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Boundary value problems: method of finite differences

We have seen how a boundary value problem such as

y′′ = f(x, y, y′)

y(a) = α, y(b) = β

can be solved numerically by the shooting method, which combines a time-stepping algorithm with a
root-finding method.
An alternative approach to computing solutions of the boundary value problem is to approximate the
derivatives y′ and y′′ in the differential equation by finite differences.

First, divide the interval [a, b] into N + 1 subintervals of equal length ∆x =
b− a

N + 1
, so that

x0 = a, xN+1 = b

xj = a + j∆x for j = 1, 2 . . . , N

The points xj are called “nodes”, “grid points” or “mesh points”.
At each interior node xj with j = 1, 2 . . . , N , the equation

y′′(xj) = f
(
xj , y(xj), y′(xj)

)
must be satisfied. If we now replace y′′(xj) and y′(xj) by their O(∆x2) centered difference approxima-
tions (the most common choice of finite difference formulas to use), we get

y(xj + ∆x)− 2y(xj) + y(xj −∆x)
∆x2

≈ f

(
xj , y(xj),

y(xj + ∆x)− y(xj −∆x)
2∆x

)
or equivalently

y(xj+1)− 2y(xj) + y(xj−1)
∆x2

≈ f

(
xj , y(xj),

y(xj+1)− y(xj−1)
2∆x

)
Let yj denote the approximate value of y(xj) that we aim to compute. Then our task is to solve the
system of equations

(?)
yj+1 − 2yj + yj−1

∆x2
= f

(
xj , yj ,

yj+1 − yj−1

2∆x

)
, j = 1, 2, . . . , N

to find y1, y2, . . . , yN . At the endpoints, we apply the given boundary conditions and set

y0 = y(x0) = y(a) = α, yN+1 = y(xN+1) = y(b) = β

The system (?) can be difficult to solve if f is a nonlinear function of y and y′. But when f is linear
in y and y′, (?) becomes a linear algebraic system that can be solved easily with Matlab’s backslash
command (or one of the other methods for solving linear systems).



Linear boundary value problem

A general second-order linear ODE can be written in the form

y′′ = p(x)y′ + q(x)y + r(x)

This equation is also called the steady-state diffusion–convection–reaction equation, where y′′ models
diffusion, p(x)y′ models convection, q(x)y models a reaction, and r(x) represents a source term.
Here f(x, y, y′) = p(x)y′ + q(x)y + r(x), and in this case the particular form of (?) is

yj+1 − 2yj + yj−1

∆x2
= p(xj)

yj+1 − yj−1

2∆x
+ q(xj)yj + r(xj), j = 1, 2, . . . , N

Collecting on the left-hand side all terms involving the unknown “y”s, we get(
1

∆x2
+

p(xj)
2∆x

)
yj−1 −

(
2

∆x2
+ q(xj)

)
yj +

(
1

∆x2
− p(xj)

2∆x

)
yj+1 = r(xj), j = 1, 2, . . . , N

Multiplying through by −∆x2 gives(
−1− p(xj)

2
∆x

)
yj−1 +

(
2 + q(xj)∆x2

)
yj +

(
−1 +

p(xj)
2

∆x

)
yj+1 = −r(xj)∆x2, j = 1, 2, . . . , N

Note that for j = 1, the equation is(
−1− p(x1)

2
∆x

)
y0 +

(
2 + q(x1)∆x2

)
y1 +

(
−1 +

p(x1)
2

∆x

)
y2 = −r(x1)∆x2

For j = N , the equation is(
−1− p(xN )

2
∆x

)
yN−1 +

(
2 + q(xN )∆x2

)
yN +

(
−1 +

p(xN )
2

∆x

)
yN+1 = −r(xN )∆x2

The boundary conditions will be incorporated into these two equations.

Dirichlet boundary conditions

y(a) = α, y(b) = β

i.e. values of y (not y′) are specified at the boundary.
We know y0 = α, so moving the first term in the j = 1 equation to the right-hand side yields(

2 + q(x1)∆x2
)
y1 +

(
−1 +

p(x1)
2

∆x

)
y2 = −r(x1)∆x2 +

(
1 +

p(x1)
2

∆x

)
α

Similarly, we know yN+1 = β, so moving the third term in the j = N equation to the right-hand side
yields (

−1− p(xN )
2

∆x

)
yN−1 +

(
2 + q(xN )∆x2

)
yN = −r(xN )∆x2 +

(
1− p(xN )

2
∆x

)
β

In summary, we have the equations(
2 + q(x1)∆x2

)
y1 +

(
−1 +

p(x1)
2

∆x

)
y2 = −r(x1)∆x2 +

(
1 +

p(x1)
2

∆x

)
α(

−1− p(xj)
2

∆x

)
yj−1 +

(
2 + q(xj)∆x2

)
yj +

(
−1 +

p(xj)
2

∆x

)
yj+1 = −r(xj)∆x2 for j = 2, . . . , N − 1(

−1− p(xN )
2

∆x

)
yN−1 +

(
2 + q(xN )∆x2

)
yN = −r(xN )∆x2 +

(
1− p(xN )

2
∆x

)
β



Neumann boundary conditions
y′(a) = γ`, y′(b) = γr

i.e. values of the first derivative y′ are specified at the boundary.
This will make the entries in the first and last rows of A and rhs more complicated.

Let’s say we use an O(∆x) forward difference formula at the left end ; then y′(a) ≡ y′(x0) is approxi-

mated by the difference quotient
y1 − y0

∆x
, and the boundary condition becomes

y1 − y0

∆x
= γ`, so that y0 = y1 − γ`∆x

Substituting this into the j = 1 equation gives(
−1− p(x1)

2
∆x

) (
y1 − γ`∆x

)
+

(
2 + q(x1)∆x2

)
y1 +

(
−1 +

p(x1)
2

∆x

)
y2 = −r(x1)∆x2, or{(

−1− p(x1)
2

∆x

)
+

(
2 + q(x1)∆x2

)}
y1 +

(
−1 +

p(x1)
2

∆x

)
y2 = −r(x1)∆x2 +

(
−1− p(x1)

2
∆x

)
γ`∆x

Thus, the (1, 1) entry of A and the first entry of rhs may need to be modified.

If we use an O(∆x2) forward difference formula at the left end , then y′(a) ≡ y′(x0) is approximated

by the difference quotient
−3y0 + 4y1 − y2

2∆x
, and the boundary condition becomes

−3y0 + 4y1 − y2

2∆x
= γ`, so that y0 =

4
3
y1 −

1
3
y2 −

2
3
γ`∆x

Substituting this into the j = 1 equation gives(
−1− p(x1)

2
∆x

) (
4
3
y1 −

1
3
y2 −

2
3
γ`∆x

)
+

(
2 + q(x1)∆x2

)
y1 +

(
−1 +

p(x1)
2

∆x

)
y2 = −r(x1)∆x2,

or
{

4
3

(
−1− p(x1)

2
∆x

)
+

(
2 + q(x1)∆x2

)}
y1 +

{
−1

3

(
−1− p(x1)

2
∆x

)
+

(
−1 +

p(x1)
2

∆x

)}
y2

= −r(x1)∆x2 +
(
−1− p(x1)

2
∆x

)
2
3
γ`∆x

Thus, the (1, 1) and (1, 2) entries of A and the first entry of rhs may need to be modified.

Similarly, using an O(∆x) backward difference formula at the right end gives
yN+1 − yN

∆x
= γr and

hence yN+1 = yN + γr∆x , which leads to the following modified j = N equation:(
−1 +

p(xN )
2

∆x

)
yN−1 +

{(
−1 +

p(xN )
2

∆x

)
+

(
2 + q(xN )∆x2

)}
yN

= −r(xN )∆x2 −
(
−1 +

p(xN )
2

∆x

)
γr∆x

Thus, the (N,N) entry of A and the last entry of rhs may need to be modified.

Using an O(∆x2) backward difference formula at the right end gives
3yN+1 − 4yN + yN−1

2∆x
= γr and

hence yN+1 =
4
3
yN −

1
3
yN−1 +

2
3
γr∆x , which leads to the following modified j = N equation:{

−1
3

(
−1 +

p(xN )
2

∆x

)
+

(
−1− p(xN )

2
∆x

)}
yN−1 +

{
4
3

(
−1 +

p(xN )
2

∆x

)
+

(
2 + q(xN )∆x2

)}
yN

= −r(xN )∆x2 −
(
−1 +

p(xN )
2

∆x

)
2
3
γr∆x

Thus, the (N,N − 1) and (N,N) entries of A and the last entry of rhs may need to be modified.


