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Abstract

The advection dispersion model in ground water hydrology uses
random fields to interpolate sparse data on hydraulic conduc-
tivity. This partial differential equation is used to model flow
and transport in porous media, and typically solved by numerical
methods. The fractional advection dispersion equation provides
a convenient upscaling.
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Traditional model for groundwater flow and

transport [B72]

Step 1: Measure hydraulic conductivity K(x), a tensor field that

codes how easily water can flow through a porous medium.

Step 2: Compute the hydraulic head (pressure) h(x, t) by nu-

merically solving the groundwater flow equation

∂h(x, t)

∂t
= a∇ ·K(x)∇h(x, t) + f(x, t),

where f(x, t) is a source/sink term.

Step 3: Compute the velocity field v(x, t) using Darcy’s Law

v(x, t) = −bK(x)∇h(x, t).



Groundwater flow and transport (continued)

Step 4: Compute solute concentration C(x, t) by numerically

solving the advection-dispersion equation

∂C(x, t)

∂t
= −∇ · v(x, t)C(x, t) +∇ ·D(x, t)∇C(x, t) + F (x, t),

where F (x, t) is a source/sink term and D(x, t) is the dispersivity

tensor (normal covariance matrix).

Typical simplifying assumptions:

1. Steady state hydraulic head h(x)

2. Steady state velocity field v(x)

3. Scalar dispersion D(x) = λ‖v(x)‖I
4. Scalar hydraulic conductivity K(x) = K(x)I

5. Gaussian lnK field with isotropic exponential correlation



Data requirements

Consider a bounded (rectangular) domain in R
2 or R

3

Establish (or assume) boundary conditions for hydraulic head h

Measure hydraulic conductivity K at some points (expensive!)

Extrapolate K field to all (> 106) grid points in the domain

Typically, we have just a few vertical columns of K data

Each vertical column contains 100 to 500 data points



Data source: The MADE site [MDDHB13]

MAcroDispersion Experimental Site (MADE) in Columbus MS.
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Hydraulic conductivity data distribution

[MDDHB13]

Histogram of measured lnK data (one column, n = 561).
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Hydraulic conductivity data correlation

[MDDHB13]

Autocorrelation function for one column of lnK data (n = 561).
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Fractional difference (fractal filter) [MDDHB13]

Apply a fractional difference filter to the data Xn = lnK(x, y, zn)

to obtain an uncorrelated sequence

Zn =
∞∑

j=0

(−1)j
(
d
j

)
Xn−j

where the fractional binomial coefficients(
d
j

)
=

Γ(d+1)

j!Γ(j − d+1)

for some d > 0. Then Xn is a fractionally integrated white noise.

If d = 1 then Zn = Xn −Xn−1, so that Xn = Z1 + · · ·+ Zn.

If Zn is Gaussian and 0.5 < d < 1.5, then Xn is an fBm with

Hurst index H = d− 0.5 sampled at equally spaced points.



Filtering out the data correlation [MDDHB13]

A fractional difference with d = 0.9 removes the correlation.
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Distribution of the filtered data [MDDHB13]

A fractional difference with d = 0.9 reveals that the underlying

distribution has heavier tails and a sharper peak than the best

fitting Gaussian.
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Our model for lnK [MDDHB13]

We simulate an anisotropic Gaussian lnK field in each layer,

conditional on the observed data (solid black lines) and sample

one column (white dotted line) for model validation.



Simulated column of lnK data [MDDHB13]

The simulated lnK data in a single column (white dotted line)

is a Gaussian mixture, resembling the lnK data.
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Parameterizing the ADE [MS12]

Apply the Fourier transform

Ĉ(k, t) =
∫
x∈Rd

e−ik·xC(x, t) dx

in the constant coefficient ADE with F (x,0) = δ(x) to get

dĈ(k, t)

dt
= −(ik) · v Ĉ(k, t) + (ik) ·D(ik) Ĉ(k, t)

with initial condition C(k,0) = 1. Then obviously

Ĉ(k, t) = exp
[
− (ik) · vt+ (ik) ·D(ik)t

]
which inverts to a multivariate Gaussian PDF with mean vt and

covariance matrix 2Dt.

Sums of IID particle jumps with mean v and covariance matrix

2D converge to this PDF.



Solution to the ADE with constant coefficients [MS12]

Level sets are ellipses whose principal axes are the eigenvectors

of the covariance matrix, centered at the mean.
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Fractional advection dispersion equation [MS12]

A convenient upscaling model

∂C(x, t)

∂t
= −∇ · v(x, t)C(x, t) + a∇α

MC(x, t) + F (x, t),

where the fractional derivative ∇α
MC(x, t) has Fourier transform∫

‖θ‖=1
(ik · θ)αM(dθ) Ĉ(k, t)

and M(dθ) is the PDF of a random unit vector.

Now C(x, t) is the PDF of an α-stable random vector. If Θ has

PDF M(dθ) and P (R > r) = Cr−α then sums of IID particle

jumps RΘ converge to this stable random vector.

Strongly correlated jumps in the ADE lead to the FADE.



Solution to the fractional ADE: Case 1 [MS12]

Jump direction M(dθ) along the coordinate axes.
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Solution to the fractional ADE: Case 2 [MS12]

Jump directions M(dθ) along the positive coordinate axes.
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A richer class of models [MS12]

If jump direction PDF M(dθ) is uniform over the sphere, level

sets are also spheres (fractional Laplacian).

Fourier symbols for the three cases:

(ik1)
α + (ik2)

α �= −|k1|α − |k2|α �= −‖k‖α

except in the very special case α = 2 (traditional ADE).



Parameter estimation: Method 1 [AMP06]

Hydraulic conductivity K data fits a (possibly truncated) power

law PDF ⇒ fractional parameter α ≈ 1.1. Spreadsheet tool for

fitting at www.stt.msu.edu/users/mcubed/TahoeTruncPareto.xls
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Parameter estimation: Method 2 [CML09]

Fit a stable PDF to measured concentration data in 1-D, with

95% confidence bands. Note retention at injection site. We now

have a Matlab code for fitting.
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Parameter estimation: Method 2 [CML09]

Log-log plot reveals the power law tail α ≈ 1.1. Alternative fit

with α = 0.7 (dotted line) is also shown.
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Vector parameter estimation [MS12]

Spreading rate t1/α varies with direction in 2-D data.
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Strongly anisotropic fractional diffusion equation

[MS12]

The simplest model with α1 �= α2 is

∂

∂t
C(x, y, t) = D1

∂α1

∂xα1
C(x, y, t) +D2

∂α2

∂yα2
C(x, y, t)

The random walk model is REΘ where M(dθ) is concentrated

on the positive coordinate axes, P (R > r) = Cr−1 and E is a

diagonal matrix with entries 1/αi.

The eigenvectors of the covariance matrix of particle location

data provide a consistent estimator of the correct coordinate

vectors. The eigenvalues can also be used to estimate the frac-

tional parameters αi [MS99].



Stochastic differential equations [ZBMS06,C09]

If Xt is an α-stable Lévy process and

|a(y)|2 + |b(y)|2 ≤ C(1 + |y|2) (growth condition)

|a(y1)− a(y2)|2 + |b(y1)− b(y2)|2 ≤ C|y1 − y2|2 (Lipschitz)

then there exists a unique solution to dYt = a(Yt)dt+ b(Yt)dXt, a

Markov process whose PDF solves

∂C(x, t)

∂t
= − ∂

∂x
[a(x)C(x, t)]

+ pD
∂α

∂xα
[b(x)αC(x, t)] + qD

∂α

∂(−x)α
[b(x)αC(x, t)]

These conditions are sometimes violated in practice [BKMSS16].



Reaction-diffusion equations in Ecology

[BKM08]

Traditional model for population growth and dispersal

∂P

∂t
= C

∂2P

∂x2
+D

∂2P

∂y2
+ rP

(
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Fractional reaction-diffusion equation [BKM08]

Fractional derivatives model fast spreading via long movements.

∂P

∂t
= C

∂1.7P

∂x1.7
+D

∂2P

∂y2
+ rP

(
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)
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Real invasive species data shows this behavior.
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