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The initial-boundary value problem of sFPDE on a bounded domain

∂tu− k+(x, t)GLa Dα
xu− k−(x, t)GLx Dα

b u = f, x ∈ (a, b), t ∈ (0, T ],

u(a, t) = u(b, t) = 0, t ∈ [0, T ], u(x, 0) = u0(x), x ∈ [a, b].

(1)

k± are the left/right variable diffusivity coefficients (analytical means fail).

The left/right Grünwald-Letnikov fractional derivatives of 1 < α < 2 are

GL
a Dα

xu(x, t) := lim
ε→0+

1

εα

b(x−a)/εc∑
l=0

g
(α)
l u(x− lε, t),

GL
x Dα

b u(x, t) := lim
ε→0+

1

εα

b(b−x)/εc∑
l=0

g
(α)
l u(x+ lε, t)

GL
a D2

xu(x, t) := ∂xxu(x, t) =: GLx D2
bu(x, t).

(2)

g
(α)
l := (−1)l

(
α
l

)
with

(
α
l

)
being the fractional binomial coefficients.
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Finite difference method (Lynch et al 03; Liu et al 04; Meerschaert & Tadjeran 04)

FPDEs have different math. & numer. features from integer-order PDEs.

The implicit FDM obtained by truncating (2) is unconditionally unstable!

The shifted FDM is unconditionally stable (Meerschaert & Tadjeran 04)

umi − um−1
i

τ
− k+,m

i

hα

i∑
l=0

g
(α)
l umi−l+1 −

k−,mi

hα

N−i+1∑
l=0

g
(α)
l umi+l−1 = fmi (3)

The matrix form of the FDM

(I + τAm)um = um−1 + τ fm, (4)

ami,j := − 1

hα



(
k+,m
i + k−,mi

)
g

(α)
1 > 0, j = i,(

k+,m
i g

(α)
2 + k−,mi g

(α)
0

)
< 0, j = i− 1,(

k+,m
i g

(α)
0 + k−,mi g

(α)
2

)
< 0, j = i+ 1,

k+,m
i g

(α)
i−j+1 < 0, j < i− 1,

k−,mi g
(α)
j−i+1 < 0, j > i+ 1

(5)
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The expression of the stiffness matrix Am = [ami,j ]
N
i,j=1

The matrix A is full and has to be assembled in any traditional scheme.

Direct solvers have O(N3) complexity per time step and O(N2) memory.

Each time the mesh size and time step are refined by half, the
computational work and memory requirement increase

16 times and 4 times, respectively, for one-dimensional problems, or
128 times and 16 times, respectively, for two-dimensional problems, or
1024 times and 64 times, respectively, for three-dimensional problems.
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Analysis of the FDM

g
(α)
l := (−1)l

(
α
l

)
have the properties

g
(α)
1 = −α < 0, 1 = g

(α)
0 > g

(α)
2 > g

(α)
3 > · · · > 0,

∞∑
l=0

g
(α)
l = 0,

m∑
l=0

g
(α)
l < 0 (m ≥ 1),

g
(α)
l =

Γ(l − α)

Γ(−α)Γ(l + 1)
=

1

Γ(−α)lα+1

(
1 +O

(1

l

)) (6)

g
(α)
l , with 1 < α < 2, are not diagonally dominant, so the FPDE

operator (and the direct FDM) does not have maximum principle.
Nevertheless, the shifted FDM has(
ami,i −

N∑
j=1,j 6=i

|ami,j |
)
hα

= −(k+,m
i + k−,mi )g

(α)
1 − k+,m

i

i∑
l=0,l 6=1

g
(α)
l − k−,mi

N−i∑
l=0,l 6=1

g
(α)
l

> −(k+,m
i + k−,mi )g

(α)
1 − (k+,m

i + k−,mi )
∞∑

l=0,l 6=1

g
(α)
l = 0.

(7)
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Further discussions on the stability issue

The FDM (3) satisfies maximum principle, which yields stability and error
estimate of the FDM in the L∞ norm, assuming the solution is smooth.

A heuristic explanation of the stability. Consider (1) with ut = 0, k+ = 1,
k− = 0, f = 0 and (a, b) = (0, 1) ( we use GL

0 Dα
xu = RL

0 Dα
xu)

D2
0I

2−α
x u = 0, x ∈ (0, 1), u(0) = 0, u(1) = 1, 1 < α < 2,=⇒

0I
2−α
x u = C1x+ C0,=⇒

0Ixu = 0I
α−1
x 0I

2−α
x u = 0I

α−1
x (C1x+ C0) = C1 x

αΓ(α+ 1) +
C0 x

α−1

Γ(α)
.

where we have used

0I
γ
xx

µ =
Γ(µ+ 1)

Γ(γ + µ+ 1)
xγ+µ, 0 < γ < 1, µ > −1 (8)

Differentiating the equation and enforcing both the boundary conditions yields

u = xα−1, x ∈ (0, 1).
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Even the one-sided FDE requires both boundary conditions at x = 0 and
x = 1 to uniquely determine the true solution.

However, the directly truncated FDM yields a one-sided discretization,
which is determined completely by the boundary condition at x = 0 and
yields the trivial numerical solution ui = 0 for i = 1, 2, . . . , N . This is
inconsistent with the FDE.

The shifted FDM introduces at least one unknown in the other direction
and so a two-way coupling, which has to be closed by both the boundary
conditions. Hence, the shifted FDM is consistent with the FDE.

This explains heuristically why the directly truncated FDM is unstable
and the shifted FDM is stable.
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The structure of the stiffness matrix Am = [ami,j ]
N
i,j=1 (W. et al 10)

Theorem

Am =
(
diag(d+,m

i )Ni=1T
α,N + diag(d−,mi )Ni=1(Tα,N )T

)
/hα, (9)

Tα,N := −



g
(α)
1 g

(α)
0 0 . . . 0 0

g
(α)
2 g

(α)
1 g

(α)
0

. . .
. . . 0

... g
(α)
2 g

(α)
1

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

g
(α)
N−1

. . .
. . .

. . . g
(α)
1 g

(α)
0

g
(α)
N g

(α)
N−1 . . . . . . g

(α)
2 g

(α)
1


.

(9) bridges the FPDE and the numerical linear algebra communities.
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A fast evaluation of Amv and storage of Am

Theorem

Amv can be evaluated in O(N logN) operations in a lossless and matrix-free
manner for any vector v, and Am can be stored in O(N) memory.

The matrix Tα,N is embedded into a 2N × 2N circulant matrix Cα,2N

Cα,2N :=

 Tα,N Sα,N

Sα,N Tα,N

 , Sα,N :=



0 g
(α)
N

. . . . . . g
(α)
3 g

(α)
2

0 0 g
(α)
N

. . .
. . . g

(α)
3

0 0 0
. . .

. . .
.
.
.

.

.

.
. . .

. . .
. . .

. . .
.
.
.

0 . . . 0
. . . 0 g

(α)
N

g
(α)
0 0 . . . 0 0 0



.

Let cα,2N be the first column of Cα,2N . Then Cα,2N can be decomposed as

Cα,2N = F−1
2N diag(F2Ncα,2N ) F2N (10)
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A fast matrix-vector multiplication Amv is formulated as follows

For any v ∈ RN , define v2N by

v2N =

[
v

0

]
, Cα,2Nv2N =

[
Tα,N Sα,N

Sα,N Tα,N

][
v

0

]
=

[
Tα,Nv

Sα,Nv

]
. (11)

F2Nv2N can be carried out in O(N logN) operations via FFT,
so Cα,2Nv2N can be evaluated in O(N logN) operations.
The first N entries of Cα,2Nv2N yields Tα,Nv.
Similarly, (Tα,N )T v can be evaluated in O(N logN) operations.
Amv can be evaluated in O(N logN) operations.

The fast algorithm is

matrix-free as it does not need to store Am, but needs only to store
(d±,mi )Ni=1 and Tα,N , i.e.,(3N + 1) parameters.
exact as no compression is used.
non-intrusive.
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A two-dimensional sFPDE of orders 1 < α, β < 2 on a rectangular domain and its FDM

∂tu− kx,+(x, y, t)GLa Dα
xu− kx,−(x, y, t)GLx Dα

b u− ky,+(x, y, t)GLc Dβ
yu

− ky,−(x, y, t)GLy Dβ
du = f(x, y, t), (x, y) ∈ Ω:= Π2

i=1(ai, bi), t ∈ (0, T ];

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, T ], u(x, y, 0) = uo(x, y), (x, y) ∈ Ω.

(12)

An FDM for 1 ≤ i ≤ N1, 1 ≤ j ≤ N2 and 1 ≤ m ≤ Nt

umi,j − um−1
i,j

τ
−
k+,m
x,i,j

hα1

i∑
l=0

g
(α)
l umi−l+1,j −

k−,mx,i,j

hα1

N1−i+1∑
l=0

g
(α)
l umi+l−1,j

−
k+,m
y,i,j

hβ2

j∑
l=0

g
(β)
l umi,j−l+1 −

k−,my,i,j

hβ2

N2−j+1∑
l=0

g
(α)
l umi,j+l−1 = fmi,j .

(13)

Let N = N1N2. Introduce N -dimensional vectors um and fm defined by

um :=
[
um1,1, · · · , umN1,1, u

m
1,2, · · · , umN1,2, · · · , u

m
1,N2

, · · · , umN1,N2

]T
,

f m :=
[
fm1,1, · · · , fmN1,1, f

m
1,2, · · · , fmN1,2, · · · , f

m
1,N2

, · · · , fmN1,N2

]T
.

(14)

The FDM (13) can be expressed in the matrix form (4).
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An alternating-direction implicit (ADI) scheme (Meerschaert et al. 06)

An ADI algorithm was developed to solve the FDM (13), first solving
the x part as N2 one-dimensional systems and then solving the y part
as N1 one-dimensional systems. Its computational complexity is O(N2).

Solving (13) by the fast 1D FDM with ADI (W. & Wang 11) results in
a computational complexity O(N logN) per matrix-vector multiplication.

Strength and weakness of ADI

+ Reduce multidimensional problems to one-dimensional systems.
+ Easy to implement, avoid multidimensional structure of Am.
− It has proved stability and convergence if the FD operators in the

x- and y-directions commute, not satisfied by general coefficients.
− It is lossy and has higher regularity requirement.
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Structure of the stiffness matrix Am = Am,x +Am,y (W. & Basu 12)

Am,x accounts for the coupling of all the nodes in the x direction

Am,x is block-diagonal with full diagonal blocks.
Each diagonal block Am,xj is identical to that for a 1D problem
Am,xv can be evaluated in N2O(N1 logN1) = O(N logN) operations.
Am,x can be stored in N2O(N1) = O(N) memory.

Am,y accounts for the coupling of all the nodes in the y direction.

Am,y is a full block matrix with sparse matrix blocks.
We prove that Am,y is block-Toeplitz-circulant-block

Am,y =
[
Km,y

+

(
T β,N2 ⊗ IN1

)
+Km,y

−
(
(T β,N2)T ⊗ IN1

)]
/hβ2 ,

Km,y
+ := diag

({
diag

({
k+,m
y,i,j

}N1

i=1

)}N2

j=1

)
,

Km,y
− := diag

({
diag

({
k−,my,i,j

}N1

i=1

)}N2

j=1

)
.

(15)

Am,y can be stored in O(N) memory and Am,yv can be evaluated in
O(N logN) operations in a lossless and matrix-free manner.
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A fast evaluation of Am,yv

Let Sβ,N2 be Toeplitz matrices of order N2 for T β,N2 , as in 1D. Introduce

Cβ,2N :=

[
T β,N2 ⊗ IN1 Sβ,N2 ⊗ IN1

Sβ,N2 ⊗ IN1 T β,N2 ⊗ IN1

]
,

Cβ,2Nv2N =

[ (
T β,N2 ⊗ IN1

)
v(

Sβ,N2 ⊗ IN1

)
v

]
, v2N :=

[
v

0

]
, ∀v ∈ RN .

(16)

Let cβ,2N be the first column vector of Cβ,2N , F2N2 ⊗ FN1 be the 2D
Fourier transform matrix, and ĉβ,2N be the Fourier transform of cβ,2N

ĉβ,2N :=
(
F2N2

⊗ FN1

)
cβ,2N ,

Cβ,2N =
(
F2N2

⊗ FN1

)−1
diag

(
ĉβ,2N

)(
F2N2

⊗ FN1

)
.

(17)

(
F2N2 ⊗FN1

)
v2N can be performed in O(N logN) operations via FFT.

(17) shows that Cβ,2Nv2N can be evaluated in O(N logN) operations.
(16) shows that Am,yv can be performed in O(N logN) operations!
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A numerical simulation of a 3D sFPDE (W. & Du 13)

In the numerical experiments the data are given as follows

kx,±(x, y, z, t) = ky,±(x, y, z, t) = kz,±(x, y, z, t) = K = 0.005
f = 0, α = β = γ = 1.8, Ω = (−1, 1)3, [0, T ] = [0, 1].
The true solution is expressed via the inverse Fourier transform

u(x, y, z, t) =
1

π

∫ ∞
0

e−2K| cos(πα
2

)|(t+0.5)ξα cos(ξx)dξ

× 1

π

∫ ∞
0

e−2K| cos(πβ
2

)|(t+0.5)ηβ cos(ηy)dη

× 1

π

∫ ∞
0

e−2K| cos(πγ
2

)|(t+0.5)ζγ cos(ζz)dζ.

The initial condition uo(x, y, z) is chosen to be u(x, y, z, 0).

The Meerschaert & Tadjeran FDM and the fast FDM implemented
in Fortran 90 on a workstation of 120 GB of memory.
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Table: The CPU of the FDM and fast FDM

h = ∆t # of nodes The FDM The fast FDM
2−3 4,096 1h 4m 26s 0.58s
2−4 32,768 2 months 25d 9h 12m 5.74s
2−5 262,144 N/A 1m 6s
2−6 2,097,152 N/A 14m 22s
2−7 16,777,216 N/A 3h 49m 56s
2−8 134,217,728 N/A 3days 3h 18m 52s

It would take the regular FDM at least years of CPU times on state of the art
supercomputers to finish the simulation, if the computer has enough memory.

Parallelization was used in measuring the peak performance of supercomputers.
The nonlocal nature of FPDEs makes the communications in the simulations
global, which further increases the work clock time of the FDM simulations.
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Summary and further discussions on fast solvers

The fast matrix-vector multiplication is based on (9) (or its multi-D version).

The Toeplitz structure of Tα,N ∼ the translation invariance of the
fractional difference operator (3) ∼ the translation invariance of FPDE
operator (2) ∼ stationary increments of underlying Lévy process.
The impact of the variable k±(x, t) ∼ variable volatility in the
variable-coefficient SDE, which are not translation invariant, is
reflected in the non-Toeplitz diagonal matrices Km

± .

The FDM (3) has only first-order accuracy in space and time. High-order
FDMs, finite element methods (FEMs) and finite volume methods (FVMs)
were developed for sFPDEs in the literature and the discrete operators are
also translation invariant, so fast solvers can also be developed.

The FDM, FEM and FVM operators are translation invariant if FPDE
operators are discretized on structured (e.g. uniform or graded) meshes.

+ lossless, matrix-free and O(N logN) matrix-vector multiplication
− restrictive on partitions
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There has been a lot of works in the literature on fast numerical methods
for nonlocal problems, including the fast multipole method (FMM)
(Greengard & Rokhlin 1987), the hierarchical (H-) matrix method
(Hackbusch 1999) and the randomized matrix method (Halko et al 11).

Many were extended to FPDEs (including but not limited to):

Use H-matrix approach to compress the stiffness matrix to arbitraty
accuracy by a banded matrix + low-rank matrices, and multigrid to
solve the approximate system (Ainsworth et al 17, Zhao et al 17)

+ O(N logN) computational complexity on general partition.
− lossy, strongly heterogeneous coefficients with high uncertainty?

Use the approximate system as a preconditioner (Li et al, on going)

+ O(N logN) lossless on general partition. The approximate system
seems to be an optimal preconditioner

− O(N2) computational complexity on a general partition.

A low-rank approximation to off-diagonal blocks coupling different
subdomains on a piecewise-structured partition (Jia & W. 15).
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A distributed-order sFPDE in a convex domain

∂tu− kx,+(x, y, t) a1(y)Dp1(α)
x u− kx,−(x, y, t) xDp1(α)

b1(y) u

−ky,+(x, y, t) a2(x)Dp2(β)
y u− ky,−(x, y, t) yDp2(β)

b2(x)u = f(x, y, t),

(x, y) ∈ Ω, t× (0, T ],

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, T ].

(18)

Ω is a bounded convex domain. a1(y) and b1(y) refer to the left and right
boundary of Ω at given y, and similarly a2(x) and b2(x).

a1(y)D
p1(α)
x and xDp1(α)b1(y)

(and a2(x)D
p2(β)
y and yDp2(β)b2(x)

) are defined by

a1(y)Dp1(α)
x u(x, y, t) :=

∫ 2

1

p1(α) a1(y)D
α
xu(x, y, t)dα,

xDp1(α)

b1(y) u(x, y, t) :=

∫ 2

1

p1(α) xD
α
b1(y)u(x, y, t)dα.

(19)

p1(α) (or p2(β)) refers to the PDE counting for the integrated impact of the
fractional derivatives in the x (and y) direction with respect to α (or β).
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a1(y)D
α
xu(x, y, t) := lim

ε→0+

1

εα

b(x−a1(y))/εc∑
l=0

g
(α)
l u(x− lε, y, t),

xD
α
b1(y)u(x, y, t) := lim

ε→0+

1

εα

b(b1(y)−x)/εc∑
l=0

g
(α)
l u(x+ lε, y, t),

(20)

The lower/upper limits of the fractional derivatives may depend on y (or x).

For p1(α) = δ(α) and p2(β) = δ(β), the distributed order sFPDE (19)
reduces to the conventional FPDE in the convex domain Ω.

For p1(α) =
∑l1
l=1 ω

x
l δ(αl) and p2(β) =

∑l2
l=1 ω

y
l δ(βl), the distributed order

FPDE (19) reduces to a multi-term sFPDE in Ω.

Subsequently, we focus on the sFPDE in the convex domain Ω.
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A two-dimensional FDM in a convex domain (Jia & W. 18)

Let a1 (or b1) be the left (or right) most boundary point of Ω, a2 and b2
defined similarly. Then Ω ⊂ [a1, b1]× [a2, b2].

Let Ωh := Ω ∩ {(xi, yj)}0≤i≤N1+1;0≤j≤N2+1.

Πh :=
{

(i, j) : i1(j) + 1 ≤ i ≤ i2(j)− 1, 1 ≤ j ≤ N2

}
;

N := |Πh| =
N2∑
j=1

nj , nj := i2(j)− i1(j)− 1.
(21)

An FDM is defined by each node (i, j) ∈ Πh as follows

umi,j − um−1
i,j

τ
−
[k+,m

x,i,j

hα1

i−i1(j)+1∑
l=0

g
(α)
l umi−l+1,j +

k−,mx,i,j

hα1

i2(j)−i+1∑
l=0

g
(α)
l umi+l−1,j

]
−
[k+,m

y,i,j

hβ2

j−j1(i)+1∑
l=0

g
(β)
l umi,j−l+1 +

k−,my,i,j

hβ2

j2(i)−j+1∑
l=0

g
(β)
l umi,j+l−1

]
= fmi,j .

(22)
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A fast FDM on a convex domain (Jia & W. 18)

The “boundary” nodes of the FDM do not necessarily lie on ∂Ω but their
distances from ∂Ω are less than h1 or h2.

We enforce the Dirichlet BC at the “boundary” nodes, which introduces
an error of order O(h) and retains the accuracy of the FDM.

Am is dense but is not in a tensor product form of Toeplitz-like matrices.

We split Am = Am,x +Am,y and Am,x is still block diagonal but each
diagonal block Am,xj may have different size.

Note any v ∈ RN can be expressed in the form

v =
[
vT1 , v

T
2 , · · · , vTN2

]T
, vj =

[
vi1(j)+1,j , . . . , ui2(j)−1,j

]T
, 1 ≤ j ≤ N2.

Then Am,xv can be evaluated in O(N logN) via the formula

Am,xα v =
[(
Am,x1 v1

)T
,
(
Am,x2 v2

)T
, . . . ,

(
Am,xN2

vN2

)T ]T
.
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A fast matrix-vector multiplication by Am,y

The tensor-product decomposition of Am,y is no longer true.

We use the symmetry of the fractional differential operators in the x and y
directions and borrow the idea of the relabelling in the ADI. Algorithmically,

Let w denote the reindexing of the vector v by labeling the nodes in the
y direction first

w = Pv (23)

where P represents the permutation matrix that maps v to w.
Let Bm,y denote the analogue of Am,y that accounts for the spatial
coupling by labelling the nodes in the y direction first. Then

Am,y = PTBm,yP. (24)

We combine (23) and (24) to obtain

Am,yv = PTBm,yw. (25)
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The key points are as follows:

By labling the nodes in the y direction first, the stiffness matrix Bm,y

is block diagonal like Am,x.
If we store v in the form of w, then Bm,yw can be evaluated in
O(N logN) as Am,xv.
In ADI the two labelings were used in solving two different families of
subsystems.
We borrow the idea of ADI by using the two labelings in the matrix
vector multiplication by Am, but without splitting the scheme.
This boils down to storing v as a two-dimensional array corresponding
to the indexing of the nodes (xi, yj).
Transforming v to w in (23) can be carried out simply by letting the
index j goes first in the two-dimensional array storing v and vice versa.

In summary, we can evaluate Am,yv in O(N logN) operations in a lossless
and matrix-free manner, by borrowing the idea of ADI of relabeling but
without splitting the numerical scheme that may lead to a lossy evaluation.
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A fast FDM for sFPDE with fractional derivative BC (Jia & W. 15)

Consider the sFPDE (1) with fractional derivative BC

u(a, t) = 0, βu(b, t) +
(
k+(x, t))GLa Dα−1

x u+ k−(x, t)GLx Dα−1
b

)∣∣∣
x=b

= g(t). (26)

a fractional Neumann BC for β = 0 or a fractional Robin BC for β > 0.

βumN +
dm+,N
hα−1

N∑
k=0

g
(α−1)
k umN−k +

dm−,N
hα−1

g
(α−1)
0 umN = g(tm). (27)

g
(α−1)
k have the properties

g
(α−1)
0 = 1, − 1 < 1− α = g

(α−1)
1 < g

(α−1)
2 < g

(α−1)
3 < · · · < 0,

∞∑
k=0

g
(α−1)
k = 0,

m∑
k=0

g
(α−1)
k > 0, m ≥ 1.

(28)

g
(α−1)
k have M matrix properties, so the discretization of the fractional BC

has maximum principle. No shift!
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Structure and properties of the stiffness matrix A = [ai,j ]
N
i,j=1

ai,j :=
1

hα



−
(
k+,i + k−,i

)
g

(α)
1 , 1 ≤ i = j ≤ N − 1;

−
(
k+,ig

(α)
2 + k−,ig

(α)
0

)
, j = i− 1, 2 ≤ i ≤ N − 1;

−
(
k+,ig

(α)
0 + k−,ig

(α)
2

)
, j = i+ 1, 1 ≤ i ≤ N − 1;

−k+,ig
(α)
i−j+1, 1 ≤ j ≤ i− 2, 3 ≤ i ≤ N − 1;

−k−,ig(α)
j−i+1, 3 ≤ j ≤ N, 1 ≤ i ≤ N − 2;

k−,Ng
(α−1)
N−j h

τ
, 1 ≤ j ≤ N − 1, i = N ;

βhα +
(
k−,N + k+,N

)
g

(α−1)
0 h

τ
, i = j = N.

(29)

The first N − 1 row are diagonally dominant as they are similar to those in
the case of the Dirichlet BC (having one more column)

ai,i −
N∑

j=1,j 6=i

∣∣ai,j∣∣ > 0, 1 ≤ i ≤ N − 1.
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The last row requires extra study as it comes from the discretization of
fractional derivative BC and so has a different structure.

hα
[
aN,N −

N−1∑
j=1

∣∣aN,j∣∣]
=
h

τ

[(
k+,N + k−,N )g

(α−1)
0 + k+,N

N−1∑
l=1

g
(α−1)
l + βhα−1

]
≥ h

τ

[(
k+,N + k−,N

)N−1∑
l=0

g
(α−1)
l + βhα−1) > 0.

(30)

The discretization of the fractional derivative BC is diagonally dominant.

A is strongly diagonally dominant M -matrix.

The numerical scheme determines a unique solution (no extra condition
needed to enforce the uniquenes of the solution).
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The stiffness matrix A can be expressed in a block form

A =

[
AN−1,N−1 AN−1,N
ATN,N−1 aN,N

]
.

AN−1,N−1 is the stiffness matrix for the interior nodes, hence the
decomposition (9) for the Dirichlet BC is still valid.
Matrix-vector multiplication by AN−1,N−1 is done in O(N logN).
The remaining is at most rank two. Hence, a matrix-free, lossless, fast
matrix-vector multiplication by A can be carried out in O(N logN).
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Conservative FDE (del-Castillo-Negrete et al 04; Ervin & Roop 05; Zhang et al 07)

−D
(
K(x)

(
θ C,l
a D1−β

x u− (1− θ) C,rx D1−β
b u

))
= f(x), x ∈ (a, b),

u(a) = ul, u(b) = ur, 0 < β < 1, 0 ≤ θ ≤ 1.
(31)

derived from a local mass balance + a fractional Fick’s law.

θ is the weight of forward versus backward transition probability.

The left- and right-fractional integrals, Caputo and Riemann-Liouville
fractional derivatives are defined by

aI
β
xu(x) = aD

−β
x u(x) :=

1

Γ(β)

∫ x

a

(x− s)β−1u(s)ds,

xI
β
b u(x) = xD

−β
b u(x) :=

1

Γ(β)

∫ b

x

(s− x)β−1u(s)ds,

C
aD

1−β
x u := aI

β
xDu,

C
xD

1−β
b u := −xIβb Du,

RL
a D1−β

x u := D aI
β
xu,

RL
x D1−β

b u := −D xI
β
b u.

(32)
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Motivation of a finite element method (FEM) or a finite volume method (FVM)

Conservative and non-conservative FPDEs are not equivalent for variable
diffusivity coefficient problems, as the differentiation of the conservative
form yields a fractional derivative of order 0 < 1− β < 1.

Numerically, FEM/FVM are suited for conservative FPDEs, FDM is suited
for nonconservative FPDEs.

For many applications, local conservation property is crucial. In this case,
FVM is preferred.

A FEM naturally has second-order accuracy in space, without requiring a
Richardson extrapolation as in FDM.
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A FVM for the conservative FDE (??) with ul = ur = 0

A conventional derivation of the FVM

Let a =: x0 < x1 < . . . < xi < . . . < xN+1 := b be a (not necessarily
uniform) partition and xi−1/2 := (xi−1 + xi)/2.

Let {φi}Ni=1 be the hat functions with nodes xi and u =
∑N
j=1 ujφj .

Let u := [u1, u2, . . . , uN ]T , f := [f1, f2, . . . , fN ]T , and A := [ai,j ]
N
i,j=1.

Integrating (??) over (xi−1/2, xi+1/2) yields

Au = f, fi :=

∫ xi+1/2

xi−1/2

f(x)dx, 1 ≤ i, j ≤ N.

ai,j :=
[
K(x)

(
θ C,l
a D1−β

x φj − (1− θ) C,rx D1−β
b φj

)]x=xi−1/2

x=xi+1/2

.
(33)

The salient difference of the FVM from its integer-order analogue

supp{φj} = [xj−1, xj+1]. But C,la D1−β
x φj |x=xi+1/2

6= 0 for j ≤ i+ 1

and C,r
x D1−β

b φj |x=xi−1/2
6= 0 for j ≥ i− 1.

The stiffness matrix A is full, which requires O(N3) of operations to
invert and O(N2) of memory to store.
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Structure of the stiffness matrix A (Cheng et al 15; W. et al 15)

Theorem

A =
(
K− T

β,N
L +K+ T β,NR

)
/(Γ(β + 1)h1−β),

K± := diag
({
K
(
xi± 1

2

)}N
i=1

)
, T β,NL =

(
li−j

)
, T β,NR =

(
ri−j

) (34)

with li and ri being defined in (35). Hence, A can be stored in O(N) memory
and Av can be evaluated in O(N logN) operations in a lossless manner for
any v ∈ RN .

In fact, we need only to store K(xi− 1
2
) for i = 1, . . . , N + 1, and li and ri

for i = −N, . . . ,−1, 0, 1, . . . , N , which are totally 5N + 3 parameters.

This represents a significant saving over the traditional storage of N2 entries.
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li :=



(1− θ)
[(
−i−

1

2

)β
+
(
−i +

3

2

)β
− 2

(
−i +

1

2

)β]
, −N ≤ i ≤ −2,

(1− θ)
[( 1

2

)β
+
( 5

2

)β
− 2

( 3

2

)β]
, i = −1;

(1− θ)
( 3

2

)β
− (2− θ)

( 1

2

)β
, i = 0;

(1 + θ)
( 1

2

)β
− θ

( 3

2

)β
, i = 1;

θ
[
2
(
i−

1

2

)β
−
(
i +

1

2

)β
−
(
i−

3

2

)β]
, 2 ≤ i ≤ N.

ri :=



(1− θ)
[
2
(
−i−

1

2

)β
−
(
−i−

3

2

)β
−
(
−i +

1

2

)β]
, −N ≤ i ≤ −2;

(2− θ)
( 1

2

)β
− (1− θ)

( 3

2

)β
, i = −1;

θ
( 3

2

)β
− (1 + θ)

( 1

2

)β
, i = 0;

θ
[( 5

2

)β
− 2

( 3

2

)β
+
( 1

2

)β]
, i = 1;

θ
[(
i +

3

2

)β
− 2

(
i +

1

2

)β
+
(
i−

1

2

)β]
, 2 ≤ i ≤ N ;

(35)
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A fast matrix-vector multiplication Av

By (34), we need only to evaluate T β,NL v (and T β,NR v) in a fast manner.

The matrix T β,NL can be embedded into a 2N × 2N circulant matrix C2N

C2N :=

[
T β,NL ∗
∗ T β,NL

]
, v2N =

[
v

0

]
. (36)

A circulant matrix C2N can be decomposed as

C2N = F−12N diag(F2Nc2N ) F2N (37)

F2N is the Fourier transform matrix and c2N is the first column of C2N .

C2Nv2N and so Av can be evaluated in O(N logN) operations
in a lossless and matrix-free manner.

Both mass conservation property and accuracy of the FVM are retained.
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Need of an effective and efficient preconditioner

The fast matrix-vector multiplication reduces the computational cost per
Krylov subspace iteration from O(N2) to O(N logN).

For the steady-state FDE (??), the condition number of the stiffness matrix
A is κ(A) = O(h−(2−β)). Hence, the number of Krylov subspace iterations
is O(h−(1−β/2)) = O(N1−β/2).

This leads to an overall computational cost of O(N2−β/2 logN) even if
a fast Krylov subspace iterative method is used.

This calls for the development of an effective and efficient preconditioner.
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A superfast preconditioned fast Krylov subspace iterative method (W. & Du 13)

A superfast direct solver was developed for a symmetric and positive-definite
(SPD) Toeplitz system (Ammar and Gragg 1988),

which inverts a full SPD Toeplitz system in O(N log2N) computations,
which does not always work very effectively especially for ill conditioned
SPD Toeplitz systems.

We developed a superfast preconditioner for the steady-state FDE (??) with
θ = 1/2 (W. & Du 13)

Theorem

M := T β,NL + T β,NR is a full SPD, Toeplitz matrix.

We just use M as a preconditioner for the FVM (34) as shown below.
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Outline of (a perturbation-based) proof: Let K0 := diag
(
{K(xi)}Ni=1

)
and

K± := diag
({
K
(
xi± 1

2

)}N
i=1

)
. We have

γ(β)−1K−1
0 A

= K−1
0 K− T

β,N
L +K−1

0 K+ T β,NR

= K−1
0

[
K0 + (K− −K0)

]
T β,NL +K−1

0

[
K0 + (K+ −K0)

]
T β,NL

= M +K−1
0

[
(K− −K0)T β,NL + (K+ −K0)T β,NR

]
= M +O(h).

(38)

M is a good preconditioner for the FVM(
K−1

0 K− T
β,N
L +K−1

0 K+ T β,NR

)
u = γ(β)−1K−1

0 Au = γ(β)−1K−1
0 f. (39)

Hong Wang, University of South Carolina (Department of Mathematics, University of South Carolina IBM Visiting Fellow, Division of Applied Mathematics, Brown University)FPDE: Fast numerical methods April 19, 2018 38 / 67



Numerical experiments by a superfast preconditioned fast CGS (W. & Du 2013)

The data:β = 0.2, θ = 0.5, K(x) = Γ(1.2)(1 + x), ul = ur = 0, [a, b] = [0, 1],

The true solution u(x) = x2(1− x)2, f is computed accordingly

Gauss CGS
N ‖u− uG‖L∞ CPU(s) ‖u− uC‖L∞ CPU(s) Itr. #

25 2.018× 10−4 0.000 2.018× 10−4 0.000 32

26 5.157× 10−5 0.000 5.157× 10−5 0.000 65

27 1.294× 10−5 0.000 1.294× 10−5 0.016 128

28 3.214× 10−6 0.047 3.214× 10−6 0.141 217

29 7.893× 10−7 0.500 7.893× 10−7 3.359 599

210 1.887× 10−7 7.797 1.886× 10−7 2 m 2 s 1,110

211 4.030× 10−8 2 m 38 s 4.047× 10−8 21 m 13 s 2,624

212 6.227× 10−9 24 m 29 s 7.468× 10−8 4 h 19 m 7,576

213 5.783× 10−9 3 h 27 m N/A > 2 days > 20,000
FCGS PFCGS

‖u− uF ‖L∞ CPU(s) Itr. # ‖u− uS‖L∞ CPU(s) Itr. #

25 2.018× 10−4 0.000 32 2.018× 10−4 0.000 6

26 5.157× 10−5 0.016 63 5.157× 10−5 0.000 5

27 1.294× 10−5 0.031 128 1.294× 10−5 0.000 5

28 3.214× 10−6 0.125 248 3.214× 10−6 0.006 5

29 7.893× 10−7 0.578 576 7.893× 10−7 0.016 5

210 1.886× 10−7 2.281 1,078 1.887× 10−7 0.047 5

211 4.037× 10−8 9.953 1,997 4.038× 10−8 0.078 5

212 1.587× 10−8 57.27 5,130 6.194× 10−9 0.188 5

213 2.372× 10−8 2 m 52 s 7,410 4.345× 10−9 0.391 5

Hong Wang, University of South Carolina (Department of Mathematics, University of South Carolina IBM Visiting Fellow, Division of Applied Mathematics, Brown University)FPDE: Fast numerical methods April 19, 2018 39 / 67



Observations

Use the numerical solutions by Gaussian elimination as a benchmark:

The conjugate gradient squared (CGS) method diverges, due to
significant amount of round-off errors.
The fast CGS (FCGS) reduced the CPU time significantly, as the
operations for each iteration is reduced from O(N2) to O(N logN).

The number of iterations is still O(N1−β/2),
It is less accurate than Gaussian at fine meshes due to round-off errors.

The preconditioner M is optimal, so the preconditioned FCGS
(PFCGS) has an overall computational cost of O(N log2N).

It significantly reduces round-off errors.
It generates more accurate solutions than Gaussian elimination.
It further reduces CPU time.
Although the superfast Toeplitz solver might have potential problems
for ill-conditioned SPD Toeplitz systems as a direct solver, it seems to
perform very well as a preconditioner for the FVM (34).
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An FVM on a gridded mesh (Jia et al 14; Tian et al 13)

Solutions to FDEs with smooth data and domain may have boundary layers,
a numerical method that is discretized on a uniform mesh is not effective.

FDM is out of the question, as Grünwald-Letnikov derivative is
inherently defined on a uniform mesh.
Riemann-Liouville and Caputo derivatives offer such flexibilities.

Bebause of the nonlocal nature of FDEs, a numerical scheme discretized on
an arbitrarily adaptively refined mesh

offers great flexbility and effective approximation property
offers possible advantage on its theoretical analysis
but destroys the structure of its stiffness matrix and so efficiency.

Motivation: balancing flexibility and efficiency.

Wherever a refinement is needed, try to use a structured refinement.
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The structure of the stiffness matrix for a geometrically gridded mesh

Theorem

A =
[
diag(K−)T− + diag(K+)T+

]
diag

(
{hβ−1

i }mi=1

)
, T−, T+ Toeplitz.

Av can be evaluated in O(N logN) computations in a lossless and matrix free manner,

A can be stored in O(N) memory.
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Numerical experiments of a one-sided FDE on a gridded mesh

D
(

0I
β
xDu

)
= 0, x ∈ (0, 1),

u(0) = 0, u(1) = 1

Its solution u(x) = x1−β for x ∈ (0, 1).

N CPU #of iterations

Gauss 256 0.640s
512 5.567s
1024 59s

CGS 256 2.978s 256
512 29s 512

1024 403s 1024

FCGS 256 0.073s 256
512 0.139s 512

1024 0.391s 1024
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Figure: First row: numerical solutions on a uniform mesh of n = 256, 512, 1024;
Second row: numerical solutions on a geometrically refined mesh n = 48, 64, 96.
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A FVM on a locally refined mesh (Jia & W. 15)

Solutions to linear elliptic/parabolic FPDEs with smooth data and domain
may have boundary layers, a uniform mesh is not effective.

FDM is out of the question, as Grünwald-Letnikov derivatives are
inherently defined on uniform meshes.
Riemann-Liouville and Caputo derivatives offer such flexibilities.

Bebause of the nonlocal nature of FDEs, a numerical scheme discretized on
an arbitrarily adaptively refined mesh

offers great flexbility and effective approximation property
offers possible advantage on its theoretical analysis
destroys the structure of its stiffness matrix and so efficiency.

Motivation: balancing flexibility and efficiency.

A purely gridded mesh does not work as effectively.

We propose to use a composite mesh that consists of

gridded mesh near the boundary,
a uniform mesh in most of the domain.
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Outline of the structure of the stiffness matrix form

We assume only a boundary layer near the left endpoint for simplicity.

We begin by a uniform mesh of size h, and then use a gridded mesh on [0, h]
with m+ 1 nodes.

Then A can be expressed in the following 3× 3 matrix form

A =

 a1,1 A1,l A1,r

Al,1 Al,l Al,r
Ar,1 Ar,l Ar,r

 . (40)

A1,l, A1,r, Al,1, and Ar,1 are (row or column) vectors
The southeast 2× 2 blocks require careful analysis.
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Structure of the stiffness matrix

Theorem
The submatrices Al,l and Ar,r can be decomposed as

Al,l =
1

Γ(β + 1)

[
diag(K−l )

(
γQl + (1− γ)Qr

)
−diag(K+

l )
(
γPl + (1− γ)Pr

)]
diag

(
{hβ−1

i }mi=1

)
,

Ar,r =
hβ−1

Γ(β + 1)

[
diag(K−r )

(
γS + (1− γ)RT

)
− diag(K+

r )
(
γR+ (1− γ)ST

)]
.

Pl, Pr, Ql, Qr, R, and S are Toeplitz

Ar,r has the same form as before, since it is for a uniform mesh

Al,l corresponds to a gridded mesh, and has an additional diagonal matrix
(reflecting the impact of the mesh) multiplier on the right.
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Theorem
The submatrices Al,r and Ar,l can be decomposed as

Al,r =
(1− γ)hβ−1

Γ(β + 1)

(
diag(K−l )E − diag(K+

l )D
)
,

Ar,l =
γ

Γ(β + 1)
(diag(K−r )H − diag(K+

r )G)diag({hβ−1
i }mi=1).

D, E, G, and H are non-Toeplitz full matrices. Their typical entries are of
the form

di,j = 2(j + 1− 3 · 2i−m−1)β − (j − 3 · 2i−m−1)β − (j + 2− 3 · 2i−m−1)β ,

gi,j =
[
2m−j+1

(
i+

3

2

)
− 1
]β
− 3

2

[
2m−j+1

(
i+

3

2

)
− 2
]β

+
1

2

[
2m−j+1(i+

3

2

)
− 4
]β
.
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Use a fractional binomial expansion, we have

D ≈ −2

(
β

2

)
[1, 1, . . . , 1]T

[ 1

22−β
,

1

32−β
, . . . ,

1

(n− 1)2−β

]
−2

(
β

4

)
[1, 1, . . . , 1]T

[ 1

24−β
,

1

34−β
, . . . ,

1

(n− 1)4−β

]
+18

(
β

3

)
[2−m, 2−m+1, . . . , 2−1]T

[ 1

23−β
,

1

33−β
, . . . ,

1

(n− 1)3−β

]
−108

(
β

4

)
[2−2m, 2−2m+2, . . . , 2−2]T

[ 1

24−β
,

1

34−β
, . . . ,

1

(n− 1)4−β

]
.

The matrices can be approximated by a finite sum of low-rank matrices.
The matrix-vector multiplication can be performed in O(N) operations.
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Numerical experiments of a one-sided FDE on a composite mesh

Consider (??) with K = 1, f = 0, θ = 1, β = 0.9, ul = 0, ur = 1, i.e.,

D
(
0I
β
xDu

)
= 0, x ∈ (0, 1),

u(0) = 0, u(1) = 1

Its solution u(x) = x1−β for x ∈ (0, 1).

n ‖un − u‖ ‖un,m − u‖ ‖un,m − u‖
128 4.3546× 10−1 2.6805× 10−1, m = 7 2.0315× 10−1, m = 11
256 4.0630× 10−1 2.3336× 10−1, m = 8 1.3403× 10−1, m = 16
512 3.7909× 10−1 2.0315× 10−1, m = 9 8.2504× 10−2, m = 22

1024 3.5370× 10−1 1.7685× 10−1, m = 10 3.8488× 10−2, m = 32
8192 2.8730× 10−1 1.6668× 10−1, m = 13 N/A
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Figure: First row: numerical solutions on a uniform mesh of n=256, 8192;
Second row: numer. solns. on a composite mesh with n = 256 and m = 8, 16.
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Numerical experiments of a two-sided FDE on a locally refined composite mesh

Consider (??) with K = 1, θ = 0.5, β = 0.95, ul = 0, ur = 1,

f(x) =
(1− γ)(1− β)

Γ(β)x(1− x)1−β , u(x) = x1−β , x ∈ (0, 1).

m n Error Iterations

23 28 1.4379× 10−1

Gauss 24 29 1.0491× 10−1

25 210 5.8194× 10−2

23 28 1.4379× 10−2 48
CGS 24 29 1.0491× 10−1 77

25 210 5.8194× 10−2 142

23 28 1.4379× 10−1 48
FCGS 24 29 1.0491× 10−1 78

25 210 5.8194× 10−2 150

23 28 1.4379× 10−1 9
PFCGS 24 29 1.0491× 10−1 13

25 210 5.8194× 10−2 16
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Table: Numerical results on a uniform mesh

n Error Iterations CPUs

28 1.8827× 10−1 0.01s

Gauss 29 1.8206× 10−1 0.01s

210 1.7596× 10−1 0.05s

211 1.7002× 10−1 0.25s

212 1.6425× 10−1 1.25s

213 1.5867× 10−1 9.76s

214 1.5327× 10−1 97s

28 1.8827× 10−1 46 0.01s

CGS 29 1.8206× 10−1 66 0.01s

210 1.7596× 10−1 94 0.18s

211 1.7002× 10−1 133 0.86s

212 1.6425× 10−1 188 4.94s

213 1.5867× 10−1 266 30.78s

214 1.5327× 10−1 379 187s

28 1.8827× 10−1 46 0.05s

FCGS 29 1.8206× 10−1 66 0.16s

210 1.7596× 10−1 94 0.29s

211 1.7002× 10−1 133 1.16s

212 1.6425× 10−1 188 2.00s

213 1.5867× 10−1 266 12s

214 1.5327× 10−1 379 27s

28 1.8827× 10−1 8 0.02s

PFCGS 29 1.8206× 10−1 8 0.02s

210 1.7596× 10−1 9 0.05s

211 1.7002× 10−1 10 0.09s

212 1.6425× 10−1 10 0.14s

213 1.5867× 10−1 10 0.66s

214 1.5327× 10−1 11 1.00s

Hong Wang, University of South Carolina (Department of Mathematics, University of South Carolina IBM Visiting Fellow, Division of Applied Mathematics, Brown University)FPDE: Fast numerical methods April 19, 2018 53 / 67



A two-dimensional conservative FPDE (Meerschaert et al 06; Ervin & Roop 07)

−
∫ 2π

0

(
Dθ K IβθDθu(x, y)

)
P (dθ) = f(x, y), in Ω ⊂ R2,

u = 0, on ∂Ω.
(41)

P (dθ) is a probability measure on [0, 2π),

Dθ is the differential operator in the direction of θ

Dθu(x, y) :=
(

cos θ
∂

∂x
+ sin θ

∂

∂y

)
u(x, y),

and Iβθ , with 0 < β < 1, represents the βth order fractional integral
operator in the direction of θ given by

Iβθ u(x, y) :=

∫ ∞
0

sβ−1

Γ(β)
u(x− s cos θ, y − s sin θ)ds.

If P (dθ) is atomic with atoms {0, π/2, π, 3π/2}, then (41) reduces to the
usual coordinate form.
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A Galerkin weak formulation and its well-posedness (Ervin & Roop 07)

Galerkin formulation: given f ∈ H−(1−β/2)(Ω), seek u ∈ H1−β/2
0 (Ω)

B(u, v) :=

∫ 2π

0

[ ∫
Ω

K IβθDθu Dθvdxdy
]
P (dθ) = 〈f, v〉,

∀ v ∈ H1−β/2
0 (Ω).

(42)

Theorem

B(·, ·) is coercive and continuous on H
1−β/2
0 (Ω)×H1−β/2

0 (Ω). Hence, the
Galerkin weak formulation (42) has a unique solution. Moreover,

‖u‖H1−β/2(Ω) ≤ C‖f‖H−(1−β/2)(Ω).
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A Galerkin FEM (Ervin & Roop 07; Roop 06)

Let h1 := 1/(N1 + 1), h2 := 1/(N2 + 1), xi := ih1, and yj := jh2.

Let ψ(ξ) = 1− |ξ| for ξ ∈ [−1, 1] and 0 elsewhere. Let

φi,j(x, y) := ψ

(
x− xi
h1

)
ψ

(
y − yj
h2

)
, 1 ≤ i ≤ N1, 2 ≤ j ≤ N2,

uh(x, y) =

N2∑
j′=1

N1∑
i′=1

ui′,j′φi′,j′(x, y), (x, y) ∈ Ω.

A bilinear finite element scheme for i = 1, . . . , N1 and j = 1, . . . , N2

N2∑
j′=1

N1∑
i′=1

B
(
φi′,j′ , φi,j

)
ui′,j′ =

(
f, φi,j

)
L2 =: fi,j . (43)
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A matrix form of the FEM

Let N := N1N2, A =
[
am,n

]N
m,n=1

, and

u :=
[
u1,1, . . . , uN1,1, u1,2, . . . , uN1,2, . . . , u1,N2 , . . . , uN1,N2

]T
,

f :=
[
f1,1, . . . , fN1,1, f1,2, . . . , fN1,2, . . . , f1,N2 , . . . , fN1,N2

]T
Let am,n := B

(
φi′,j′ , φi,j

)
with

m = (j − 1)N1 + i, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2,

n = (j′ − 1)N1 + i′, 1 ≤ i′ ≤ N1, 1 ≤ j′ ≤ N2.
(44)

The FEM (43) can be expressed in a matrix form

Au = f. (45)
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Features of the FEM

Features of numerical methods for coordinate-form FPDEs

A is dense, the number of nonzero entries at each row = O(N1 +N2),
which →∞ as N →∞.
The number of nonzero entries at each row divided by the total number
of the entries at the same row = O((N1 +N2)/N) = O(N−1/2).
A has a tensor produce structure.

Features of the finite element method for full FPDEs

A is full.
A has a complicated structure, as it couples the nodes in all the
directions!
It does not seem feasible to explore a tensor-produce structure of A.
We instead explore the translation invariance property of A.
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Translation invariant structure of A (Du & W. 15)

Theorem

Let the indices (i1, j1), (i′1, j
′
1), (i2, j2), and (i′2, j

′
2) be related by

i′1 − i1 = i′2 − i2, j′1 − j1 = j′2 − j2. (46)

Then the following translation-invariance property holds∫ 2π

0

[ ∫
Ω

K D−βθ Dθφi′1,j′1(x, y)Dθφi1,j1(x, y)dxdy
]
P (dθ)

=

∫ 2π

0

[ ∫
Ω

K D−βθ Dθφi′2,j′2(x, y)Dθφi2,j2(x, y)dxdy
]
P (dθ).

(47)
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Figure: Illustration of the translation invariance
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Theorem

The stiffness matrix A is an N2-by-N2 block-Toeplitz matrix

A =



T0 T1 . . . TN2−2 TN2−1

T−1 T0 T1

. . . TN2−2

...
. . .

. . .
. . .

...

T2−N2

. . . T−1 T0 T1

T1−N2 T2−N2 . . . T−1 T0


, (48)

Each block Tj is an N1-by-N1 Toeplitz matrix

Tj =



t0,j t1,j . . . tN1−2,j tN1−1,j

t−1,j t0,j t1,j
. . . tN1−2,j

...
. . .

. . .
. . .

...

t2−N1,j

. . . t−1,j t0,j t1,j
t1−N1,j t2−N1,j . . . t−1,j t0,j


. (49)

A is symmetric if the probability measure P (dθ) is periodic with a period π.
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Impact of the theorem

Av can be evaluated in O(N logN) operations, by embedded into
a 4N -by-4N block-circulant-circulant-block matrix.

For coordinate FPDEs, Ay is block-Toeplitz-circulant-block that can be
embedded into a 2N -by-2N block-circulant-circulant-block matrix.

A is generated by O(N) parameters.

A requires only O(N) memory to store.
Unlike FDM, the evaluation of A is very expensive.
Only O(N) (in contrast to N2) entries of A need to be evaluated,
a significant reduction of CPU time.

A block-circulant-circulant-block preconditioner can be developed.
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Numerical experiments

A 4-point (2 points in x or y) Gauss-Legendre quadrature is used to evaluate
entries of A and the right-hand side

The finite element scheme is solved by the fast congugate gradient squared
(FCGS), the preconditioned fast CGS (PFCGS), and Gaussian elimination
(Gauss) solvers.

These solvers were implemented using Compaq Visual Fortran 6.6 on a
ThinkPad T410 Laptop.
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An example run for a coordinate FPDE

β = 0.5, Ki := 1 + sin 2θi for i = 1, 2, 3, 4.

u = x2(1− x)2y2(1− y)2, f is calculated accordingly.

Table: The convergence rates of the Gauss, FCGS, and PFCGS solutions

Gauss FCGS PFCGS

N1=N2 ‖u− uh‖L2(Ω) ‖u− uh‖L2(Ω) ‖u− uh‖L2(Ω) Conv. Rate

23 3.487× 10−5 3.487× 10−5 3.487× 10−5

24 8.876× 10−6 8.876× 10−6 8.876× 10−6 1.97
25 2.097× 10−6 2.097× 10−6 2.097× 10−6 2.08
26 4.759× 10−7 4.759× 10−7 4.759× 10−7 2.14
27 N/A 1.055× 10−7 1.056× 10−7 2.17
28 N/A 2.307× 10−8 2.311× 10−8 2.19
29 N/A 4.999× 10−9 5.003× 10−9 2.21
210 N/A 1.079× 10−9 1.078× 10−9 2.21
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Table: The CPU time of the FCGS, PFCGS, and Gauss

full A O(N) entries Gauss FCGS PFCGS

N1=N2 CPU CPU CPU CPU Itr. # CPU Itr. #

23 0.91s 0.05s 0.00s 0.00s 5 0.00s 4
24 14s 0.20s 0.05s 0.00s 9 0.00s 6
25 3m47s 0.83s 19s 0.05s 15 0.05s 7
26 1h2m 3.48s 25m6s 0.45s 28 0.19s 10
27 N/A 14s N/A 3.44s 52 0.94s 11
28 N/A 55s N/A 35s 94 6.73s 15
29 N/A 3m37s N/A 4m49s 170 44s 21
210 N/A 14m39s N/A 35m43s 300 4m13s 29
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Summary on accurate and fast numerical methods for FPDEs

A similar strategy can be used for

high-order finite element methods
discontinuous Galerkin methods

where the stiffness matrices would be in block Toeplitz-like form in the
context of uniform meshes.

The development of an efficient and effective preconditioner can be
significantly more difficult and challenging.
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Thank You

for Your Attention!

Hong Wang, University of South Carolina (Department of Mathematics, University of South Carolina IBM Visiting Fellow, Division of Applied Mathematics, Brown University)FPDE: Fast numerical methods April 19, 2018 67 / 67


