Equazioni integrali di Abel Fisica Matematica 2

Franco Laudanna Del Guerra

21 Giugno 2007

Introduzione

Risoluzione delle equazioni integrali di Abel

Il problema della Tautocrona

La trattazione delle equazioni integrali è iniziata da N.H Abel nel 1800 con gli studi sulla Tautocrona ed è continuata grazie ai contributi di importanti matematici quali V. Volterra, E.I. Fredholm, D Hilbert, F.G Tricomi.

- 1. Intervallo di integrazione
- 2. Specie
- 3. Singolarità

- $\int_a^b K(t,\tau)u(\tau) d\tau$ Fredholm
- $\blacktriangleright \int_a^t K(t,\tau)u(\tau) d\tau$ Volterra

 $K(t,\tau)$ kernel (conosciuto); u(t) funzione (sconosciuta)

- $\blacktriangleright \int_a^{b,t} K(t,\tau) u(\tau) d\tau = f(t)$ Prima specie
- $u(t) + \lambda \int_a^{b,t} K(t,\tau) u(\tau) d\tau = f(t)$ Seconda specie

f(t) termine libero (conosciuto)

Introduzione Risoluzione delle equazioni integrali di Abel Il problema della Tautocrona

Caratteristiche delle equazioni integrali Intervallo di integrazione Specie Singolarità Casi particolari di kernel

L'aggettivo singolarità è usato quando l'integrazione è impropria, per esempio, se l'intervallo è infinito..

Nel nostro corso abbiamo studiato equazioni di tipo convolutivo in cui a=0 e il kernel soddisfa le condizioni $K(t,\tau)=K(t-\tau)$.

In particolare definiamo equazioni integrali di tipo Abel quelle in cui abbiamo un kernel del tipo:

$$K(t) = \frac{1}{\Gamma(\alpha)} \frac{1}{t^{1-\alpha}} \tag{1}$$

con 0 <
$$lpha$$
 < 1 e $\Gamma(lpha) = \int_0^\infty e^{-u} u^{lpha-1} \, dlpha$

Il metodo del calcolo frazionario per risolvere le equazioni integrali fu intuito da Abel (1823,1826) prima che Liouville e Riemann lo sviluppassero in maniera più rigorosa. Per risolvere le equazioni integrali necessitiamo delle definizioni di operatore integrale frazionario J^{α} e di operatore derivata frazionaria D^{α}

Integrale frazionario di ordine $\alpha > 0$

$$J^{\alpha}f(t) = \Phi_{\alpha}(t) * f(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-\tau)^{\alpha-1} f(\tau) d\tau$$
 (2)

con t > 0 e $\alpha \in \mathbb{R}^+$ e:

$$\Phi_{\alpha}(t) := \frac{t_{+}^{\alpha - 1}}{\Gamma(\alpha)} \tag{3}$$

Funzione di Gel'fand-Shilov

Derivata frazionaria di ordine $\alpha > 0$

$$D^{\alpha}f(t) = D^{m}J^{m-\alpha}f(t) = \frac{d^{m}}{dt^{m}} \left[\frac{1}{\Gamma(m-\alpha)} \int_{0}^{t} \frac{f(\tau)}{(t-\alpha)^{\alpha+1-m}} d\tau \right]$$

$$\cot t > 0 , m \in \mathbb{N} , m-1 < \alpha < m$$
(4)

Da queste definizioni riconosciamo come l'equazioni di Abel possano essere scritte in quetso modo:

- $J^{\alpha}u(t) = f(t)$ Prima specie
- $(1 + \lambda J^{\alpha})u(t) = f(t)$ Seconda specie

Risolvendo si ottiene per la prima specie:

$$u(t) = D^{\alpha} f(t) \tag{5}$$

con $0 < \alpha < 1$ implica m=1

$$u(t) = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_0^t \frac{f(\tau)}{(t-\tau)^\alpha} d\tau$$
 (6)

Per la seconda specie invece ci si riconduce ad una forma del tipo:

$$u(t) = \left(1 + \sum_{n=1}^{\infty} (-\lambda)^n J^{\alpha n}\right) f(t) \tag{7}$$

Successivamente sfruttando la definizione di integrale frazionario e le funzioni di Gel'fand-Shilov e di Mittag-Leffler si arriva alla soluzione:

$$u(t) = \frac{d}{dt} \int_0^t e_{\alpha}(t - \tau; \lambda) f(\tau) d\tau$$
 (8)

con

$$e_{\alpha}(t;\lambda) := E_{\alpha}(-\lambda t^{\alpha}) := \sum_{n=0}^{\infty} \frac{(-\lambda)^n t^{\alpha n}}{\Gamma(\alpha n + 1)}$$
 (9)

Definizione Risoluzione del problema Un caso particolare: l'Isocrona La Tautocrona risolta tramite la trasformata di Laplace

La Tautocrona è la curva per cui il tempo impiegato da una particella, che scivola lungo di essa senza attriti, per arrivare al punto più basso di essa è uguale ad una data funzione della sua altezza iniziale. Il problema fù studiato da Abel che cercò di determinare la curva tramite il calcolo frazionario e discusse anche il caso dell'Isocrona in cui il tempo di discesa è indipendente dall'altezza di partenza.

Definizione Risoluzione del problema Un caso particolare:l'Isocrona La Tautocrona risolta tramite la trasformata di Laplace

Animazione isocrona

Si parte dalla conservazione dell'energia:

$$\frac{m}{2} \left(\frac{ds}{dt} \right)^2 = mg(Y - y) \tag{10}$$

-Dove s è l'arco di curva, m è la massa della particella, g è l'accelerazione di gravità,(X,Y) sono le coordinate del punto di partenza Poniamo ds/dt< 0 e scriviamo:

$$ds = -\sqrt{2g(Y - y)}dt = -|v|dt \tag{11}$$

dove v è la velocità scalare.

Definizione Risoluzione del problema Un caso particolare:l'Isocrona La Tautocrona risolta tramite la trasformata di Laplace

Allora possiamo scrivere:

$$T(Y) = \int_0^{s(Y)} \frac{ds}{|v|} = \frac{1}{\sqrt{2g}} \int_0^Y \frac{(ds/dy)}{\sqrt{Y - y}} dy \tag{12}$$

E' possibile ricondursi ora ad un equazione integrale di prima specie ponendo $u(y) = \frac{ds}{dy}$ e $f(y) = \sqrt{\frac{2g}{\pi}T(Y)}$:

$$\frac{1}{\Gamma(1/2)} \int_0^Y \frac{u(y)}{\sqrt{Y - y}} = f(y) = J^{1/2} u(Y) \tag{13}$$

che ha come soluzione:

$$u(Y) = D^{1/2}f(Y) = \frac{1}{\Gamma(1/2)} \frac{d}{dY} \int_0^Y \frac{f(y)}{\sqrt{Y-y}} dy$$
 (14)

Definizione Risoluzione del problema Un caso particolare:l'Isocrona La Tautocrona risolta tramite la trasformata di Laplace

La soluzione è dunque:

$$s(Y) = \frac{\sqrt{2g}}{\pi} \int_0^Y \frac{T(Y)}{\sqrt{Y - y}} dy \tag{15}$$

Nel caso dell'Isocrona si pone T(Y)=costante e quindi si ottiene:

$$s(Y) = \frac{T\sqrt{2g}}{\pi} \int_0^Y \frac{1}{\sqrt{Y - y}} dy = 2\sqrt{2R} Y^{1/2}$$
 (16)

con $R=g\frac{T^2}{\pi^2}$. Si può dimostrare che la curva dell'Isocrona è una cicloide generata da un punto fisso di un cerchio di raggio R che scorre senza scivolare sotto la linea y=2R

Definizione Risoluzione del problema **Un caso particolare:l'Isocrona** La Tautocrona risolta tramite la trasformata di Laplace

Animazione cicloide

Vediamo ora un metodo alternativo per risolvere il problema della Tautocrona, l'utilizzo della trasformata di Laplace. Si parte dall'equazione:

$$T(Y) = \int_0^{s(Y)} \frac{ds}{|v|} = \frac{1}{\sqrt{2g}} \int_0^Y \frac{(ds/dy)}{\sqrt{Y-y}} dy \tag{17}$$

Questa può essere vista come la convoluzione fra $\frac{ds}{dy}$ e $\frac{1}{\sqrt{y}}$.

Applichiamo una trasformata di Laplace da entrambe le parti, sfruttando le proprieta di quest'ultima a riguardo della convoluzione ed otteniamo:

$$\mathcal{L}\left[T(Y)\right] = \frac{1}{\sqrt{2g}} \mathcal{L}\left[\frac{1}{\sqrt{y}}\right] \mathcal{L}\left[\frac{ds}{dy}\right] \tag{18}$$

Poichè $\mathcal{L}\left[\frac{1}{\sqrt{y}}\right]=\sqrt{\pi}s^{-1/2}$ possiamo scrivere:

$$\mathcal{L}\left[\frac{ds}{dy}\right] = \sqrt{\frac{2g}{\pi}} s^{1/2} \mathcal{L}\left[T(Y)\right] \tag{19}$$

A questo punto data T(Y) basta ritrasformare per ottenere il risultato.

Definizione Risoluzione del problema Un caso particolare:l'Isocrona La Tautocrona risolta tramite la trasformata di Laplace

Ponendo T costante e sapendo che $\mathcal{L}[1] = \frac{1}{s}$ otteniamo:

$$\mathcal{L}\left[\frac{ds}{dy}\right] = T\sqrt{\frac{2g}{\pi}}s^{-1/2} \tag{20}$$

Che trasformando di nuovo mi da come risultato:

$$\frac{ds}{dy} = T \frac{\sqrt{2g}}{\pi} \frac{1}{\sqrt{Y - y}} \tag{21}$$