
APMA0160 (A.Yew) Spring 2011

Classic root-finding algorithms

We have looked at how fixed-point iterations (iterated maps) can be used to locate a solution of the
scalar equation f(x) = 0. Here are two other methods.

Bisection method

This method is based on the Intermediate Value Theorem of calculus:

Suppose that the function f is continuous on the interval [a, b]. If f(a) and f(b) are of
opposite sign, then there exists a number x∗ in (a, b) with f(x∗) = 0.

To find the root x∗ of f , we can look for successively smaller intervals that contain x∗. The idea is to:

• first choose an interval [l1, r1] such that f(l1) and f(r1) are of opposite signs

• chop the interval in half at the midpoint m1 = 1
2(l1 + r1) to make two intervals [l1,m1] and

[m1, r1]

• check the sign of f(m1):

◦ if f(m1) = 0, then x∗ = m1

◦ if f(l1) and f(m1) have the same sign, then x∗ must lie between m1 and r1,
so set l2 = m1 (i.e. change the left boundary) and r2 = r1

◦ if f(l1) and f(m1) have opposite signs, then x∗ must lie between l1 and m1,
so set l2 = l1 and r2 = m1 (i.e. change the right boundary)

This gives a new interval [l2, r2] which is half the length of [l1, r1].

• repeat the process for the interval [l2, r2] to get another interval [l3, r3] that is half the length of
[l2, r2]

• iterate this procedure to generate a sequence of intervals [lk, rk], each of which contains the root
x∗ and is half the length of the previous one.

The length of the interval [lk, rk] will be
1

2k−1
times the length of [l1, r1].

If we consider the sequence {mk} of midpoint values as our approximations to x∗, then

absolute error = |x∗ −mk| ≤
1

2
|rk − lk| =

1

2
· 1

2k−1
|r1 − l1| =

1

2k
|r1 − l1|

If we consider the sequence {lk} of left endpoints as our approximations to x∗, then

absolute error = |x∗ − lk| ≤ |rk − lk| =
1

2k−1
|r1 − l1|

and similarly for the right endpoints {rk}.

Now let us write Matlab code to implement the bisection method.
We will use it to approximate:

(i)
√

10

(ii) the solution of x3 + 4x2 − 10 = 0 in [1, 2]

(iii) the solution of ex = tanx in [−4,−2]

with absolute error not exceeding 10−14.

Newton’s (or Newton–Raphson) method

This method is based on tangent-line approximations to the graph of f(x).
Suppose that xk is an approximation to the solution x∗ of f(x) = 0.
The tangent line to the graph of f at the point

(
xk, f(xk)

)
has equation

y − f(xk) = f ′(xk)(x− xk)

This line intersects the x-axis, i.e. y = 0, when −f(xk) = f ′(xk)(x− xk), which gives

x = xk −
f(xk)

f ′(xk)

We define this x-value to be the new approximation xk+1. So we get the recursive formula

xk+1 = xk −
f(xk)

f ′(xk)

Starting from an initial guess x1, this formula generates a sequence x2, x3, x4, . . . , which hopefully
converges to the root x∗.

Note that Newton’s method is in fact an iterated map, where the map φ is given by

φ(x) = x− f(x)

f ′(x)

Therefore Newton’s method can fail to converge if the map φ is not sufficiently “well-behaved”.
You can also see that Newton’s method will fail if f ′(xk) = 0 for some term of the sequence.

Now let us write Matlab code to implement Newton’s method.
We will use it to approximate:

(i)
√

10

(ii) the solution of x3 + 4x2 − 10 = 0 in [1, 2]

(ii) the solution of ex = tanx in [−4,−2]

For the stopping criterion, we will choose |f(xk)| ≤ 10−14

(but one of the other criteria |xn−xn−1| ≤ tolerance,
∣∣∣1− xn

xn−1

∣∣∣ ≤ tolerance or
∣∣∣1− xn−1

xn

∣∣∣ ≤ tolerance

could be used just as well).

