans = 1.5 1.28695376762338 1.40254080353958 1.34545837402329 1.37517025281604 1.36009419276173 1.36784696759213 1.36388700388402 1.36591673339004 1.36487821719368 1.36541006116996 1.36513782066921 1.36527720852448 1.36520585029705 1.36524238371884 1.36522368022528 1.3652332557425 1.36522835346263 1.36523086324364 1.36522957833396 1.36523023615818 1.36522989937773 1.36523007179629 1.36522998352467 1.36523002871632 1.36523000557995 1.36523001742488 1.36523001136073 1.36523001446534 1.3652300128759 1.36523001368963 fp_iter3 {Warning: Imaginary parts of complex X and/or Y arguments ignored} > In fp_iter3 at 6 {??? Operation terminated by user during ==> inlineeval at 13 fp_iter3 {Warning: Imaginary parts of complex X and/or Y arguments ignored} > In fp_iter3 at 6 ans = 1.5 0.816496580927726 2.99690880578722 0 + 2.94123506147697i 2.7536223884358 - 2.7536223884358i 1.8149915190343 + 3.5345287899111i 2.38426584828215 - 3.43438806399137i 2.18277190004049 + 3.59687922821261i 2.29699758691958 - 3.5741044617663i 2.25651028617868 + 3.60656121990802i 2.27917904904579 - 3.60193657266051i 2.27114258664458 + 3.60837147007804i 2.27563131140716 - 3.6074516211228i 2.27403992715548 + 3.60872556687771i 2.27492836237414 - 3.60854334408709i 2.27461338398065 + 3.60879548114993i 2.27478921296336 - 3.60875941139254i 2.27472687594346 + 3.60880931110157i 2.27476167340962 - 3.60880217246316i 2.27474933658735 + 3.60881204785879i 2.27475622316243 - 3.60881063508048i 2.27475378164968 + 3.6088125894651i 2.27475514453294 - 3.60881230986973i 2.27475466134691 + 3.60881269665095i 2.27475493106742 - 3.6088126413178i 2.27475483544281 + 3.60881271786348i 2.27475488882166 - 3.60881270691281i 2.27475486989714 + 3.60881272206153i 2.27475488046105 - 3.60881271989434i 2.2747548767158 + 3.60881272289234i 2.27475487880644 - 3.60881272246345i 2.27475487806524 + 3.60881272305676i 2.27475487847899 - 3.60881272297188i 2.2747548783323 + 3.6088127230893i 2.27475487841419 - 3.6088127230725i 2.27475487838516 + 3.60881272309574i 2.27475487840136 - 3.60881272309242i 2.27475487839562 + 3.60881272309702i 2.27475487839882 - 3.60881272309636i 2.27475487839769 + 3.60881272309727i 2.27475487839832 - 3.60881272309714i 2.2747548783981 + 3.60881272309732i 2.27475487839822 - 3.60881272309729i 2.27475487839818 + 3.60881272309733i 2.2747548783982 - 3.60881272309732i 2.27475487839819 + 3.60881272309733i 2.2747548783982 - 3.60881272309733i 2.2747548783982 + 3.60881272309733i 2.2747548783982 - 3.60881272309733i 2.2747548783982 + 3.60881272309733i 2.2747548783982 - 3.60881272309733i 2.2747548783982 + 3.60881272309733i 2.2747548783982 - 3.60881272309733i 2.2747548783982 + 3.60881272309733i 2.2747548783982 - 3.60881272309733i 2.2747548783982 + 3.60881272309733i 2.2747548783982 - 3.60881272309733i 2.2747548783982 + 3.60881272309733i 2.2747548783982 - 3.60881272309733i 2.2747548783982 + 3.60881272309733i 2.2747548783982 - 3.60881272309733i 2.2747548783982 + 3.60881272309733i fp_iter4 ans = 1.5 1.34839972492648 1.36737637199128 1.36495701540249 1.36526474811344 1.36522559416052 1.36523057567343 1.36522994187818 1.36523002251557 1.36523001225612 1.36523001356143 1.36523001339535 fp_iter5 ans = 1.5 1.37333333333333 1.36526201487463 1.36523001391615 1.3652300134141 s=fp_iter_func('sqrt(10/(4+x))',1.5,1e-9) s = 1.5 1.34839972492648 1.36737637199128 1.36495701540249 1.36526474811344 1.36522559416052 1.36523057567343 1.36522994187818 1.36523002251557 1.36523001225612 1.36523001356143 1.36523001339535 s=bisect('x^2-10',3,4,1e-14) s = 3.5 3.25 3.125 3.1875 3.15625 3.171875 3.1640625 3.16015625 3.162109375 3.1630859375 3.16259765625 3.162353515625 3.1622314453125 3.16229248046875 3.16226196289062 3.16227722167969 3.16228485107422 3.16228103637695 3.16227912902832 3.162278175354 3.16227769851685 3.16227746009827 3.16227757930756 3.1622776389122 3.16227766871452 3.16227765381336 3.16227766126394 3.16227765753865 3.1622776594013 3.16227766033262 3.16227765986696 3.16227766009979 3.1622776602162 3.162277660158 3.1622776601871 3.16227766017255 3.16227766016527 3.16227766016891 3.16227766016709 3.162277660168 3.16227766016846 3.16227766016823 3.16227766016834 3.1622776601684 3.16227766016837 3.16227766016839 3.16227766016838 length(s) ans = 47 s=bisect('x^3+4*x^2-10',1,2,1e-14) s = 1.5 1.25 1.375 1.3125 1.34375 1.359375 1.3671875 1.36328125 1.365234375 1.3642578125 1.36474609375 1.364990234375 1.3651123046875 1.36517333984375 1.36520385742188 1.36521911621094 1.36522674560547 1.36523056030273 1.3652286529541 1.36522960662842 1.36523008346558 1.365229845047 1.36522996425629 1.36523002386093 1.36522999405861 1.36523000895977 1.36523001641035 1.36523001268506 1.36523001454771 1.36523001361638 1.36523001315072 1.36523001338355 1.36523001349997 1.36523001344176 1.36523001341266 1.36523001342721 1.36523001341993 1.36523001341629 1.36523001341448 1.36523001341357 1.36523001341402 1.36523001341425 1.36523001341413 1.36523001341408 1.36523001341411 1.36523001341409 1.3652300134141 length(s) ans = 47 s=bisect('exp(x)-tan(x)',-4,-2,1e-14) s = -3 -3.5 -3.25 -3.125 -3.0625 -3.09375 -3.109375 -3.1015625 -3.09765625 -3.095703125 -3.0966796875 -3.09619140625 -3.096435546875 -3.0963134765625 -3.09637451171875 -3.09640502929688 -3.09642028808594 -3.09641265869141 -3.09640884399414 -3.09641075134277 -3.09641170501709 -3.09641218185425 -3.09641242027283 -3.09641230106354 -3.09641236066818 -3.09641233086586 -3.0964123159647 -3.09641230851412 -3.09641230478883 -3.09641230665147 -3.09641230572015 -3.09641230525449 -3.09641230502166 -3.09641230490524 -3.09641230496345 -3.09641230493435 -3.0964123049198 -3.09641230491252 -3.09641230491616 -3.09641230491434 -3.09641230491343 -3.09641230491388 -3.09641230491366 -3.09641230491354 -3.0964123049136 -3.09641230491363 -3.09641230491364 -3.09641230491365 length(s) ans = 48