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Why fractional equations?...a motivating example
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Complex biomaterials with non-trivial properties
Soft tissue biomechanics: - Non-linear elastic response
Viscoelastic creep and continuous relaxation time-scales

Fung, Yuan-cheng. Biomechanics: mechanical properties of living tissues. Springer Science & Business Media, 2013.



Why fractional equations?...a motivating example

Modeling approach #1: Simple parametric integer-order models

S Standard Linear Solid model (SLS):
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Linear elastic response

Simplest model that accounts for viscoelastic creep and relaxation
Two discreet relaxation time-scales
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Why fractional equations?...a motivating example

Modeling approach #2: More complex parametric integer-order models

QLV Kelvin-Zener solids in series
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Linear elastic response
Can capture more complex viscoelastic creep and relaxation behavior

Multiple discreet relaxation time-scales
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Many parameters to be estimated from few data
High parametric sensitivity
The response behaves like a stochastic process and depends on patient-specific factors, age, etc.

Fung, Yuan-cheng. Biomechanics: mechanical properties of living tissues. Springer Science & Business Media, 2013.



Why fractional equations?...a motivating example

Modeling approach #3: Even more complex parametric integer-order models

QLV Kelvin-Zener solids in series

B = 0.3 (lower value)
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Linear elastic response

- Can capture even more complex viscoelastic creep

and relaxation behavior

- Continuous spectrum of relaxation time-scales

... Guess how many parameters?



Why fractional equations?...a motivating example
Modeling approach #4: Fractional-order models

Fractional-order Kelvin-Zener solid

—AAA—— - Linear elastic response
— - Can capture even more complex viscoelastic creep
—AAA— and relaxation behavior

% — - - Continuous spectrum of relaxation time-scales
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Doehring, Todd C., et al. "Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity." Journal of biomechanical engineering 127.4 (2005): 700-708.
Ndsholm, Sven Peter, and Sverre Holm. "On a fractional Zener elastic wave equation.” Fractional Calculus and Applied Analysis 16.1 (2013): 26-50.



Why fractional equations?...a motivating example

Modeling approach #4: More complex fractional-order models

Fractional-order Kelvin-Zener solid
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..fewer parameters to be estimated, hence less parametric sensitivity.
..combine fractional solids in series and you can fit an elephant in the room (e.g. smooth muscle activation in cerebral auto requlation).



The role of the fractional order

B = 0.7 (higher value)
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The fractional order effectively controls the balance
between the conservative (elastic energy storage) and
dissipative (viscoelastic energy dissipation) behaviors.
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Great, but how do we compute now?



Discretize the derivatives

Grunwald-Letnikov approximation

— F—a—1
C Nno I £ — o o a . o
S D7 f(t) = lim At ; GLf(t—kAL), GLy=——GLg,
v
14+ 70AE At™ i N N
p(xa t) = DeatT 1+ TaAt—osz(x’ t)—|—1 + raAt—a Z GL {T pE(t—kAt)—Ta p(t_kAt)}
o o k=0

- Low accuracy
- Excessive memory requirements, especially for advection dominated
problems due to the CFL condition

... why should we discretize in the first place?
These are linear time-fractional evolution equations with well behaved forcing terms. ..
...we can use our good old Laplace transforms and solve them analytically!



Computing convolution integrals

p(x,t) = peat + " (2, t) + p" (2,1)
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O(N?®) operations
Cost of a naive implementation:  O(N) evaluations of the kernel (e.g. Mittal-Leffler function)
O(N) active memory

Should be more accurate than the GL discretization but it doesn’t buy us much in terms of computational efficiency.



Fast convolutions for evolution equations with memory

Analytical solution of FPDEs using Laplace transforms gives rise to convolution integrals:

/tf(t—T)g(T)dT, 0<t<T
0

The fast convolution method of [7] allows to compute such integrals with spectral accuracy and

e O(N log N) operations, & O(N?)  fora naive R
e O(log N) evaluations of the Laplace transform F = Lf, none of f, and VS O(N) quadrature
e O(log N) active memory. . O(N) impIementatioD

Example: In fractional-order viscoelastic constitute laws we need to compute a memory term:

> j
The fast convolution method bypasses costly evaluations of the Mittag-Leffler kernel: E,(z) = Z r v

24 T(1+ aj)

..and only requires simple function evaluations in the Laplace domain:

[1] Lopez-Ferndndez, Maria, Christian Lubich, and Achim Schddle. "Adaptive, fast, and oblivious convolution in evolution equations with memory." SIAM Journal on Scientific Computing 30.2 (2008): 1015-1037.




Implementation
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where the inner integral, henceforth denoted by y(b, a, \), is recognized as the solution
at time b of the scalar linear initial value problem

Yy =Ay+g, y(a) = 0.
The 2N + 1 differential equations (2.5) with A = A, are solved approximately by

replacing the function g with its piecewise linear approximation and then solving
exactly. Setting g, = g(a +nAt), we get approximations ¥, =~ y(a + nAt) recursively

via
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To estimate the error, note that in total we approximate

b b
/ F(t—7) g(r) dr ~ / F(t —7)g(r) dr

where f is the quadrature approximation to f constructed in the previous subsec-
tion, whose error is well under control, and ¢ is the piecewise linear interpolant of
g. (Higher-order interpolants of g might also be used, but we have not implemented
such an extension.)

Lubich, Christian, and Achim Schddle. "Fast convolution for nonreflecting boundary conditions." SIAM Journal on Scientific Computing 24.1 (2002): 161-182.



Implementation Laplace transform
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where y(¢tT, ¢, \,) is the solution at ¢t to the linear inhomogeneous ODE 3" = M\yy +9, y(t7) =0, —K<k<K
.. | e Forward Euler,
-.‘I(eymgredlents. ‘M Runge-Kutta,
- Complex plane quadrature (Talbot contours) BDF, etc

- Local reduction to ODEs
Adaptivity and smart memory management

[1] Lopez-Ferndndez, Maria, Christian Lubich, and Achim Schddle. "Adaptive, fast, and oblivious convolution in evolution equations with memory." SIAM Journal on Scientific Computing 30.2 (2008): 1015-1037.



Matlab demo

/abf(t—T)dT

f(t) = for which  F(s) = g 1/2
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