CHALLENGES? WE GOT AN IDEA!

Network with N servers Challenges of General Service Dist.

1[ 0000000 e A common Markovian Representation for all N

( X ) — sequence of queue lengths are not Markovian

000 — Need to keep track of ages

— dimension of the Markovian state space grows with N

e Would like a more robust framework.

Our Idea: Sequence of Measure-valued Processes

Load Balancing Algorithm:
e Use a common infinite-dimensional state space

e How to assign incoming jobs to servers to achieve good perfor-

mance with low computational cost? ve: unit mass at the ages of jobs in servers with

queues of length at least ¢ .
A performance parameter:

Steady-State Queue Length Probabilities:

Sy = A}im Pss{a typical queue length > 7}
—00

Common Load Balancing Algorithms

o Joins-theShertestQueune not feasible for large V
e SQ(d) (supermarket) algorithm:

— chooses d queues out of V, u.a.r.

— joins the shortest among d

EXPONENTIAL SERVICE DIST.
SQ(d) for Exponential Service Distribution [VDK’96]:

— random routing (d=1)

— Supermarket (d=2)

e Random Routing (d=1): exponential decay.

e one additional choice (d=2): double-exponential decay.

Power of Two Choices

GENERAL SERVICE DIST.

Statistical Observation:

e real-world service time distributions are non-exponential

Questions:

e Does the “power of two choices” also hold for general distribu- Vit

tions? Partial answer by [Bramson-Lu-Prabhakar’13]: SQ(2) for Pareto service

distribution G(z) ~ =7 ® [)y: cumulative departure process from servers with at least £ jobs

— B > 2 (finite variance):
double-exponential decay

- B =2

III. Upon arrival a queue with ¢ — 1 jobs right before arrival,

— B < 2 (infinite variance):
power-law decay EA
o00|0]

exactly [ customers

How about other distributions (e.g. Log-Normal, Weibull?)

e How long does it take to reach “stationarity”?

e How about the transient behavior?
® Ry : routing measure process

e How about time-inhomogeneous (e.g. periodic) arrivals ?

PDEMETHODFOR RANDOMIZED LOAD BALANCING

REZA AGHAJANI, KAVITA RAMANAN, XING]JIE LI, DIVISION OF APPLIED MATHEMATICS, BROWN UNIVERSITY.

MAIN RESULT: HYDRODYNAMIC LIMIT

Definition A process v = (vy; ¢ > 1) solves the measure-valued hydro-
dynamic equations if for all f € C;[0 x c0),

li th
initial jobs ﬁ me;l; 29'"2‘3"’ ﬁ ﬁservice entry (-)depar"rur'e (‘) Routing process
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routing probabilities

routing measure

Theorem: : Existence/Uniqueness of Hydrodynamic Eqns.

For every initial condition v(0) = (v,(0);¢ > 1) with vy > vy44,
the hydrodynamic equations has a unique solution.

-
The hydrodynamic equations can be partially solved
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Theorem: : Hydrodynamic Limit

Let {vM)(¢) = (uéN) (t))e;t > 0} be the representation for the
N-server system with initial condition ") (0). If

1. arrival process E") is a renewal process with rate AV, and
MV /N — ),

2. service distribution G has mean 1 and density g,

3. forevery ¢ > 1, yéN)(O)/N — 14(0),

for some 1,(0), then

N
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N

where v is the unique solution to the hydrodynamic equations
with initial condition v(0).

Corollary: : Propagation of Chaos

If the initial condition is exchangeable, then

K
lim P{X™V(t) > 01, .., X)) > 0k} = (1, ve, (8))-

N —o00 o
k=1

Open question: propagation of chaos on the infinite interval

Remarks on Proof

e show tightness of the subsequence {+v)} identify compen-
sators of certain processes,

o show that every sub-seq. limit solves the hydrodynamic equation.

e Reduce uniqueness of solutions to hydrodynamic equations to
uniqueness of solutions to the system of non-linear PDEs.

e show the uniqueness of non-linear PDEs, (find the right metric)

REDUCTION TO “PDES”

,vp(0)) + /[0 ) G(t — s)dDyy1(s)
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An invariant family under equation (1)

P {hw = CE 000

Theorem: : PDE representation

For every sequence of bounded, continuously differentiable
functions &), the sequence of partial integro-differential equa-
tions

€4t ) =E0(t + 1) — / Gt + 1 — w)ehy (u, 0)du + / Colt, ur)du

with

{ Gt+r—u)(1— & (u,0)?) (=1,
C —
E (Eo—1(u,0) + & (u,0))(Eo—1(u, t +7 —u) — Ep(u, t +7 —u)) £>2.

and with boundary condition

£4(1,0) — €2(0) = / A(w) (€01 (1, 0)? — &¢(u,0)?) du

t
= [ A (€1 (.0) — €0.0?) du,
0
has a unique solution. Furthermore,

Se(t,r) = ("5 ve(?)).

NUMERICAL RESULTS

Hydrodynamic PDEs can be numerically solve, and be used to ap-
proximate the transient behavior queue-length Probabilities:

PDE vs Simulation PDE vs Simulation
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or to gain non-trivial insight on the behavior of the N-server network,
for example,

Virtual Waiting Time

Service distribution with larger variance performs better on getting rid
of initial backlog. A COUNTER-INTUITIVE RESULT!




