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Classical Fickian diffusion processes

Diffusion describes the random movement of tracer particles from high
concentration to low concentration.

Two fundamental approaches were used to model diffusion.

A deterministic/macroscopic description via a second-order diffusion PDE
for the PDF of particle movements:

Fick sat up the diffusion equation (1855) when studying how nutrients
travel through membranes in living organisms, by mimicking the heat
conduction equation of Fourier (1822).
Einstein derived the diffusion equation from first principles as part of
his work on Brownian motion (1905).

A stochastic/microscopic description via random walk of particles

Brown observed and investigated irregular movement of small pollen
grain under a microscope (1827).
Pearson modeled a diffusion process in terms of random walk, when
he studied on how mosquitoes spread malaria (1905).
Bachelier used a Brownian motion to model asset prices (1900).
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The common assumptions of Einstein and Pearson

the existence of a mean free path,
the existence of a mean waiting time to perform a jump.

Under these approximations

Pearson’s approches of random walk yields Brownian motion,
which then leads to stochastic differential equation and is suited
for a microscopic description of diffusive transport.
Einstein’s derivation yields a Fickian diffusion equation, which
can be viewed as a Fokker-Planck equation of Brownian motion.
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Stochastic and deterministic description of Fickian diffusion

Let X be a random variable, F (x) = P[X ≤ x] and p(x) = F ′(x) be
its CDF and PDF, respectively, and µq = E[Xq] be its qth moment.

The common assumptions of Einstein and Pearson state the variance and
mean waiting time of a randomly selected particle’s motion are finite.

If µ1 = 0, µ2 = σ2 <∞, the FT p̂ has the expansion

p̂(k) = E[e−ikX ] =

∫
R
e−ikxp(x)dx = 1− ikµ1k − µ2k

2/2 + o(k2)

= 1− σ2k2/2 + o(k2), k → 0.

(1) {FickDiffDrv:e1}

Let X1, X2, . . . be a sequence of iid random variables that represent the random
jumps of a randomly selected particle with E[Xi] = 0 and E[X2

i ] = σ2.

Lévy’s continuity theorem =⇒ the particle’s location Sn := X1 + . . .+Xn satisfies

E
[
e−ik(Sn/

√
n)] =

n∏
j=1

E
[
e−i(n

−1/2k)Xj
]

=
[
1− σ2k2

2n
+ o
( 1

n

)]n
−→ e−

σ2k2

2 =

∫
R

1√
2πσ

e
− x2

2σ2 e−ikxdx = E
[
e−ikZ

]
,

Sn/
√
n⇒ Z ∼ N(0, σ2), as n→∞.

(2) {FickDiffDrv:e2}
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For any fixed time t > 0 and c >> 1, the rescaled random walk

Sbctc := X1 + . . .+Xbctc (3) {FickDiffDrv:e3}

gives the particle location at time t > 0 after bctc jumps.

As the jump size is reduced by 1/
√
c, the normalized partition location

Sbctc/
√
c satisfies

E
[
e−ik(Sbctc/

√
c)
]

=
[
1− σ2k2

2c
+ o
(1

c

)]bctc
→ e−

tσ2k2

2

= E
[
e−ikZt ] =: p̂(k, t) =

1√
2πσ2t

e
− x2

2σ2t ,

Sbctc/
√
c⇒ Zt

(4) {FickDiffDrv:e4}

by Lévy continuity theorem. Here Zt ∼ N(0, σ2t) is a Brownian motion.

Zt can be written as an Ito type stochastic differential equation, which
gives a microscopic description of diffusion (Pearson’s approach)

dZt = µdt+ σdBt. (5) {ItoSDE}

where µ = 0 and Bt ∼ N(0, t) is the standard Brownian motion.
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Relation to a Fickian diffusion equation

Let p̂(k, t) := e−
tσ2k2

2 be the FT of of the PDF p(x, t), which satisfies

∂p̂

∂t
= −σ

2

2
k2p̂ =

σ2

2
(ik)2p̂ =

σ2

2

∂̂2p

∂x2
−→ ∂p

∂t
=
σ2

2

∂2p

∂x2
. (6) {FickDifDrv:e4}

This relates the dispersivity K to the particle jump variance σ2.

The PDF satisfies a Fickian diffusion equation (as the Fokker-Planck
equation of the SDE), which decays exponentially.

The equivalence between the PDE description and the stochastic
formulation also has mathematical and numerical impact

One can solve a diffusion PDE (the Fokker-Planck equation)
to find the PDF p(x, t) of the underlying stochastic process.
One can also use a particle tracking method to numerically solve
a diffusion PDE by simulating the underlying stochastic process.
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Stochastic derivation of an advection-diffusion PDE

For µ 6= 0, the stochastic process µt+ Zt satisfies the Ito SDE (5).
Moreover, it has FT

E
[
e−ik(µt+Zt)

]
= e−ikµt−

tσ2k2

2 =: p̂(k, t), (7) {AdvDiff:e1}

which solves

∂p̂

∂t
=
(
− iµk − σ2

2
k2
)
p̂ = −µ ∂̂p

∂x
+
σ2

2

∂̂2p

∂x2
, (8) {AdvDif:e2}

which inverts to an advection-diffusion equation

∂p

∂t
+ µ

∂p

∂x
− σ2

2

∂2p

∂x2
= 0 (9) {RW_DE:e5}

as the Fokker-Plank PDE of the SDE (5).
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Derivation of a Fickian diffusion PDE with variable diffusivity

Derivation of the classical conservation law

Let c(x, t) be the concentration of a solute and q(x, t) be the flux.
In a small cube of side δx with the cross-sectional area A = (δx)2,
the mass change δM and δc over time δt are

δM(x, t) = q(x− δx/2, t)Aδt− q(x+ δx/2, t)Aδt = −δq(x, t)Aδt,

δc(x, t) =
δM(x, t)

Aδx
= −δq(x, t)δt

δx
.

(10) {MassBalanceEq:e1}

Taking the limit as δx, δt→ 0+ yields a mass conservaltion law

δc(x, t)

δt
= −δq(x, t)

δx
=⇒ ∂c

∂t
= − ∂q

∂x
(11) {MassBalanceEq}
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The classical Fick’s law

q(x, t) = −K∂c(x, t)

∂x
(12) {Fick}

assumes the particles jump locally to the left and right neighboring
cells with equal probability

q(x, t) ≈ −K δc(x, t)

δx
= −K c(x+ δx/2, t)− c(x− δx/2, t)

δx
. (13) {Fick:e1}

The form (12) is clear for a constant K and is assumed for a variable
K.

Inserting Fick’s law into (11) yields the classical Fickian diffusion PDE

∂c(x, t)

∂t
=

∂

∂x

(
K
∂c(x, t)

∂x

)
= K

∂2c(x, t)

∂x2
. (14) {FickDifEq}

The second equal sign holds for a constant K. (14) is self-adjoint.
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Derivation of the Fokker-Planck PDE from the SDE

Consider the Ito SDE with variable drift µ and volatility σ

dZt = µ(t, Zt)dt+ σ(t, Zt)dBt. (15) {VariableSDE}

For any smooth and rapidly decaying f(x), Ito’s Lemma states Yt = f(Zt)
satisfies

dYt = f ′(Zt)dZt+
1

2
f ′′(Zt)dZ

2
t =

(
f ′(Zt)µ+f ′′(Zt)σ

2/2
)
dt+f ′(Zt)σdBt (16) {VariableSDE:e1}

Integrating (16) on any time interval [a, b] gives

Yb−Ya = f(Zb)−f(Za) =

∫ b

a

(
f ′(Zt)µ+f ′′(Zt)σ

2/2
)
dt+

∫ b

a

f ′(Zt)σdBt. (17) {VariableSDE:e2}

Taking the expectation of (17) (recall E(Bt) = 0) yields

E[f(Zb)− f(Za)] =

∫
R
f(x)

[
p(x, b)− p(a, t)

]
dt =

∫ b

a

∫
R
f(x)

∂p(x, t)

∂t
dxdt

=

∫ b

a

∫
R

(
f ′(x)µ(x, t) + f ′′(x)σ2(x, t)/2

)
p(x, t)dxdt.

(18) {VariableSDE:e3}
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Integrating the terms on the right-hand side by parts and using the fact that
f is arbitraty to get the Fokker-Planck PDE

∂p

∂t
+

∂

∂x

(
µ(x, t)p(x, t)

)
− ∂2

∂x2

(σ2

2
p(x, t)

)
= 0. (19) {FokkerPlanckEq}

For variable drift and volatility, the governing PDE is in a conservative form.
Retaining conservation is of crucial importance in many applications (e.g.,
subsurface porous medium flow and transport, especially when the problem
has high uncertainty).

The variable σ is in the different place from that in the Fickian diffusion
PDE.
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Fractional calculus has a history almost as long as its integer cousin

“Prehistorical development”

Fractional calculus stemmed from a question by L’Hopital (1695)

to Leibniz on the meaning of dny
dxn for n = 1/2. Leibniz’s reply

(Sept 30 1695): ”... This is an apparent paradox from which,
one day, useful consequences will be drawn. ...”
Euler observed that the differentiation formula

dnxα

dxn
= α(α− 1) · · · (α− n+ 1)xα−n =

Γ(α+ 1)

Γ(α− n+ 1)
xα−n

has a meaning for non-integer n (1738).
Laplace proposed the idea of non-integer order differentiation by
means of an integral (1812).
Fourier suggested some integral representation of fractional
differentiation (1822).
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Fractional calculus really began with Abel and Liouville

Abel solved the integral equation (1823)∫ x

a

φ(t)(x− t)−µdt = f(x), x > a, 0 < µ < 1

Liouville made the major contribution to the theory (1832-1837)

Dαf(x) =
∞∑
k=0

cka
α
k e
akx, for f(x) =

∞∑
k=0

cke
akx.

He proposed Dαf(x) := limh→0
(∆α

hf)(x)
hα but didn’t pursue it.

Riemann came up with today’s fractional integration formula in 1847
(when still a student, but published in 1876 ten years after his death).
Grünwald (1867) and Letnikov (1868) introduced the definition

Dαf(x) := lim
h→0

(∆α
hf)(x)

hα
.

Letnikov proved that this definition coincides with Riemann’s.
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Fractional integral as an extension of iterated integrals

For any n ∈ N, the iterated integrals can be expressed by

aI
1
xf(x) :=

∫ x

a

f(y)dy, aI
2
xf(x) :=

∫ x

a

(
aI

1
zf
)
(z)dz

=

∫ x

a

∫ z

a

f(y)dydz =

∫ x

a

∫ x

y

f(y)dzdy =

∫ x

a

(x− y)f(y)dy, · · ·

aI
n
x f(x) :=

∫ x

a

(
aI
n−1
z f

)
(z)dz =

∫ x

a

∫ z

a

(z − y)n−2

(n− 2)!
f(y)dydz

=

∫ x

a

∫ x

y

(z − y)n−2

(n− 2)!
f(y)dzdy =

1

Γ(n)

∫ x

a

(x− y)n−1f(y)dy.

Here the Gamma function Γ(β) :=
∫∞
0
e−ttβ−1dt and Γ(n) = (n− 1)!.

For any β ∈ R+, define the left and right fractional integrals as

aI
β
x f(x) :=

1

Γ(β)

∫ x

a

(x− y)β−1f(y)dy,

xI
β
b f(x) :=

1

Γ(β)

∫ b

x

(y − x)β−1f(y)dy.

(20) {FracIntegrals:e1}
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Riemann-Liouville and Caputo fractional derivatives

The Riemann-Liouville fractional derivatives of order α = n− β, 0 < β < 1

RL
a Dα

x f(x) := Dn
aI
β
x f(x) =

1

Γ(β)

dn

dxn

∫ x

a

(x− y)β−1f(y)dy,

RL
x Dα

b f(x) := (−1)nDn
xI
β
b f(x) =

(−1)n

Γ(β)

dn

dxn

∫ b

x

(y − x)β−1f(y)dy.

(21) {FracDerivatives:RL1}

The Caputo fractional derivatives of order α = n− β, 0 < β < 1

C
aD

α
x f(x) := aI

β
xD

nf(x) =
1

Γ(β)

∫ x

a

(x− y)β−1f (n)(y)dy,

C
xD

α
b f(x) := (−1)nxI

β
b D

nf(x) =
(−1)n

Γ(β)

∫ b

x

(y − x)β−1f (n)(y)dy.

(22) {FracDerivatives:Cap1}

Fractional derivatives defined via Fourier transform

−∞D
α
x f(x) := F−1[(ik)αf̂(k)

]
, xD

α
∞f(x) := F−1[(−ik)αf̂(k)

]
. (23) {FracDerivatives:Fourier1}
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Grünwald-Letnikov fractional derivatives

Integer-order derivatives can be expressed as limit of difference quotients

f ′(x) = lim
ε→0

1

ε
(I −Bε)f(x) = lim

ε→0

1

ε

[
f(x)− f(x− ε)

]
f (n)(x) = lim

ε→0

1

εn
(I −Bε)nf(x) = lim

ε→0

1

εn

n∑
k=0

g
(n)
k f(x− kε).

(24) {FracDerivatives:GL1}

with g
(n)
k := (−1)k

(
n
k

)
being the binormial coefficients.

The n in εn and
(
n
k

)
in (24) counts for the order of the derivative.

The n in
∑n
k=0 in (24) counts for the number of summands.

If we replace n in the former by α and n in the latter by the number
of summands to the left boundary x = a, we obtain the definition of
the Grünwald-Letnikov fractional derivatives of order α

GL
a Dα

x f(x) := lim
ε→0+

1

εα

b(x−a)/εc∑
k=0

g
(α)
k f(x− kε),

GL
x Dα

b f(x) := lim
ε→0+

(−1)dαe

εα

b(b−x)/εc∑
k=0

g
(α)
k f(x+ kε).

(25) {FracDerivatives:GL2}
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Relationship among the different definitions of fractional derivatives

Under appropriate smoothness assumptions, the Riemann-Liouville fractional
derivatives and Grünwald-Letnikov fractional derivatives coincide

GL
a Dα

x f(x) = RL
a Dα

x f(x), GL
x Dα

b f(x) = RL
x Dα

b f(x). (26) {FracDerivativesRelation:e1}

The Riemann-Liouville fractional derivatives and the Caputo fractional
derivatives differ by singular boundary terms. For example, for 0 < α < 1,

C
0 D

α
x f(x) = RL

0 Dα
x f(x)− f(0)x−α

Γ(1− α)
. (27) {FracDerivativesRelation:e2}

All the three fractional derivatives (with a = −∞ and b =∞) coincide for
rapidly decaying f on R and equal to those defined by Fourier transforms
(Multidimensional cases much subtle).
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Example: Let f(x) = 1 for x > 0 Then for 0 < α < 1, C0 D
α
xf(x) = 0 but

RL
0 Dα

x f(x) := D0I
1−α
x f(x) =

1

Γ(1− α)

d

dx

∫ x

0

(x− y)−αdy

=
d

dx

x1−α

Γ(2− α)
=

x−α

Γ(1− α)
6= 0.

(28) {FracDerivativesRelation:e3}

This is consistent with (27).

Let f̃(s) ≡ L[f ](s) :=
∫∞

0
e−stf(t)dt be the LT of f . It is shown that

L
[C
0 D

α
t f(t)] = sαf̃(s)− sα−1f(0), L

[RL
0 Dα

t f(t)] = sαf̃(s), 0 < α < 1. (29) {FracDerivativesRelation:e4}

L
[
C
0 D

α
t f(t)] resembles that of f ′, and has been used in time FPDE.
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Anomalous (super- or sub-) diffusion

It was found that the dispersive transport of electrons in operation
of photocopiers and laser printers could not be modeled properly
by the classical Fickian diffusion PDE (Scher & Montroll 1975).

Charges moving in media get trapped by local imperfections
and then get released due to thermal fluctuations.

In groundwater contaminant transport, remediation is not so effective as
predicted by the integer-order advection-diffusion PDEs

The contaminant in groundwater gets trapped to low peameability
zone and gets released when the contaminant is cleaned.

Einstein and Pearson’s assumptions are violated in these processes

These assumptions hold for homogeneous medium,
but fail for heterogeneous medium.
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The current modeling of transport process in heterogeneous media is

to use integer-order PDEs (valid for homogeneous medium),
to tweak free parameters that multiply pre-set integer-order PDEs.

Field tests show that

contaminant plumes often exhibit a power-law decaying tail in
heterogeneous media,
integer-order PDE model, characterized by an exponentially decaying
tail, struggles a variable coefficient fit (of the data at each location),
FPDE model, characterized by a power-law decaying tail, can fit
all the data with a constant coefficient.

Many anomalous diffusion processes were found in various disciplines

signaling of biological cells, anomalous electrodiffusion in nerve cells
foraging behavior of animals, electrochemistry, physics, finance
fluid and continuum mechanics, viscoelastic and viscoplastic flow
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Derivation of a fractional PDE

A fractional Fick’s law assumes that the underlying particles have global

jumps, i.e., δc(x, t) is increased by an amount of g
(α−1)
k c(x− kδx, t), i.e.,

q(x, t) = −K∂α−1c(x, t)

∂xα−1
, 1 < α < 2. (30) {FracFick}

Here the fractional derivatives are Grünwald-Letnikov type. Since g
(α−1)
k

decay like O(k−α), the particle jumps have a heavy tail.

Inserting (30) into (11) yields a space FPDE

∂c

∂t
= − ∂q

∂x
=

∂

∂x

(
K
∂α−1c(x, t)

∂xα−1

)
= K

∂αc(x, t)

∂xα
. (31) {FracDifEq}

The second equal sign holds for a constant K.
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Derivation of fractional PDEs

In anomalous diffusion a particle’s motion may have very different waiting
times/jump sizes. Classical random walk does not apply.

Let X1, X2, . . . be a sequence of iid random jumps of a particle with
E[Xi] = 0 and P[X > x] = Cx−α where C > 0 and 1 < α < 2.
E[Xp] = α/(α− p) for 0 < p < α or ∞ for p ≥ α. Central limit
theorem (Fickian diffusion or SDE by Brownian motion) fails to apply.
The FT of a different scaling of Sbctc yields

E
[
e−ikc

−1/αSbctc
]

=
[
1 +

(ik)α

c
+O

(
c−2/α)]bctc → et(ik)

α

. (32) {Levy:e1}

Lévy’s continuity theorem concludes that a properly scaled Sbctc
converges to an α stable Lévy process Zt

et(ik)
α

= E
[
e−ikZt

]
= p̂(k, t) =

∫
R
e−ikxp(x, t)dx,

i.e., c−1/αSbctc ⇒ Zt.
(33) {Levy:e2}

Unlike Gaussian case, there is no analytical expression for p(x, t) now.
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The Pearson’s viewpoint gives rise to an SDE driven by an Lévy process

dXt = µdt+ σdLt. (34) {Levy:e3}

Einstein’s approach: Note that p̂(k, t) = et(ik)α solves

dp̂

dt
= (ik)αp̂ =

∂̂αp

∂xα
(35) {Levy:e4}

which inverts to
∂p

∂t
=
∂αp

∂xα
. (36) {Levy:e5}

The PDF of finding a particle somewhere in space satisfies
a (space-fractional) PDE, which decays algebraically O(x−(α+1)).
This justifies why FPDEs model transport processes exhibiting
anomalous diffusion, long-range time memory or space interactions
more accurately than classical integer-order PDEs.
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Thank You

for Your Attention!
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