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Boundary value problems: method of finite differences
We have seen how a boundary value problem such as
y' = f(z,5.9)

yla) =a,  ylb) =0

can be solved numerically by the shooting method, which combines a time-stepping algorithm with a
root-finding method.

An alternative approach to computing solutions of the boundary value problem is to approximate the
derivatives ¢’ and y” in the differential equation by finite differences.

b—a
N+1

First, divide the interval [a, b] into N + 1 subintervals of equal length Az = , so that

Ty = a, TN+1 =D

rj=a+jAxr forj=1,2...,N

The points x; are called “nodes”, “grid points” or “mesh points”.
At each interior node z; with j =1,2..., N, the equation

y"(xz5) = f (25, y(zy), ¥ (x5))

must be satisfied. If we now replace y”(z;) and y/'(z;) by their O(Az?) centered difference approxima-
tions (the most common choice of finite difference formulas to use), we get

4+ Ax) — 2 ; C— A 1Az — A
vz + 22) i(jg) Fule ) (% y(z;), iz + x)QAj(xj x)>

or equivalently

y(zj1) — 2Z/A(xxg) tylrj-1) f (xj7 o(zy), y(xj+1)2;xy(9€j—1)>

Let y; denote the approximate value of y(x;) that we aim to compute. Then our task is to solve the
system of equations

Yi+1 — 2y; +yj-1 Yj+1 — Yj—1 ,
(*) . . . _f<x]7 y]7 H)a .7:1727"'7N

Az? 2Ax
to find y1,¥y9,...,yn. At the endpoints, we apply the given boundary conditions and set
Yo = y(z0) = y(a) = a, yn+1 =y(zn+1) =y(b) =8

The system (x) can be difficult to solve if f is a nonlinear function of y and y’. But when f is linear
in y and 3/, (%) becomes a linear algebraic system that can be solved easily with Matlab’s backslash
command (or one of the other methods for solving linear systems).



Linear boundary value problem

A general second-order linear ODE can be written in the form

y" = p(x)y + q(z)y + r(z)

This equation is also called the steady-state diffusion—convection-reaction equation, where y” models
diffusion, p(z)y’ models convection, g(z)y models a reaction, and r(x) represents a source term.

Here f(x,y,y") = p(x)y’ + q(z)y + r(x), and in this case the particular form of (%) is

Yi+1 — 25 +yi-1 ()
Ax? I 2Azx

Collecting on the left-hand side all terms involving the unknown “y”s, we get

L pxg) 2 1 play) .
1~ (A2 D) vit (2 - 1= 1(z; =1,2,...,N
(AxQ t 2Ax Yi-1 Ax2 + q(xj) Y+ A2 AL Yj+1 T(.%'J), J ) )

Multiplying through by —Az? gives

Yji+1 — Yj—1 .

Note that for j = 1, the equation is
x x
(—1 — p(21>Ax> Yo + (2 + q(xl)Aa:2)y1 + (—1 + p(21)A:U) Yo = —r(x1)Az?

For j = N, the equation is

x x
<—1 — il QN)A.TU) ynN_1+ (2 + q(xN)A:L'Q)yN + (—1 + p( 2N)A£L'> YNl = —r(:):N)Ax2
The boundary conditions will be incorporated into these two equations.

Dirichlet boundary conditions

yla) = o, y(b) =0

i.e. values of y (not y’) are specified at the boundary.
We know yg = «, so moving the first term in the j = 1 equation to the right-hand side yields

<2 + q(:cl)Ax2)y1 + <—1 + p%”Am) ys = —r(z1)Az? + <1 + p(;cl)Aa:> a

Similarly, we know yny11 = (3, so moving the third term in the j = N equation to the right-hand side
yields

<—1 — p(a;N)Aw> YnN—1+ (2 + q(xN)A;U2) yn = —r(zy)Az? + <1 — p(zN)Ax> 8

In summary, we have the equations

(2 + q(xl)AxQ) y1 + <—1 + p(;Cl)Aa:> yo = —r(z1)Az® + (1 + p(gl)Am> a

(—1 - p(gj)Aa:) Yj—1+ (2 + q(:cj)Ax2>yj + (—1 + p(;:])Aa,) yjr1 = —r(zj)Az? forj=2,...,N -1

<—1 - p(zN)Ax> YN—1 + (2 + q(xN)AxQ)yN = —r(zy)Az? + <1 - p(a;N)Ax> I6]



Neumann boundary conditions ) )
y'(a) =, y(0) =

i.e. values of the first derivative ¢y’ are specified at the boundary.
This will make the entries in the first and last rows of A and rhs more complicated.

; then v/(a) = y/(x¢) is approxi-

Let’s say we use an ’O(Aac) forward difference formula at the left end

mated by the difference quotient 9 A_ yO, and the boundary condition becomes
T
1= Y%
yAy = so that ]yo=y1—wAﬂc\
x

Substituting this into the j = 1 equation gives

(—1 - p(gl)Ax> (y1 — veAz) + (2 + q(a:l)AwQ) 1+ (—1 - p(;l)Ax) y2 = —r(x1)Az?,  or

{ (1 - p(gl)A:U) + <2 + q(:vl)sz) } y1 + (1 + p(;l)Ax> yo = —r(z1)Az? + (1 - p(gl)Aaj) YAz
Thus, the (1,1) entry of A and the first entry of rhs may need to be modified.

If we use an | O(Az?) forward difference formula at the left end |, then y/(a) = 3/(z0) is approximated

_3 Ao —
by the difference quotient %0 ; Ayl y27 and the boundary condition becomes
x
—3y0 + 4y1 — Y2 4 1 2
= that = —y1 — =2 — =
AL Yo, SO that | Yo 33/1 3y2 375 T

Substituting this into the j = 1 equation gives

T 4 1 2 T
(—1 — p(21)A$) (3y1 — §y2 — 3fygA£> + (2 + q(xl)Aaz2>y1 + (—1 + p(21)A$) Yo = —r(xl)AxQ,

or {g <—1 _ p%”Aw) T <2 +q(w1)Ax2>}y1 + {—; (—1 _ p(gl)m«) T (—1 T p%”Am) } Yo

2
— —r(:vl)Ax2 + <—1 — pwl)Aw) g'ygA:n

2
Thus, the (1,1) and (1,2) entries of A and the first entry of rhs may need to be modified.

YN+1 — YN
Ax

Similarly, using an ’O(Am) backward difference formula at the right end‘ gives = ~, and

hence ’yNH = yn + V-Az |, which leads to the following modified j = N equation:

(_1 n P(xN)Ax) UN_1 + {(_1 i P(ﬂ;N)Ax) + (2 + q(mN)AwQ) } YN

2

= —r(zn)Az® — (—1 + p%N)Ax) YAz

Thus, the (N, N) entry of A and the last entry of rhs may need to be modified.
3yn+1 —Ayn + yn—1
2Ax

= =, and

Using an | O(Az?) backward difference formula at the right end | gives

4 1 2
hence | yny1+1 = 3UN ~ 3UN-1 + g’yTAm , which leads to the following modified j = N equation:

) () o {3 (12520 s

= —r(xN)Ax2 - <—1 + P($2N) Ax) %’YTAJJ

Thus, the (N, N — 1) and (IV, N) entries of A and the last entry of rhs may need to be modified.



