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Conservative FDE (del-Castillo-Negrete et al 04; Ervin & Roop 05; Zhang et al 07)

Lβθu(x) := −D
(
K(x)

(
θ C,l
a D1−β

x u− (1− θ) C,rx D1−β
b u

))
= f(x), x ∈ (a, b),

u(a) = ul, u(b) = ur, 0 < β < 1, 0 ≤ θ ≤ 1.
(1)

derived from a local mass balance + a fractional Fick’s law.

θ is the weight of forward versus backward transition probability.

The left- and right-fractional integrals, Caputo and Riemann-Liouville
fractional derivatives are defined by

aI
β
xu(x) = aD

−β
x u(x) :=

1

Γ(β)

∫ x

a

(x− s)β−1u(s)ds,

xI
β
b u(x) = xD

−β
b u(x) :=

1

Γ(β)

∫ b

x

(s− x)β−1u(s)ds,

C
aD

1−β
x u := aI

β
xDu,

C
xD

1−β
b u := −xIβb Du,

RL
a D1−β

x u := D aI
β
xu,

RL
x D1−β

b u := −D xI
β
b u.

(2)

The left (right) Caputo and Riemann-Liouville fractional derivatives do not
equal unless the zero boundary condition is imposed at x = a (x = b).
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Galerkin weak form of FPDE (1) with constant K & ul = ur = 0 (Ervin & Roop 05)

Galerkin formulation: given f ∈ H−(1−β/2)(a, b), seek u ∈ H1−β/2
0 (a, b)

B(u, v) := −θ
(
K aD

1−β/2
x u, xD

1−β/2
b v

)
− (1− θ)

(
K xD

1−β/2
b u, aD

1−β/2
x v

)
= 〈f, v〉, ∀ v ∈ H1−β/2

0 (a, b).

(3)

For constant K, aI
β/2
x on the trial function side can be switched

to the test function side as xI
β/2
b .

Ervin & Roop proved the (β-dependent, not true for β = 1) equivalence
between the fractional derivative norms and fractional Sobolev space norms,
which gives the coercivity and boundedness of B(·, ·)

B(u, u) = K
(
aI
β/2
x Du, xI

β/2
b Du

)
L2(a,b)

= cos
(
βπ/2

)
K|u|2H1−β/2(a,b).

Theorem

B(·, ·) is coercive and continuous on H
1−β/2
0 (a, b)×H1−β/2

0 (a, b). Hence, the Galerkin
weak formulation (3) has a unique solution. Moreover,

‖u‖H1−β/2(a,b) ≤ C‖f‖H−(1−β/2)(a,b).
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For θ = 1/2, B(·, ·) is symmetric. This problem reduces to the fractional Laplacian
(in one space dimension). Acceleration techniques such as multigrid and domain
decomposition have been developed and analyzed for the multiD analogue of (1)
or fractional Laplacian (Ainsworth et al 17, 18; X. Xu et al 15, 17).

Even for constant K, B(·, ·) is nonsymmetric for θ 6= 1/2. The nonsymmetry in
the leading order term in the FDE seems to introduce some technical difficulty
in the analysis of multigrid and domain decomposition methods.
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Galerkin FEM and its error estimates (Ervin & Roop 05)

Let Sh(a, b) ⊂ H1−β/2
0 (a, b) be the finite element space of piecewise

polynomials of degree m− 1. Find uh ∈ Sh(a, b) such that

B(uh, vh) = 〈f, vh〉, ∀vh ∈ Sh(a, b).

Assume that the true solution u ∈ Hm(a, b) ∩H1−β/2
0 (a, b).

Then the optimal-order error estimate in the energy norm holds

‖uh − u‖H1−β/2(a,b) ≤ Chm−1+β/2‖u‖Hm(a,b).

Assume the dual problem has full regularity for ∀g ∈ L2. The optimal-order

error estimate in the L2 norm holds for u ∈ Hm(a, b) ∩H1−β/2
0 (a, b)

Extensions to spectral Galerkin methods and other methods were proved
under the same assumptions.
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Regularity issue of sFPDE (W. et al 14 & 16; Jin et al 15; W. & Zhang 15)

An optimal-order error estimate in the energy (and L2) norm was proved for
the numerical approximations to linear elliptic FPDE under the assumption
that the solution (all the solutions to the dual problem) is smooth.

Consider problem (1) with K = f = 1, θ = 1, ul = ur = 0

D
(

0I
β
xDu

)
= 1, x ∈ (0, 1), u(0) = u(1) = 0 =⇒ 0I

β
xDu = x+ C0,

u(x) = 0IxDu = 0I
1−β
x 0I

β
xu = 0I

1−β
x (x+ C0) =

x2−β

Γ(3− β)
+
C0 x

1−β

Γ(2− β)
.

where we have used

0I
γ
xx

µ =
Γ(µ+ 1)

Γ(γ + µ+ 1)
xγ+µ, 0 < γ < 1, µ > −1.

Enforcing the boundary condition u(1) = 0 to obtain the unique solution

u(x) =
x2−β − x1−β

Γ(3− β)
/∈W 1,1/β(0, 1).

In particular, u /∈ H1(0, 1) for 1/2 ≤ β ≤ 1.
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Impact of the preceding example

Smooth data (& domain in multi-D) ensures smooth solutions for integer
order linear elliptic PDEs, which is not true for FDEs.

Solutions to FDEs with smooth data (& domain in multi-D) may have
boundary layers and so low regularity, which need to be resolved numerically.

The Nitsche-lifting based proof of optimal-order L2 error estimates
in the literature does not hold even for constant K > 0.
Jin et al analyzed the Sobolev regularity of the solutions to one-sided
constant coefficient FDEs by studying their analytical solutions, and
used Nitsche-lifting to derive suboptimal-order L2 error estimate.

The solutions to FDEs (in 1D) were proved in some weighted Sobolev
spaces and corresponding spectral methods were developed (Chen at al 16,
Ervin et al 16, Mao & Karniadakis 18)

+ Optimal-order error estimates of numerical approximations in weighted
Sobolev norms of data, not the true solution.

− The accuracy of the approximations near boundary are compromised,
which are often important in some applications.
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Solution Structure of FDE (1) with K ≡ 1 (Ervin et al 16)

Hypergeometric Function 2F1

2F1(a, b; c;x) :=
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

zb−1(1− z)c−b−1(1− zx)−adz

=

∞∑
n=0

(a)n(b)nx
n

(c)nn!

(4)

which converges only if Re(c) > Re(b) > 0. Here (q)n are defined by

(q)n :=
Γ(q + n)

Γ(q)
= q(q + 1) · · · (q + n− 1). (5)

Symmetry of 2F1

For Re(c) > Re(a) > 0 and Re(c) > Re(b) > 0,

2F1(a, b; c;x) = 2F1(b, a; c;x). (6)

In this part we assume (a, b) = (0, 1).
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Kernel function of Lβ1/2

Theorem

A kernel function of the operator D0I
β
x +DxI

β
1 is k1/2(x) := x−β/2(1− x)−β/2.

Proof

0I
β
x k1/2(x) =

1

Γ(β)

∫ x

0

(x− y)β−1y−β/2(1− y)−β/2dy (z = y/x)

=
xβ/2

Γ(β)

∫ 1

0

z−β/2(1− z)β−1(1− xz)−β/2dz

(a = β/2; b− 1 = −β/2, b = 1− β/2; c− b− 1 = β − 1, c = 1 + β/2)

=
xβ/2

Γ(β)

Γ(1− β/2)Γ(β)

Γ(1 + β/2)
2F1(β/2, 1− β/2; 1 + β/2;x)

=
xβ/2

Γ(β)

Γ(1− β/2)Γ(β)

Γ(1 + β/2)
2F1(1− β/2, β/2; 1 + β/2;x)

=
Γ(1− β/2)xβ/2

Γ(β/2)

∫ 1

0

zβ/2−1(1− z)1+β/2−β/2−1(1− xz)β/2−1dz

=
Γ(1− β/2)

Γ(β/2)

∫ x

0

yβ/2−1(1− y)β/2−1dy.
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D0I
β
x k1/2(x) =

Γ(1− β/2)

Γ(β/2)
xβ/2−1(1− x)β/2−1.

Similarly,

xI
β
1 k1/2(x) =

Γ(1− β/2)

Γ(β/2)

∫ 1

x

yβ/2−1(1− y)β/2−1dy,

DxI
β
1 k1/2(x) = −Γ(1− β/2)

Γ(β/2)
xβ/2−1(1− x)β/2−1, D

(
0I
β
x + xI

β
1

)
k1/2(x) = 0.

Lemma

ker(Lβ1/2) = span{1,K1/2(x)}, where K1/2(x) :=
∫ x
0
k1/2(y)dy.

The general case was proved in a similar manner.

Theorem

Let k(x) := x−p(1− x)−q. Then K(x) :=
∫ x
0
k(y)dy ∈ ker(Lβθ ) if β = p+ q and

θ sin(πq) = (1− θ) sin(πp). Consequently, ker(Lβθ ) = span{1,K(x)}.
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The general solution of a linear constant-coefficient (integer or fractional
order) differential equation can be expressed as u = uf + uc, with uc
being the general solution of the homogeneous equation and uf being
a particular solution of the inhomogeneous problem.

In the integer-order case, uc is infinitely many times differentiable.
Hence, the regularity of u is limited by uf that is determined by f .
In the fractional case, the regularity is limited by K1/2(x) that is
not smooth and, thus, uc is not smooth. Hence, u is not smooth
no matter how smooth uf is.

This is the reason why raising the regularity of f cannot raise the regularity
of u.

Hong Wang, University of South Carolina (Department of Mathematics, University of South Carolina IBM Visiting Fellow, Division of Applied Mathematics, Brown University)FPDE: Math. & Numer. Anal. April 26, 2018 12 / 49



Does the Galerkin formulation carry over to variable-coefficient FPDE (W. & Yang 13)?

Lemma

B(w,w) < 0 for some K(x) of two positive constants and w ∈ H1− β
2

0 (0, 1)

Let K(x) and w ∈ H1
0 (0, 1) ⊂ H

1− β2
0 (0, 1) be defined by

K(x) :=

{
Kl, x ∈ (0, 1/2),

1, x ∈ (1/2, 1).
w(x) :=

{
2x, x ∈ (0, 1/2],

2(1− x), x ∈ [1/2, 1).

Direct calculation gives

C,l
0D

1−β
x w(x) =

{
2xβ/Γ(β + 1), x ∈ (0, 1/2),

2
(
xβ − 2(x− 1/2)β

)
/Γ(β + 1), x ∈ (1/2, 1).

Thus we have
B(w,w) = 21−β(Kl −

(
2β+1 − 3

))
/Γ(β + 2).

As 0 < log2 3− 1 < 1, choose log2 3− 1 < β < 1 so that 2β+1 − 3 > 0. Select Kl > 0

such that Kl −
(
2β+1 − 3

)
< 0. For such K and w, B(w,w) < 0.
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Further analysis: Why do not integer-order PDEs have the same issue?

Consider the one-sided version of the conservative FDE (1) with (θ = 1)

−D
(
K aI

β
xDu

)
= f(x), x ∈ (a, b), u(a) = u(b) = 0.

For a variable diffusivity coefficient K

B(u, v) = θ
〈
K aI

β
xDu,Dv

〉
+ (1− θ)

〈
K xI

β
b Du,Dv

〉
6= θ
〈
KDu, xI

β
b Dv

〉
+ (1− θ)

〈
KDu, aI

β
xDv

〉
6=
(
K aI

β/2
x Du, xI

β/2
b Dv

)
L2(a,b)

For a variable K, the three expressions are not equal in general.
The most likely expression to be coercive is the last one due to

its symmetry with respect to aI
β/2
x Du and xI

β/2
b Dv.
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For an integer-order analogue of elliptic FPDEs, the bilinear form reduces
to (K|∇u|2)L2(a,b), which, combined with the homogeneous Dirichlet BC,
guarantees the coercivity of the bilinear form.

For FDE (1) with a constant K > 0, aI
β/2
x Du 6= xI

β/2
b Du. But

B(u, u) = K
(
aI
β/2
x Du, xI

β/2
b Du

)
L2(a,b)

= cos
(
βπ/2

)
K|u|2H1−β/2(a,b),

along with the homogeneous Dirichlet BC, ensures the coercivity of B.

However, there are u ∈ C∞0 (a, b) such that aI
β/2
x Du and xI

β/2
b Du have

opposite sign for some x ∈ (a, b). One can find a sufficiently smooth K
with 0 < Kmin ≤ K <∞, possibly with a large variation, such that(

K aI
β/2
x Du, xI

β/2
b Du

)
L2(a,b)

< 0.

Coercivity of the bilinear form B is a sufficient but not necessary condition
for the wellposedness of FDE (1). What is the impact of losing coercivity?

Numerical experiments showed that the corresponding finite element
approximation may diverge (W., Yang & Zhu 14, 17).
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A Petrov-Galerkin formulation (W. & Yang 13)

Galerkin formulation may lose coercivity on any product space H ×H for variable
K, so H

1−β/2
0 (a, b)×H1−β/2

0 (a, b) is not a feasible choice.

Consider the one-sided version of FDE (1), which is a local mass balance
incorporated with a fractional Fick’s law

−D
(
K aI

β
xDu

)
= f(x), x ∈ (a, b), u(a) = u(b) = 0. (7)

It motivates a Petrov-Galerkin formulation: Seek u ∈ H1−β
0 (a, b) such that

A(u, v) :=

∫ b

a

K(x)
(
aI
β
xDu

)
Dvdx = 〈f, v〉, ∀v ∈ H1

0 (a, b) (8)

Even for constant K, the Petrov-Galerkin formuation (8) differs from the Galerkin

formuation (3)

(3) is defined on H
1−β/2
0 (a, b)×H1−β/2

0 (a, b) for any f ∈ H−(1−β/2)(a, b)

and 0 < β < 1.
(8) is defined on H1−β

0 (a, b)×H1
0 (a, b) for any f ∈ H−1(a, b) and

0 < β < 1/2, as the Dirichlet BC cannot be enforced for 1/2 < β < 1.
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The wellposedness of the Petrov-Galerkin formuation (8)

Theorem

Assume 0 < β < 1/2 and 0 < Kmin ≤ K ≤ Kmax <∞. Then

inf
w∈H1−β

0 (a,b)

sup
v∈H1

0 (a,b)

A(w, v)

‖w‖H1−β(a,b)‖v‖H1(a,b)

≥ γ(β) > 0,

sup
w∈H1−β

0 (a,b)

A(w, v) > 0 ∀ v ∈ H1
0 (a, b) \ {0}.

(9)

Hence, (8) has a unique solution u ∈ H1−β
0 (a, b) with the estimate

‖u‖H1−β(a,b) ≤ (Kmax/γ)‖f‖H−1(a,b). (10)
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Characterization of the solution to the FDE (7)

Theorem

u is the unique solution to (7) if and only if it can be expressed as

u(x) = C
aD

β
xwf (x)− C

aD
β
bwf (b)

(C
aD

β
bwb(b)

)−1C
aD

β
xwb(x), (11)

where wf and wb are the solutions to the second-order differential equations

−D
(
K(x)Dwf

)
= f, x ∈ (a, b); wf (a) = wf (b) = 0,

−D
(
K(x)Dwb

)
= 0, x ∈ (a, b); wb(a) = 0, wb(b) = 1.

(12)
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Outline of the proof of the characterization of the solution to FDE (7)

Let u be the solution to (7). Then w := aI
β
xu satisfies

−D
(
K(x)Dw

)
= f, x ∈ (a, b); w(a) = 0, w(b) = aI

β
b u.

w can be expressed as a linear combination of wf and wb

w = wf + Cwb.

We apply RL
a Dβ

x = C
aD

β
x (since Iβxu|x=0 = 0) on both sides to get

u = RL
a Dβ

xaI
β
xu = C

aD
β
xaI

β
xu = C

aD
β
xw = C

aD
β
xwf + C C

aD
β
xwb. (13)

To find C we enforce the boundary condition u(b) = 0 to get

C
aD

β
bwf (b) + C C

aD
β
bwb(b) = 0. (14)

Note that wb can be solved explicitly as

wb(x) =
(∫ b

a

1

K(s)
ds
)−1

∫ x

a

1

K(y)
dy.
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C
aD

β
xwb can be evaluated as follows

C
aD

β
xwb(x) = aI

1−β
x Dwb(x)

=
(∫ b

a

1

K(s)
ds
)−1

aI
1−β
x

1

K(x)

=
(∫ b

a

1

K(s)
ds
)−1 1

Γ(1− β)

∫ x

a

1

K(s)(x− s)β ds > 0.

Thus, CaD
β
bwb(b) > 0 and we can solve (14) for C as

C = −
(C
aD

β
bwb(b)

)−1C
aD

β
bwf (b).

We insert C into (13) to finish the proof of the only if part of the theorem.

Conversely, direct calculation verifies that any u given by (13) is a solution
to problem (7).
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Outline of the proof of the weak coercivity of Petrov-Galerkin formulation

For each w ∈ H1−β
0 (a, b), RLa D1−β

x w ∈ L2(a, b). Thus, A(w, φ) induces
a bounded linear functional on H1

0 (a, b).

Riesz representation =⇒ ∃ a unique v ∈ H1
0 (a, b) such that(

KDv,Dφ
)
L2(a,b)

= A(w, φ) ∀φ ∈ H1
0 (a, b). (15)

This in turn can be rewritten as(
KD(v − aI

β
xw), Dφ

)
L2(a,b)

= 0 ∀φ ∈ H1
0 (a, b).

v − aI
β
xw = 0 at x = a and v − aI

β
xw = −aIβb w at x = b.

This implies that
v − aI

β
xw(x) = −

(
aI
β
b w(b)

)
wb(x).

We apply RL
a Dβ

x to both sides of the equation to get

w(x) = RL
a Dβ

xv(x) + (aI
β
b w(b))RLa Dβ

xwb(x). (16)
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We enforce the condition w(b) = 0 and RL
a Dβ

b wb(b) > 0 to (16) to obtain

aI
β
b w(b) = −RLa Dβ

b v(b)
(RL
a Dβ

bwb(b)
)−1

.

We apply RL
a D1−β

x to (16) to get

RL
a D1−β

x w(x) = Dv −
(RL
a Dβ

b v(b)
)(RL
a Dβ

bwb(b)
)−1

Dwb(x).

We use
∣∣RL
a Dβ

b v(b)
∣∣ ≤ C‖Dv‖L2(a,b) to bound RL

a D1−β
x w(x)

‖w‖H1−β(a,b)

≤ C
(
‖Dv‖L2(a,b) +

∣∣RL
a Dβ

b v(b)
∣∣(RL
a Dβ

bwb(b)
)−1‖Dwb‖L2(a,b)

)
≤ C‖Dv‖L2(a,b).

(17)

We use (15) and (17) to bound A(w, v) from below

A(w, v) =
(
KDv,Dv

)
L2(a,b)

≥ Kmin‖Dv‖2L2(a,b)

≥ Kmin

C
‖Dv‖L2(a,b)‖w‖H1−β(a,b).

This proves the first estimate in the theorem with γ := Kmin/C.
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To prove the second estimate, for each v ∈ H1
0 (a, b) \ {0} we define

w(x) := RL
a Dβ

xv(x)−
(RL
a Dβ

b v(b)
)(RL
a Dβ

bwb(b)
)−1(RL

a Dβ
xwb(x)

)
.

It is clear that w ∈ H1−β
0 (a, b). Furthermore, we have

RL
a D1−β

x w(x) = Dv(x)−
(RL
a Dβ

b v(b)
)(RL
a Dβ

bwb(b)
)−1

Dwb(x).

Here we have used the fact that

RL
a D1−β

x
RL
a Dβ

xv(x) = DaI
β
xDaI

1−β
x v(x) = DaI

β
x aI

1−β
x Dv(x)

= DaIxDv(x) = Dv(x).

Therefore, we arrive at

A(w, v) = (KDv,Dv)L2(a,b) − (aD
β
b v)(aD

β
bwb)

−1(KDwb, Dv)L2(a,b)

= (KDv,Dv)L2(a,b) ≥ Kmin‖Dv‖2L2(a,b) > 0.

We have thus proved the estimate and so the theorem.
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Inhomogeneous boundary conditions (W., Yang & Zhu 14)

Consider the inhomogeneous Dirichlet boundary-value problems of

the Caputo flux FDE

−D
(
K(x) C0 D

1−β
x u

)
= f(x), x ∈ (0, 1), u(0) = ul, u(1) = ur, (18)

the Riemann-Liouville flux FDE

−D
(
K(x) RL0 D1−β

x u
)
= f(x), x ∈ (0, 1), u(0) = ul, u(1) = ur. (19)

(18) and (19) coincide for homogeneous Dirichlet boundary condition, but
differ otherwise even for problems with a constant K > 0.

A traditional homogenization of the inhomogeneous BC does not work, as
the fractional derivative of an affine function introduces singularities.
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Wellposedness of the inhomogeneous Dirichlet boundary-value problem (W. & Yang 13)

Theorem

Assume 0 < β < 1/2 and 0 < Kmin ≤ K ≤ Kmax <∞. Then Petrov-Galerkin
formulation for problem (18) admits a unique weak solution u ∈ H1−β(0, 1) with
the stability estimate

‖u‖H1−β(0,1) ≤
1

γ
‖f‖H−1(0,1) + C

(
|ul|+ |ur|

)
.

But the Petrov-Galerkin weak formulation for problem (19) admits no weak
solution in H1−β(0, 1)!

Similar conclusions hold for two-sided problems with a constant diffusivity
coefficient K > 0.
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Analysis of FPDEs with (fractional) flux BCs (W. & Yang 17)

Despite the rapidly increasing research on FPDEs in the literature, many
fundamental issues remain, e.g., fractional flux boundary conditions (fBCs)

Different (Riemann-Liouville, Caputo, Caputo flux) forms of FPDEs and
fBCs were proposed in the literature.

Extensive (stochastic and modeling) study has been conducted to seek
the right form of FPDE and fBC in FPDE modeling and applications.
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Caputo, Caputo flux or Riemann-Liouville FDE with fBCs

We consider the Caputo, Caputo flux and Riemann-Liouville FDE

Caputo −C0 D2−β
x u(x) = f(x), x ∈ (0, 1),

Caputo flux −D
(
C
0 D

1−β
x u(x)

)
= f(x), x ∈ (0, 1),

Riemann− Liouville −R0 D2−β
x u(x) = f(x), x ∈ (0, 1),

(20)

and the classical flux BC, the Caputo fBC and the Riemann-Liouville fBC

classical fBC Du
∣∣
x=0

= a0, Du
∣∣
x=1

= a1,

Capute fBC C
0 D

1−β
x u

∣∣
x=0

= a0,
C
xD

1−β
1 u

∣∣
x=1

= a1,

Riemann− Liouville RL
0 D1−β

x u|x=0 = a0,
RL
x D1−β

1 u
∣∣
x=1

= a1,

(21)

For the homogeneous Dirichlet BC, the Riemann-Liouville FDE and the Caputo
flux FDE coincide, but they differ in the current context.
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Table: Summary of the results

Caputo FDE Caputo flux FDE R-L FDE
Classical fBC X X X
Caputo fBC X X X

R-L fBC X X X

We proved the following results:

Five out of the nine combinations are well posed and the rest ill posed.
For each of the FDEs, there exist one of the three fBCs such that the
combination is well posed and another of the three such that the
combination is ill posed. The results are summarized in the table

This suggests that the physical relevance of a specific combination of an
FDE and a related fBC, rather than just an individual FDE model or fBC,
should be investigated.
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Nonconventional Riemann-Liouville and Caputo fractional derivative spaces

Let 0 < β < 1 and 0 < ε(β) < 1− β, we define κ(β) = 2 for 0 < β < 1/2 and
1 + (1− β − ε(β))/β for 1/2 ≤ β < 1. In particular, 1 < κ(β) < 1/β but
sufficiently close to 1/β for 1/2 ≤ β < 1.

For 0 < µ < 1 we define Riemann–Liouville fractional derivative spaces

Hµ
R,l :=

{
v ∈ Lκ : RL

0 Dµ
xv ∈ L2

}
, Hµ

R,r :=
{
v ∈ Lκ : RL

x Dµ
1 v ∈ L2

}
Hµ,0
R,l :=

{
v ∈ Hµ

R,l :

∫ 1

0
0I

1−µ
x vdx = 0

}
,

Hµ,0
R,r :=

{
v ∈ Hµ

R,r :

∫ 1

0
xI

1−µ
1 vdx = 0

}
equipped with the (semi) norms

|v|Hµ
R,l

:= ‖RL0 Dµ
xv‖2L2 , ‖v‖Hµ

R,l
:=
(
‖v‖2Lκ + |v|2Hµ

R,l

) 1
2 ,

|v|Hµ
R,r

:= ‖RLx Dµ
1 v‖2L2 , ‖v‖Hµ

R,r
:=
(
‖v‖2Lκ + |v|2Hµ

R,r

) 1
2 .
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Theorem

(Riemann–Liouville fractional Friedrichs inequality for 0 < β < 1)

‖v‖Lκ ≤ C
(∣∣∣∫ 1

0
0I
β
x vdx

∣∣∣+
∥∥RL
0 D1−β

x v
∥∥
L2

)
, ∀ v ∈ H1−β

R,l ,

‖v‖Lκ ≤ C
(∣∣∣∫ 1

0
xI
β
1 vdx

∣∣∣+
∥∥RL
x D1−β

1 v
∥∥
L2

)
, ∀ v ∈ H1−β

R,r .

Consequently, |v|
H

1−β
R,l

and |v|
H

1−β
R,r

define norms on H1−β,0
R,l and H1−β,0

R,r .
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We similarly define left and right Caputo fractional derivative spaces

Hµ
C,l :=

{
v ∈ Lκ : C

0 D
µ
xv ∈ L2

}
, Hµ

C,r :=
{
v ∈ Lκ : C

xD
µ
1 v ∈ L2

}
Hµ,0
C,l :=

{
v ∈ Hµ

C,l :
∫ 1

0
vdx = 0

}
, Hµ,0

C,r :=
{
v ∈ Hµ

C,r :
∫ 1

0
vdx = 0

}
equipped with the (semi) norms

|v|Hµ
C,l

:= ‖C0 Dµ
xv‖2L2 , ‖v‖Hµ

C,l
:=
(
‖v‖2Lκ + |v|2Hµ

C,l

) 1
2 ,

|v|Hµ
C,r

:= ‖CxDµ
1 v‖2L2 , ‖v‖Hµ

C,r
:=
(
‖v‖2Lκ + |v|2Hµ

C,r

) 1
2 .

Theorem

(Caputo fractional Friedrichs inequality for 0 < β < 1)

‖v‖Lκ ≤ C
(∣∣∣ ∫ 1

0

vdx
∣∣∣+
∥∥C
0 D

1−β
x v

∥∥
L2

)
, ∀ v ∈ H1−β

C,l ,

‖v‖Lκ ≤ C
(∣∣∣ ∫ 1

0

vdx
∣∣∣+
∥∥C
xD

1−β
1 v

∥∥
L2

)
, ∀ v ∈ H1−β

C,r .

|v|
H

1−β
C,l

and |v|
H

1−β
C,r

define norms on H1−β,0
C,l and H1−β,0

C,r , respectively.
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0 < β < 1/2 =⇒ κ(β) = 2. The Riemann-Liouville fractional spaces reduce to
those in (Ervin & Roop 05). But they differ for 1/2 ≤ β < 1.

For the homogeneous Dirichlet BC, Riemann-Liouville and Caputo fractional
spaces and fractional Sobolev space H1−β

0 coincide with equivalent norms.

Without the homogeneous Dirichlet BC, the Riemann-Liouville and Caputo
fractional spaces differ from each other. For example,

0I
β
xx
−β = Γ(1− β), R

0 D
2−β
x x−β = R

0 D
1−β
x x−β = 0 =⇒ R

0 D
1−β
x x−β ∈ L2

for 0 < β < 1. In addition, x−β ∈ L2 for 0 < β < 1/2 and x−β ∈ Lκ for
1/2 ≤ β < 1 =⇒ x−β ∈ H1−β

R,l . However,

C
0 D

1−β
x x−β = −β0I

β
xx
−β−1 = −∞ =⇒ x−β /∈ H1−β

C,l , 0 < β < 1.

Theorem

For 0 < β < 1, the fractional integral operators Iβ+ (or Iβ−) defines an isomorphism from

H1−β
R,l (or H1−β

R,r ) onto H1 with equivalent norms. H1−β
R,l and H1−β

R,r are characterized by

H1−β
R,l =

{
RL
0 Dβ

xw(x)− w(0)x−β/Γ(1− β) : w ∈ H1
}
,

H1−β
R,r =

{
RL
x Dβ

1w(x)− w(1)(1− x)−β/Γ(1− β) : w ∈ H1
}
.
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Caputo FDE with Neumann BC

We multiply the Caputo FDE by any v ∈ H1−β
R,r , integrate the resulting equation

on (0, 1) and incorporate the Neumann BC to obtain

〈f, v〉 = −
(
0I
β
xD

2u, v
)

= −
(
D2u, xI

β
1 v
)

=
(
Du,DxI

β
1 v
)
− xI

β
1 v Du|x=1 + 0I

β
x v Du|x=0

= −
(
Du,RxD

1−β
1 v

)
− a1 xI

β
1 v|x=1 + a0 0I

β
x v|x=0, ∀v ∈ H1−β

R,r .

This yields the following Petrov-Galerkin weak formulation: find u ∈ H1 such that

AC(u, v) := −
(
Du,RxD

1−β
1 v

)
= lC(v)

:= 〈f, v〉+ a1 xI
β
1 v|x=1 − a0 xI

β
1 v|x=0, ∀v ∈ H1−β

R,r

(22)
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Theorem

Let 0 < β < 1 and f ∈ (H1−β
R,r )′ satisfy the constraint

〈f, (1− x)−β〉+ Γ(1− β)(a1 − a0) = 0. (23)

Then the Petrov-Galerkin weak formulation (22) has a unique solution
u∗ ∈ H1,0 := {w ∈ H1 :

∫ 1

0
wdx = 0} with a stability estimate

‖u∗‖H1 ≤ C
(
‖f‖

(H
1−β,0
R,r

)′ + |a0|+ |a1|
)
.
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Riemann-Liouville FDE with the Riemann–Liouville fractional Neumann BC

We multiply the Riemann-Liouville FDE by 0I
β
x v for any v ∈ H1−β

R,l , integrate the
resulting equation and incorporate the Riemann-Liouville fractional Neumann BC
to obtain

〈f, v〉 = −
(
D2

0I
β
xu, 0I

β
x v
)

=
(
D0I

β
xu,D0I

β
x v
)
−D0I

β
xu 0I

β
x v|x=1 +D0I

β
xu 0I

β
x v|x=0

=
(
R
0 D

1−β
x u,R0 D

1−β
x v

)
− a1 0I

β
x v|x=1 + a0 0I

β
x v|x=0, ∀v ∈ H1−β

R,l .

This yields the following Galerkin weak formulation: find u ∈ H1−β
R,l such that

AR,l(u, v) :=
(
R
0 D

1−β
x u,R0 D

1−β
x v

)
= lR,l(v)

:=
(
f, 0I

β
x v
)
L2 + a1 0I

β
x v|x=1 − a0 0I

β
x v|x=0, ∀ v ∈ H1−β

R,l .
(24)
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Theorem

Let 0 < β < 1 and f ∈ (H1)′ satisfy the constraint

〈f, 1〉+ a1 − a0 = 0. (25)

Then the Galerkin formulation (24) has a unique solution u∗ ∈ H1−β,0
R,l with a

stability estimate

‖u∗‖H1−β
R,l
≤ C

(
‖f‖(H1)′ + |a0|+ |a1|

)
. (26)
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An indirect FEM (IFEM) (W., Yang & Zhu 17)

Theorem
For 0 < β < 1/2 the solution u to the inhomogeneous Dirichlet boundary-value problem
of the FDE (7) can be decomposed as

u = ul +
(
ur − ul − C

−1D
β
1wf

)(C
−1D

β
1wb

)−1C
−1D

β
xwb + C

−1D
β
xwf . (27)

−D
(
K(x)Dwf

)
= f, x ∈ (−1, 1); wf (−1) = wf (1) = 0,

−D
(
K(x)Dwb

)
= 0, x ∈ (−1, 1); wb(−1) = 0, wb(1) = 1.

(28)

Use conventional FEMs to solve (28) for wf,h(
K(x)Dwh, Dvh

)
L2(−1,1)

=
(
f, vh

)
L2(−1,1)

, ∀vh ∈ Sh[−1, 1].

Use (27) to postprocess wf,h to obtain uf,h

uh = ul +
(
ur − ul − C

−1D
β
1wf

)(C
−1D

β
1wb

)−1C
−1D

β
xwb + C

−1D
β
xwh. (29)

Evaluating C
−1D

β
xwh requires numerical integration of a weakly

singular integral, which may introduce some numerical issues.
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Error estimates requiring only the smoothness of data of the FDE

Theorem

(W., Yang & Zhu 17) Let 0 < β < 1/2, K ∈ Cm[−1, 1], and f ∈ Cm−2,δ[−1, 1]
for some 0 < δ ≤ 1 with m ≥ 2. Then,

‖uh − u‖L2(0,1) ≤ Ch
m−β

where C = C
(
β,m, ‖K‖Cm[−1,1], ‖f‖Cm−2,δ [−1,1]

)
.

In summary, the indirect FEM

has a proved convergence rate, only under the assumptions of the
regularity of the data (but not that of the true solution) of the FDE,
has a sub-optimal order convergence rate of order β less, due to the
fractional post-processing,
requires careful evaluation of the fractional post-processing, as that
involves the numerical evaluation of singular integrals.
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Numerical performance of high-order FEMs and IFEMs

K = 1/(x+ 1), ul = 0, ur = 2, β = 0.5, and u(x) = x1−β + x9/2.

f(x) = − 1

(x+ 1)2

( 2Γ(11/2)

(7 + 2β)Γ(5/2 + β)
x7/2+β +

Γ(11/2)

Γ(7/2 + β)
x5/2+β − Γ(2− β)

)
.

Table: ‖u− uh‖L2 of the IFEM and the FEM, β = 0.5.

h m = 2 m = 3 m = 4
IFEM FEM IFEM FEM IFEM FEM

1/8 4.384E-2 2.550E-2 1.855E-3 1.933E-2 3.509E-5 5.787E-3
1/16 1.655E-2 1.116E-2 3.365E-4 1.167E-2 3.127E-6 2.624E-3
1/32 6.071E-3 5.337E-3 6.022E-5 6.732E-3 2.774E-7 1.302E-3
1/64 2.193E-3 2.632E-3 1.071E-5 3.770E-3 2.457E-8 6.582E-4
1/128 7.857E-4 1.310E-3 1.899E-6 2.070E-3 2.191E-9 3.323E-4
κ 1.452 1.065 2.484 0.808 3.493 1.024

The indirect FEMs exhibit the theoretically proved convergence rates.

The conventional high-order FEMs only have at most the first-order convergence
rate, due to the lack of regularity of the true solution.
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A spectral Galerkin method (Shen et al 11, Huang et al 13 & Zeng et al 14)

PN [−1, 1]: the space of polynomials of degree ≤ N on [−1, 1]
Ln(x): the nth degree Legendre polynomial on [−1, 1]

L0(x) = 1, L1(x) = x, Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x), n ≥ 1,∫ 1

−1

Ln(x)Lm(x)dx =
2

2n+ 1
δm,n, Ln(±1) = (±1)n

φn(x) := Ln(x)− Ln+2(x) are linearly independent with φ(±1) = 0.

SN [−1, 1] := {v ∈ PN [−1, 1] : v(−1) = v(1) = 0} = span{φn}N−2
n=0 .

A spectral Galerkin method for problem (1): Seek uN ∈ SN [−1, 1] such that

B(uN , vN ) := −θ
(
K −1D

1− β
2

x uN , xD
1− β

2
1 vN

)
− (1− θ)

(
K xD

1− β
2

1 uN ,−1D
1− β

2
x vN

)
=
〈
f, vN

〉
, ∀vN ∈ SN [−1, 1].
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Theorem

If u ∈ Hr ∩H1−β/2
0 and 1− β/2 ≤ s ≤ r, then

‖uN − u‖Hs ≤ CN−(r−s)‖u‖Hr , 1− β/2 ≤ s ≤ r. (30)

Assume full regularity of the dual problem for each right-hand side, then the
estimate holds for 0 ≤ s ≤ r.
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An indirect spectral Galerkin (ISPG) method (W. & Zhang 15)

Theorem

For 0 < β < 1/2 the solution u to the inhomogeneous Dirichlet boundary-value
problem of the one-sided version of the FDE (7) can be decomposed as

u = ul +
(
ur − ul − C

−1D
β
1wf

)(C
−1D

β
1wb

)−1C
−1D

β
xwb + C

−1D
β
xwf . (31)

−D
(
K(x)Dwf

)
= f, x ∈ (−1, 1); wf (−1) = wf (1) = 0,

−D
(
K(x)Dwb

)
= 0, x ∈ (−1, 1); wb(−1) = 0, wb(1) = 1.

(32)

Use SPG to solve (32) (Shen et al 11): Find wN ∈ SN [−1, 1] such that(
K(x)DwN , DvN

)
L2(−1,1)

=
(
f, vN

)
L2(−1,1)

, ∀vN ∈ SN [−1, 1].

Use (31) to postprocess wN to obtain uN

uN := ul +
(
ur − ul − C

−1D
β
1wN

)(C
−1D

β
1wb

)−1C
−1D

β
xwb + C

−1D
β
xwN . (33)

Does the ISPG have the same difficulty as IFEM in evaluating C
−1D

β
xwN?
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Using Jacobi polynomials to handle singularity

Jµ,νn (x) – the nth order Jacobi polynomials that are orthogonal with respect
to the Jacobi weight function ωµ,ν := (1− x)µ(1 + x)ν

Jµ,ν0 = 1, Jµ,ν1 =
1

2
(µ+ ν + 2)x+

1

2
(µ− ν),

Jµ,νn+1 =
(
aµ,νn x− bµ,νn

)
Jµ,νn − cµ,νn Jµ,νn−1

=
n+ µ+ 1

n!Γ(n+ µ+ ν + 1)

n∑
k=0

(
n

k

)
Γ(n+ k + µ+ ν + 1)

Γ(k + µ+ 1)

(
x− 1

2

)k
,

n ≥ 1

where aµ,νn , bµ,νn , and cµ,νn are constants having explicit expressions.
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Theorem

(Huang et al 11; Shen et al 11) For µ > 0,

R
−1D

µ
xLn(x) =

Γ(n+ 1)

Γ(n− µ+ 1)
(1 + x)−µJµ,−µn (x), x ∈ [−1, 1],

R
xD

µ
1Ln(x) =

Γ(n+ 1)

Γ(n− µ+ 1)
(1− x)−µJ−µ,µn (x), x ∈ [−1, 1].

The SPG solution wN ∈ SN [−1, 1] can be expressed as

wN (x) =

N−2∑
n=0

dnφn(x) =

N−2∑
n=0

dn(Ln(x)− Ln+2(x)).

C
−1D

β
xwN = R

−1D
β
xwN =

N−2∑
n=0

dn(1 + x)−β
( Γ(n+ 1)

Γ(n+ 1− β)
Jβ,−βn (x)

− Γ(n+ 3)

Γ(n+ 3− β)
Jβ,−βn+2 (x)

)
.
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Error estimates requiring only the smoothness of the data

Theorem

(W. & Zhang 15) Let 0 < β < 1/2, K ∈ Cm[−1, 1], and f ∈ Hm−1(−1, 1) for any
m ≥ 1. Then,

‖uN − u‖L2(−1,1) ≤ CN
−m.

where C = C
(
β,m, ‖K‖Cm[−1,1], ‖f‖Hm−1(−1,1)

)
.

Compared to the IFEM, the ISPG has the following salient features. The ISPG

has a proved convergence rate in the L2 norm, only under the
assumptions of the regularity of the data (but not that of the true
solution) of the FDE,
has an optimal order convergence rate of order, which is independent
of the post-process of the βth-order fractional differentiation,
does not have the subtlety in requiring the numerical integration of a
singular integral, but rather, can evaluate the fractional derivative of
wN analytically.
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Numerical comparison between the SPG and the ISPG

K = 1, ul = 0, ur = 2, and

f(x) = − Γ(7)

22−βΓ(5 + β)

(x+ 1

2

)4+β
.

This gives the true solution u(x) =
(x+ 1

2

)1−β
+
(x+ 1

2

)6
.

For SPG, ‖uN − u‖L2(−1,1) ≤ CκN
−κ.

For our improvements, ‖uN − u‖L2(−1,1) ≤ Cκe
−κN .
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Table: The comparison of the SPG and ISPG methods (W. & Zhang 15)

‖uSPG,N − u‖L2(0,1) ‖uISPG,N − u‖L2(0,1)

N β = 0.1 β = 0.5 β = 0.9 β = 0.1 β = 0.5 β = 0.9

4 2.139e-03 5.104e-02 1.677 9.377e-03 2.319e-02 7.737e-02

5 1.334e-03 4.195e-02 0.472 8.451e-04 2.823e-03 1.283e-02

6 9.014e-04 3.431e-02 1.331 6.482e-06 1.087e-04 9.541e-04

7 6.738e-04 2.676e-02 0.439 4.185e-07 3.892e-06 7.135e-06

8 5.204e-04 2.308e-02 1.119 5.348e-08 3.943e-07 5.563e-07

9 4.126e-04 1.913e-02 0.415 9.807e-09 6.239e-08 7.625e-08

10 3.342e-04 1.691e-02 0.986 2.280e-09 1.307e-08 1.468e-08

11 2.755e-04 1.454e-02 0.395 6.296e-10 3.324e-09 3.481e-09

12 2.306e-04 1.309e-02 0.893 1.984e-10 9.811e-10 9.807e-10

13 1.955e-04 1.154e-02 0.380 6.952e-11 3.248e-10 3.105e-10

14 1.676e-04 1.052e-02 0.824 2.656e-11 1.183e-10 1.097e-10

15 1.450e-04 9.439e-03 0.366 1.091e-11 4.659e-11 4.182e-11

κ 2.016 1.315 0.600 1.800 1.817 1.985
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Summary

The indirect SPG

exhibits the exponential convergence rate in the L2 norm, under the
assumptions of the regularity of the data (not the solution) of the FDE,
has the convergence rate independent of the order 0 < β < 1/2.
The conventional SPG methods seem to have low-order (β-dependent)
algebraic convergence rates, if measured in the standard L2 norm.

Spectral methods were developed and analyzed for two-sided constant coefficient

FDEs (Chen at al 16, Ervin et al 16, Mao & Karniadakis 18)

which have proved high-order convergence rates in the appropriately
weighted Sobolev spaces, only assuming the smoothness of data in
some corresponding weighted Sobolev spaces.

MultiD analogue of (1) with constant K was proved to be wellposed (Ervin &
Roop 07). Regularity, numerical approximations under the smoothness of data,
and variable-coefficient problems require further study!!!
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Thank You

for Your Attention!
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