APMA 0160 (A.Yew) Spring 2011

Classic root-finding algorithms

We have looked at how fixed-point iterations (iterated maps) can be used to locate a solution of the
scalar equation f(z) = 0. Here are two other methods.

Bisection method
This method is based on the Intermediate Value Theorem of calculus:

Suppose that the function f is continuous on the interval [a,b]. If f(a) and f(b) are of
opposite sign, then there exists a number z* in (a,b) with f(z*) = 0.

To find the root z* of f, we can look for successively smaller intervals that contain x*. The idea is to:
e first choose an interval [l1,r1] such that f(l1) and f(r1) are of opposite signs

e chop the interval in half at the midpoint m; = %(ll + r1) to make two intervals [l1,m1] and
[m1, 7]
e check the sign of f(m;):
o if f(my) =0, then z* = my

o if f(l1) and f(m;) have the same sign, then z* must lie between m; and rq,
so set Il = my (i.e. change the left boundary) and ro = 1

o if f(I1) and f(m;) have opposite signs, then z* must lie between [; and m,
so set ls =13 and 9 = m (i.e. change the right boundary)

This gives a new interval [la, 79| which is half the length of [I1,7].

e repeat the process for the interval [l2, 2] to get another interval [l3, 73] that is half the length of
[l27 7'2]

e iterate this procedure to generate a sequence of intervals [, 7], each of which contains the root
x* and is half the length of the previous one.

The length of the interval [li, rg] will be 1

If we consider the sequence {my} of midpoint values as our approximations to z*, then

1 1 1 1
absolute error = |z* — my| < 5 |k — lk| = 5 o1 lr1 — 1] = o |r1 — 1]

times the length of [l1, r1].

If we consider the sequence {l;} of left endpoints as our approximations to z*, then

1
absolute error = |z* — lg| < |rp — lx| = ST Iry — 14

and similarly for the right endpoints {ry}.

Now let us write Matlab code to implement the bisection method.
We will use it to approximate:

(i) V10
(ii) the solution of 23 + 422 — 10 =0 in [1,2]
(iii) the solution of e* = tanx in [—4, —2]

with absolute error not exceeding 10~ 4.

Newton’s (or Newton—Raphson) method

This method is based on tangent-line approximations to the graph of f(x).
Suppose that xj, is an approximation to the solution z* of f(z) = 0.
The tangent line to the graph of f at the point ($k, f (xk)) has equation

y — flax) = f'(a) (@ — zx)
This line intersects the z-axis, i.e. y = 0, when — f(xy) = f'(xx)(z — x1), which gives

~ flzw)
" ()

We define this z-value to be the new approximation xx11. So we get the recursive formula

r =2

o f(zk)
I TE™

Starting from an initial guess z, this formula generates a sequence xo,x3,x4,..., which hopefully
converges to the root x*.

Note that Newton’s method is in fact an iterated map, where the map ¢ is given by
x
. 1@
f'(z)

Therefore Newton’s method can fail to converge if the map ¢ is not sufficiently “well-behaved”.
You can also see that Newton’s method will fail if f/(x) = 0 for some term of the sequence.

¢(x) =

Now let us write Matlab code to implement Newton’s method.
We will use it to approximate:

(i) VIO

(ii) the solution of z3 + 422 — 10 =0 in [1,2]

(ii) the solution of e* = tanz in [—4, —2]

For the stopping criterion, we will choose | f(z3)| < 10714

In

< tolerance
Tn—1

< tolerance or

(but one of the other criteria |z, —z,—1| < tolerance, ‘1 —

1 — Zn=t
Tn

could be used just as well).

