APMA 0160 (A.Yew) Spring 2011

Numerical solution of partial differential equations: a very basic introduction

Partial differential equations (PDEs) are differential equations with more than one independent variable.
We shall consider the simplest PDEs that have just two independent variables—one of which represents
time ¢ and the other a spatial coordinate x—and one (scalar) dependent variable u. Examples of such
PDEs include the following:

ou ou . . .
— =Cc—=— (convection equation or one-way wave equation)
ot ox
0 0?
8—:: =c 873:1; (heat equation or diffusion equation)
0 0?
8—7: =c 6—;; + R(u) (reaction—diffusion equation)
0 1 0?
7 a—ztt =3 87337; + V(z)u (Schrédinger equation)
0 0? 0
8—7: = a—xg + (k — 1)8—Z —Ku (Black—Scholes equation)

To solve such a PDE means to find a function u(t, z) that satisfies the PDE along with an initial condition
u(0,2) = g(z) fora<ax <b (initial distribution or profile at ¢ = 0)

and boundary conditions at * = a and x = b, which are typically

u(t,a) = a, u(t,b) =0 forallt >0 (Dirichlet BCs)
ou ou
or —(t,a) =0, —(t,b) =0 forallt >0 ero Neumann BCs
L (t,0) L (t.0) ¢)
The approach we take to compute an approximation of the solution u(¢,z) is to approzimate the spatial
82
derivatives 9z and a—g using finite difference formulas (i.e. “spatial discretization by finite differences”).
x x
Thus these spatial derivatives will be replaced by algebraic expressions involving w1, us, ..., uy, where

each u; is the approximation of the solution u at a spatial grid point x;. In this way, we can rewrite the
original PDE in the form

U1

u2
gl: = F(u) where u =

uUN

Then we use a time-stepping algorithm to compute u at a sequence of ¢t-values up to some final time 7'.
We can choose a fixed-time-step method such as one of the codes we wrote in class and Homework #8,
or use a built-in Matlab ODE solver such as ode45.

Just like for the boundary value problem y” = f(x,y,y’) with boundary conditions given at z = a and
—a

N +1

x = b, we divide the interval [a,b] into N + 1 subintervals of equal length Az = , so that

xo = a, TN41=0b
rj=a+jAx forj=12...,N

At each interior grid point z; with j =1,2..., N, use the O(Axz?) centered difference approximations

ou (t.) u(t, xj + Az) —u(t, x; — Azx) w(t, 1) —ult, zj_1)
ox 2Ax 2Ax
Ou(, ultia + Ar) = 2ulta,) +ult g = Av) _ alt 5pn) = 2ulta,) + ult, 2j)
ox2 Ax? Ax?
and hence
ou Ujp1 — Uj_] 1
81’(5) 2Ax 2Ax(i 1+U]H)
0%u Ujp1 — 2u5 + Uj_1 1
ﬁ(t’ :L‘j) ~ J AwJQ J = A.CC2 (uj,1 — QUJ' + uj+1)

where u; denotes the approximate value of u(t,z;) that we aim to compute (so each u; is actually a
function of ¢).

1
t,xj) for j =2,...,N — 1 becomes an array of expressions ——Aju

Therefore, the first derivative
2Ax

U
5;(
where

(251

1 0 1 0 - v i 0 U
U3
0 0 -1 0 1 o --- 0 Uy

]
|
—_
—_
]
o

0 UN -2

UN-1

L2\
2

u
The second derivative a—(t, xj) for j =2,..., N — 1 becomes an array of expressions

5 Asu where
x

Ax?

U1

1 =2 1 0O -+ v . 0 U2

ja)
=
|
[\
—_
o
es}

0 0 1 -2 1 o --- 0 Uy

0 UN—2

UN-1

un

ou 2u
The boundary conditions will appear in the j = 1 and j = N expressions for — (¢, x;) or — (¢, x;), and

Ox Ox?
will be incorporated into the first and last (Nth) rows of A.

Dirichlet boundary conditions

u‘x:a = o u‘;t:b - ﬁ

This means we must have ug = a and uny41 = 3.

0 . .
For the |first derivative a—u , the j =1 expression is

x
1 1
oAz (U0t ue) = 5 (w2 —a)
so the first row of A; should be (0 1 0 --- 0), and we need to add on an extra term —a.

The j = N expression is 1 1
2Ax (_uNfl * UNH) T 2Ag (_uNfl * ﬂ)

so the Nth row of A; should be (0 --- 0 —1 0), and we need to add on an extra term £.

0 1
Therefore, a—Z(t,xj) for j =1,..., N becomes an array of expressions N (Alu + B) where
0o 1 0 0
1 1 0 --- 0
0o -1 0 1 0 0 —a
0o 0 -1 0 1 0 0 0
A= and B=| :
0
0 g
0 0 -1 0 1
0 0 -1 0
2u
For the |second derivative 922 |’ the j = 1 expression is
x
1 1
@(UO — 2U1 + UQ) = @(—2'&1 + u9 + OZ)
so the first row of Ay should be (=2 1 0 --- 0), and we need to add on an extra term a.

The j = N expression is

1
E(UNA —2un +un1) = E(UNA — 2uy + f)

so the Nth row of Ay should be (0 --- 0 1 —2), and we need to add on an extra term [3.
2

0 1
Therefore, 8—3(75, xj) for j =1,..., N becomes an array of expressions F(Agu + B) where
x T
_92 1 .. 0
1 -2 1 0 0
0 1 -2 1 0 0 N
o o 1 -2 1 0 0 0
Ay = : : : and B=|:
.) 0
0 B
0 0 0 0 1 -2 1

Zero Neumann boundary conditions

0 0
dul . oul _,
O r=a O T=b
If we use an |O(Axz) | forward difference formula at the left end, then u is approximated by the
0T |,_,
difference quotient - uO’ and the boundary condition becomes
aj —_—
uleuo =0, so that [ug = u;
Substituting this into the j = 1 expressions gives
0 1 1
for the first derivative 8—2 : AL (—U(] + UQ) = m(—ul + uz)
for the second deri at'ea2u L (u 2u —i—u) 1 (2 +u) L (U —i—u)
vative — 1 — — = ——(up —2u = (-
922 A2 \Uo 1 2 A2\ 1 2 A2 1 2

0
Similarly, if we use an| O(Ax) | backward difference formula at the right end, then a—u is approximated
UN+1 — UN Lle=b
by

A , and the boundary condition becomes
x

UN41 — UN
it 2 S, A 0, so that [unyy1 = un
Az

Substituting this into the j = NV expressions gives

0 1 1
for the first derivative a—z : %(—m\pl + UN+1) = m(—uN,l + uN)
for the second derivative Ou ! (u 2uy +u) ! (u 2un +u) L (u U)
vative — 1 — 11— = — 1= = — -1 —
922 Ap2 \UN-1 N N+1 Ap2 \UN-1 N N Ap2 \UN-1 N
In summary, if we use | O(Az) | forward and backward differences to approximate the boundary conditions:
0 1
a—;(t, xj)|for j =1,..., N becomes an array of expressions E/hu where
T T o P
1 0 1 0 -+ v 0
o -1t 0 1 O -+ -0
0 0 -1 0 1 0 0
A=
0
0 0 -1 0 1
0 0 -1 1
0%u , .
——(t,z;) |for j =1,..., N becomes an array of expressions — Asu where
Ox? x?
-1 1 0 0
1 -2 1 0 0
o 1 -2 1 0
0 1 -2 1 0 0
Ay =
0 0 O o 1 -2 1

0
If we use an | O(Axz?) | forward difference formula at the left end, then gu

is approximated by the

8:6 r=a
-3 Ay —
difference quotient 4o —; Aul ug, and the boundary condition becomes
x
-3 duy — 4 1
4o —;Azl 92 _ 0, so that |ug = §u1 — qu
Substituting this into the j = 1 expressions gives
fau 1(+)1<4+1+)1(4+4>
or —: —(—up+tus) ==—\(—zur+-uotus) =—\(—-ur + -u
or = 2Az 0T oAz 3 T3 T a3 T3
fﬁzu 1(2+)1(4 12+>1<2+2)
or — : ——=(ug—2ui+us) = —5(zup —-us—2u1 +us) = —5|—=u1 + -u
dx2 " Az2\ L Az2\3 ' 37 L Azz\ 3t 37
0
Similarly, if we use an | O(Ax?) | backward difference formula at the right end, then 6—u is approxi-
Tlp=b

3uny1 —4uny +un—1
2Azx

3 —4 _ 4 1
UN+1 Uyt UN-1 =0, so that |unyy1 = -uy — zun—1
2Az

3 3
Substituting this into the j = NV expressions gives

mated by the difference quotient

, and the boundary condition becomes

for Ou : i(—uN—1 + uN+1) = i(—UN—1 + éuN - 1uN—l) = - (-éuz\rq + %UN>
ox 2Ax 2Ax 3 3 2Ax \ 3 3

for@' L(uN,l—ZuN—i-uN):L(u 1 —2u +éu —}u ,):L<gu _ —2u)
0x?2 " Ax? + Az N gEN T g N AgZ\3 N1 3N

In summary, if we use | O(Ax?) | forward and backward differences for the boundary conditions, then:

1
%(t, xj)|for 5 =1,..., N becomes an array of expressions mAlu where
4 4
-3 3 0 0
-1 0 1 0 0
0o -1 0 1 0
0 -1 0 1 0 0
A=
0
0 0o -1 0 1
0 0 -1 4
82“@ Yforj=1,...,Nb f i ! Au wh
5pz b %) [forj=1,..., ecomes an array of expressions —-3Asu where
2 2
-3 3 0 0
1 -2 1 0 0
0 1 -2 1 0 0
0 O 1 -2 1 0 0
Ay =
0
0 0 0 o 1 -2 1

(e
@l
|
wlvo

