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1 Introduction

The simplest linear evolution equations in Mathematical Physics are the classical diffusion

and wave equations. Denoting by x := {z, y, 2z}, t the space time variables and by
u = u(x,t) the field variable, these equations read
. : . ou 9
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Wave equation % =2V%ul, (1.2)

where D and c are positive constants. In above equations V denotes the nabla operator
v—[0 0 0 thtvz'—aQ o a2'thLl' Deferring th
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analysis of wave phenomena, now we consider the diffusion equation which is known to
describe a number of physical models, such as the conduction of heat in a solid (Fourier
law) or the spread of solute particles in a solvent (Fick law). The constant D is called the
diffusivity; its dimensions are L? T, i.e. those of the kinematic viscosity of a fluid.

In these Lecture Notes we consider the one-dimensional diffusion equation,

ou 0%u
o Paoz

equipped with the most simple initial and boundary conditions, and we present the
methods of solution for the related problems based on integral (Fourier - Laplace)
transforms. The use of these transforms leads in a simply way to the concepts of
fundamental solutions or Green functions (in the original variables x,t) and of auziliary
function (in one variable z = 2/v/Dt, referred to as the similarity variable).

, (1.3)

We point out that a number of evolution equations can be reduced by appropriate
transformations (change of independent and dependent variables) to the simple linear
diffusion equation (1.3).

Examples of physical relevance are the (linear) )Fokker-Planck-Kolmogorov equation

— +x—+ul (1.4)

found in non-equilibrium statistical mechanics and the (quasi-linear) Burgers equation

ou ou 0u
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which is found in non linear acoustics. It must kept in mind that the last equation was

just introduced by Burgers as a simple model of turbulence.




The transformation required for the Fokker-Planck-Kolmogorov equation (1.4) is

2t 4

xﬁfzxet, to =2 5 uﬁq):ue_t, (1.6)

which leads to 96 520
— = —. 1.7
or 0 (1.7)

The transformation required for the Burgers equation (1.5) is the celebrated Cole-Hopf
transformation

wat) = -2 -2 = e, d=d(x,t) >0, (1.8)

0P 0?P
I 1.
ot " o2 (1.9)
The Cole-Hopf transformation can be better understood in the following two steps

ov

= —— 1.10

u=-—a (1.10)

2
V:%ln(b. (1.11)

The equation satisfied by V' = V(z,t), known as the Potential Burgers equation, turns
out to be

oV X [OV\? 0%V
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2 Physical insights: heat conduction

To begin with, it is important to have a physical understanding of how (1.1) arises, and
we consider the simple model of heat conduction in a solid: in this case u(x,t) represents
the temperature in a solid at position x and time .

The field equation (1.1) governing the temperature is a consequence of the Fourier law

[a= K] 2

and the energy balance equation (in the absence of work, heat sources and heats sinks)

0
pca—?:JrV-q:O, (2.2)




where q = q(x,t) denotes the heat fluz, i.e. the amount of heat per unit area per unit
time conducted across a plane cross-section, K is the thermal conductivity, c is the specific
heat and p is the mass density. The quantity € = €(x,t) = p cu(x, t) represents the specific
internal energy. Eliminating q from (2.1-2) yields (1.1), where the diffusivity D turns out
to be given by

K
D=

=) (2.3)

In order to get more physical insight, in Table I we provide the values of the physical
constants {p,c, K, D} entering Eq. (2.3) for various materials (at room temperature).
The units are c.g.s., calorie, and °C' so that in this system one measures p in g/cm3, ¢
in cal/g°C, K in cal/cm s°C and D in em?/s. We point out that the diffusivity has the
dimensions of a kinematic viscosity. This Table is intended only to indicate the orders of
magnitude likely to occur in practice.

Substance Density p | Specific heat ¢ | Conductivity K | Diffusivity D = K/(pc)

Gold 19.30 0.03 0.70 1.18

Mercury 13.55 0.03 0.02 441072
Silver 10.49 0.06 1.00 1.71
Copper 8.94 0.09 0.93 1.14
Brass 8.50 0.09 0.25 0.33
Zinc 7.14 0.09 0.27 0.41

Granite 2.60 0.21 761073 1.11072

Soil (average) 2.50 0.20 231073 461073

Glass (crown) 2.40 0.20 2.81073 581073

Concrete 2.30 0.23 221073 421073

Water 1.00 1.00 1.41073 1.410°3
Air 1.291073 0.24 5.8107° 0.19

Table I: Thermal properties of some common substances

We note from the Table that among the metals, the diffusivity reaches its highest value
with silver, and its lowest value with mercury; among the non-metals, the diffusivity
reaches its highest value with air, and its lowest value with water.



When the heat conduction can be considered as a one-dimensional phenomenon, e.g. if
the solid is a thin rod extended along the z-axis, the field equations (2.1-2) reduce to

ou  Oq
pca+a—x—0. (2.5)

In this case the temperature u(z,t) turns out to be governed by the one-dimensional
diffusion equation (1.3).

3 Mathematical insights: boundary value problems

Like for any partial differential equation (pde) occurring in mathematical physics, we must
specify some boundary conditions (i.e. the values attained by the field variable and/or by
certain its derivatives on the boundary of the space-time domain) in order to guarantee
the existence, the uniqueness and (hopefully) the determination of a solution of physical
interest to the problem.

There are many possible boundary conditions for the diffusion equation (1.3). To avoid
unproductive generalities, we consider the most simple boundary conditions, the physical
meaning of which suggests that they are sufficient to determine the solution u(zx,t). In
this respect, for easier visualization, we could retain the terminology of heat transfer.

As far as the space-time domain is concerning, we presume that ¢ varies in the semi-
infinite interval 0 < ¢ < +o0o, while the variable £ may range in an interval which may
be bounded or unbounded at one or both sides. Accordingly, we have in the x — ¢ plain,
as fundamental region of the pde (1.3), either a half-strip or a quadrant or a half-plane.

As far as the boundary values are concerning, retaining the terminology of heat transfer,
we specify the initial temperature of the conductor by a function of x, say f(z), and the
temperature at the end points by two functions of ¢, say ¢(t), h(t). More precisely, these
boundary conditions are understood as limits as (x , t) approaches the respective boundary
along a line orthogonal to it; in mathematical terms, with —oo < a < b < +00, we write
the boundary conditions as follows

lim wu(z,t) :=u(z,07) = f(z), a<wz<b (3.1)

t—0+ ’

and

lim u(x,t) = £>0). (3.2)

r—b—

{ lim u(z,t) = u(a®,t) =
u




For practical purposes, if the medium is bounded at both sides or unbounded at one side,
it may be convenient to refer to the intervals 0 < x < L or 0 < x < 400, respectively.

Because of the linearity of the diffusion equation, the above boundary value problem
(BVP) [(1.3)+ (3.1-2)] can be formatted as the superposition of three distinct BV P as
follows.

Denoting by D the differential operator of diffusion, i.e.
0 0?

Di= o —D s, (3.3)
and writing
u(z,t) = uy(z,t) + us(z, t) + ug(z,t), (3.4)
we require
(a) Duy(x,t) =0, ui(z,07) = f(x), uy(a™,t) =0, uy(b",t)=0; (3.5a)
(b) Dug(x,t) =0, us(z,07) =0, us(a®,t)=g(t), us(b-,t) =0; 3.5b)
(¢) Dus(z,t) =0, wuz(z,0t)=0, wuz(a®,t)=0, wuz(b",t)=h(t). (3.5¢)

The given functions f, g, h, usually referred to as data functions are requested to satisfy
some regularity conditions. Here we intend to privilege the application of transform
methods based on the space FOURIER transform and the time LAPLACE transform to
find the solution in the space-time domain. Therefore, for our purposes, the following
requirements for the data functions are sufficient: the space function f(z) must admit the
Fourier transform ( if their support is finite, the Fourier series expansion), whereas the
time functions g¢(t), h(t) must admit the Laplace transform.

Having in mind the application of the Laplace transform in the time variable, we have
implicitly assumed, for ¢ < 0, the medium to be quiescent (at a constant equilibrium
temperature, using the terminology of heat transfer); without loosing in generality, we
require u(z,t) = u(x,07) =0 for a < z < b, t < 0. This implies that in our approach
any function of ¢ is assumed to be causal. For a causal function we mean a function ¢(t)
vanishing for ¢ < 0 so that, sometimes, it may be convenient to point out this fact writing

b1(1) = (1) O(t), where O(t) = {é i izg (3.6)

denotes the Heaviside or unit-step function. For this function it is usual to find alternative
notations, as H(t) or 1(t).



4 Cauchy and Signalling problems: the results

The two basic problems for the diffusion equation are usually referred to as the Cauchy
problem and the Signalling problem. The former is provided by (2.10a) with a = —oco, b =
+00, the latter by (2.10b) with a =0, b = 400 In this Section we would like to present
in detail the results concerning the above problems.

In the Cauchy problem the medium, supposed unlimited (—oo < x < +00), is subjected,
for t = 0, to a known disturbance, provided by a function f(x); the conditions thus read

(4.1)
u(+oo,t) =0, t>0.

{u(az,()*) = f(z), —oo<z<+00;
Since the boundary values which are specified along the boundary ¢ = 0, usually are called
initial values, this problem can be considered a pure initial-value problem (IV P).

In the Signalling problem the medium, supposed semi-infinite (0 < x < +00) and initially

undisturbed, is subjected, at x = 0 (the accessible end) and for ¢ > 0, to a known

disturbance, provided by a causal function g(t); the conditions thus read

u(r,07) =0, 0<z<4o0; (42)
w(0t,t) = g(t), u(+oo,t) =0, t>0. '

This problem is also referred to as the initial boundary value problem (IBV P) in the
quadrant {z, ¢t} > 0.

The next Sections are devoted to find the solutions to the above problems by using
methods based on integral transforms. Hereafter we resume the results. For each problem
the solution turns out to be expressed by a proper convolution between the source function
and a characteristic function (the so-called Green function or fundamental solution of the
problem) according to the following scheme.

“+00

Cauchy problem : |u(xz,t) = Ge(&,t) flx — &) dé = Ge(x,t) * f(x)], (4.3)

where * denotes the (bilateral) space convolution. The function G.(x,t), referred to as
the Green function for the Cauchy problem, turns out to be

Go(x,t) = 2\/1%_D (12w /(D) (4.4)

It represents the solution for f(x) = 6(z), where §(z) denotes the Diracor delta generalized
function.




t
Signalling problem : |u(z,t) = / Gs(z, 1) g(t — 1) dT = Gs(, 1) * g(t)], (4.5)
0

where now * denotes the (unilateral) time convolution. (For causal functions the unlimited
interval of the integral simply reduces to [0, t]). The function Gs(z,t), referred to as the
Green function for the Signalling problem, turns out to be

gs<SL’, t) _ % +3/2 6—1‘2/(4D t) . (4.6)

It represents the solution of the problem for ¢g(t) = . (¢), where 6, (¢) is denoting the
causal delta generalized function.

We point out that, because of their relevance to construct the appropriate solution for
any Cauchy or Signalling problem, the Green functions (4.4) and (4.6) are also referred
to as the fundamental solutions for the respective problems. At the end of these Lecture
Notes some plots of G.(x,t), Gs(x,t) are presented, either versus = at fixed ¢, or versus ¢
at fixed z, [see Figs. 1-4].

Introducing in Eqs (4.3)-(4.4)the new variable of integration n = n(¢),

RS
n_Q\/D—ta

we obtain an alternative representation for the general solution of the Cauchy problem,

u(z,t) = % /:O 6_772 f (x -2 \/En) dn. (4.8)

(4.7)

Introducing in Eqs (4.5)-(4.6) the new variable of integration o = o(7),
T

2vD T ’

we obtain an alternative representation of the general solution of the Signalling problem,

(2,1) = = / R RN B (4.10)
u\xr = —= (§] — ag . .
’ T Ju/2vDi g 4D o2

A noteworthy particular case of (4.10) is obtained when g(¢) = ©(¢). In this case the
solution turns out to be

(4.9)

(4.11)

u(z, ) == Hy(z, t) = erfc (2\/ng7>

where erfc denotes the complementary error function, see Remark at the end of this
Section.




Plots of the function H,, which is referred to as the step response for the Signalling
problem, are presented, either versus z at fixed ¢, or versus ¢ at fixed z, in Figs 5-6,
respectively, at the end of the Lecture Notes. This solution is related to the corresponding
Green function by the relation

Hs(z,t) = /Ot Gs(x,7)dr|. (4.12)

In the next Sections 5 and 6 the functions G, and G, will be derived by using the techniques
of Fourier and Laplace transforms, respectively.

We note from Eqgs (4.4), (4.6) that the following relevant property is valid for {z,¢} >0,
zGe(x,t) =tGs(z,t) = F(2)|, (4.13)

where

- Fe) =2 M(), M(z) = % =214 (4.14)

The first equality in (4.13) can be referred to as the reciprocity relation between the two
Green functions. In Eqs (4.13)-(4.14) z represents the similarity variable and F(z), M(z)
are referred to as the auxiliary functions in that through them the Green functions can
easily be derived. The analyticity properties of the auxiliary function M (z), as series and
integral representations in the complex plane, will be discussed later, in the Lecture Notes
devoted to the time fractional diffusion-wave equation.

Remark: We recall that the error function erf (x) is (usually) defined as

erf (z) := — / ¢, rzeR|. (4.15)

We note: erf (—z) = —erf (x) with erf (£o0) = £1. Its Taylor series (around z = 0) reads

o0

2n+1 _ 2 g 2" on + 1
f(x = — E —_— ) )
o NZS ¢ — (2n+ 1) v (4.16)

f Zn' 2n+1)

2
Its derivative is erf’(x) = 2e ~% /\/m. The complementary error function erfc () is

erfe (x) := 1 —erf (2) : \/_ /+00 2 rzeR]J. (4.17)

2
We point out the asymptotic representation: erfc(z) ~ e~ % /(/mx), as * — oo, that
provides a good approximation already from x > 1.5. To get more insight on the family
of the error functions {erf (x), erf’(x), erfc (z)} see Fig. 7 and Table II.



5 The Green function for the Cauchy problem
via Fourier transform

For the Cauchy Problem the use of the Fourier transform (F'T') with respect to z is
straightforward. We adopt the following notation (k € IR)

= o e Fikx . _i e tikx~
u(k,t) == e u(z,t)de + u(z,t) = e u(k,t)dr|.

2

[e.e] e}

Applying FT to [(1.3)+(4.1)] we get the first-order differential equation in ¢,

di
d—?+Dm2@:0, t>0, (5.1)
with the initial condition R
u(k,01) = f(k). (5.2)
The solution of this initial value problem is
~ 2
Uk, t) = f(r)e DR (5.3)
Introducing
~ 2
Ge(k,t) := e~ DR, (5.4)

the transform solution (5.3) reads
(s, t) = F() Goll 1). (5.5)

Then, applying the convolution theorem for Fourier transforms, the solution in the space-
time domain turns out to be

+o0

u(w,t) = Ge(&:1) f(z — &) d§ = Ge(x, 1) * f(x)

(5.6)

where G.(z,t) is the Green function for the Cauchy problem. For the inversion of G, (. t)
we recall the Fourier transform pair [see e.g. Ghizzetti-Ossicini, pp. 69-70; Papoulis, pp.
24-25]

e_c“£2 + ! e—x2/(4a) (a>0)], (5.7)

which yields to (a = Dt)

Ge(z,t) = 1 e~ /(4D1) | (5.8)




6 The Green function for the Signalling problem
via Laplace transform

The Signalling Problem is conveniently treated by the Laplace transform (LT') technique
with respect to t. We adopt the following notation (s € C)

+oo 1
o) = [ e Mu@nd + et =5 [ ot ds)
0 ™ Jpr

Applying LT to [(1.3)+(4.2)] we get the second-order differential equation in =,

d*u

5
@(x,s)—ﬁu(x,s)zo, x>0, (6.1)
with the boundary conditions
(0%, s) =g(s), u(+oo,s)=0. (6.2)

Solving (6.1) we find u(x, s) = ¢1(s) e_(x/\/ﬁ) 5'/? + ca(s) e+<x/\/5) s/ ; then, choos-

ing c1(s) = f(s) and ca(s) = 0 to satisfy the boundary conditions (6.2), we get

/VD)s'?. (6.3)

i, s) = g(s) e

Introducing

Q~s(:17, s) = e_(x/\/ﬁ) s'/? : (6.4)

the transform solution (6.3) reads

Uz, s) = §(s) Go(x, 5) . (6.5)

Then, applying the convolution theorem for Laplace transforms, the solution in the space-
time domain turns out to be

u(z,t) = /0 Gs(x,7) g(t — 1) dr = Gs(2,t) * g(t) ], (6.6)

where G,(z, t) is the Green function for the Signalling problem. For the inversion of G,(z, s)
we recall the Laplace transform pair

e @ st # 3/ e_a2/(4t) =(a,t) (a>0)]|, (6.7)
which yields (a = 2/v/D)
Gy(w,t) = 2\/% e~ /(4D 1) | (6.8)

11



Let us now consider the noteworthy particular case g(t) = ©(t) that provides the step
response Hs(x,t) = fot Gs(z, 7) dr according to Eq. (4.12). In fact, from Eqs (6.4)-(6.5),
we have:

—~ Gs(x,s) .

Hs(x,s) = ; (6.9)
For the inversion of i(w, s) we recall the transform pair
1/2
e @5 a
T e () = pat , (6.10)
. erfc <2\/E> ¢(a,t) (a>0)

which yields (a = 2/v/D)

H,(x,t) = erfe (2&) . (6.11)

in agreement with (4.11).

An interesting signalling problem is concerning the medium, supposed semi-infinite
(0 < z < 400) and initially undisturbed, when it is subjected, at = = 0 (the accessible
end) and for £ > 0, to a known gradient (heat fluz for the heat conduction model) provided
by a causal function

gty = K 2 (6.12)

We refer to it as to the fluz-signalling problem. In this case the conditions read

u(x,07) =0, 0<z<+00;

ou, . (6.13)
8_<0 ) =—q(t)/K, u(+o0,t) =0, t>0.

x

Applying LT to [(1.3)4(6.13)] we get the (usual) second-order differential equation in x,

d*u ~
d—g(:p,s)—%u(:p,s)zo, x>0, (6.1)
T
with the (new) boundary conditions

;l_g(oa §) = —q(s)/K, (+o0,s)=0. (6.14)

Note the difference between [(6.1)+(6.2)] and [(6.1)4(6.14)]. Solving (6.1) we find

x/\/ﬁ) s'/? + co(s) e+(x/\/5) s'/? ;

u(z, s) = ci(s) o

12



and hence, choosing
as) ca(s) =0,

S
s1/27
we

=I5

c(s) =

to satisfy the boundary conditions (6.14), we get

VD _ —(a:/\/ﬁ) s1/2
u(z,s) = e q(s) © VG : (6.15)

Introducing

. ~(z/VD)s"/?

Gg(z, 8) = - 51/2 ’ (6.16)
the transform solution (6.15) reads

D -
ite.s) = Y2 30) Gy ). (617)

K

Then, applying the convolution theorem for Laplace transforms, the solution in the space-
time domain turns out to be

u(z,t) = g /Ot Gz, 7)q(t —7)dr = g Gy(x,t) % q(t) |, (6.18)

where G,(z,t) is the Green function for the Heat-Flow Signalling problem. For the
inversion of G,(z, s) we recall the Laplace transform pair

—a 81/2 2
GST - %tlﬂ om0 /(41) . x(a,t) (a>0)| (6.19)
which yields (a = 2/v/D)
G, (x,1) = \/%e_ﬁ/ 4D1)| (6.20)

Plots of the Green function G, are presented, either versus x at fixed ¢, or versus ¢ at
fixed z, in Figs 8-9, respectively, at the end of the Lecture Notes. We note that G, = 2G,,
compare (6.20) with (5.8) for = > 0.

We point out the relevance in diffusion problems of the three functions ¢(a,t), ¥ (a,t)
and x(a,t). We note that the relations among the three functions turn out to be easily
derived by working in the Laplace transform domain. In view of these relations we like
to call these functions the three sisters!

13



CAUCHY PROBLEM: Green Function versus X
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Fig 1: The Green function for the Cauchy problem versus .

CAUCHY PROBLEM: Green Function versus  t

G (xt) 2.5 I I I I I

x=0.1

1| x=02

0.5

x=0.5
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Fig 2: The Green function for the Cauchy problem versus t.
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SIGNALLING PROBLEM: Green Function versus  x

G () 1 \ \ \ T T

Fig 3: The Green function for the Signalling problem versus x.

SIGNALLING PROBLEM: Green Function versus  t
G (xt) 4 T T T T T

0.7 0.8 0.9

Fig 4: The Green function for the Signalling problem versus .

15



H (it

H_(xt) 1 T T T T T

SIGNALLING PROBLEM: Step Response versus X

Fig 5: The step response for the Signalling problem versus x.

SIGNALLING PROBLEM: Step Response versus t
1 I I I I I

Fig 6: The step response for the Signalling problem versus t.
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Error Functions

T
\}
1
1

>
w2 e™ x

erfc(x)

erf(x)

-2 -15 -1 -0.5 0 05 1 15 2

Fig 7: Plots of erf (z), erf’(z) and erfc (z) in the interval —2 <z < +2.

T 0.00 | 0.10 { 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 1.00 | 1.50 | 2.00

erf (z) || 0.00 | 0.12 | 0.22 | 0.33 | 0.43 | 0.52 | 0.60 | 0.68 | 0.74 | 0.80 | 0.84 | 0.97 | 0.99

erf’(z) || 1.13 | 1.12 | 1.08 | 1.03 | 0.96 | 0.88 | 0.79 | 0.69 | 0.59 | 0.50 | 0.42 | 0.12 | 0.02

erfc (z) || 1.00 | 0.88 | 0.78 | 0.67 | 0.57 | 0.48 | 0.40 | 0.32 | 0.26 | 0.20 | 0.16 | 0.03 | 0.01

Table II: Selected values of erf (x), erf’(x) and erfc () in the interval 0 < z < 2.
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FLOW SIGNALLING PROBLEM: Green Function versus x

1.4 T T T
Gq(x:t)

1.2

t=0.25

Fig 8: The Green function for the flux-signalling problem versus x.

FLOW SIGNALLING PROBLEM: Green Function versus t

1 I I I I
Gq(x;t)

Fig 9: The Green function for the flux-signalling problem versus ¢.
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