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Why fractional equations?…a motivating example

Soft tissue biomechanics:
• Complex biomaterials with non-trivial properties 
• Non-linear elastic response 
• Viscoelastic creep and continuous relaxation time-scales

Fung, Yuan-cheng. Biomechanics: mechanical properties of living tissues. Springer Science & Business Media, 2013.



Why fractional equations?…a motivating example

Modeling approach #1:

is similar to QLV, but the convolution integral is no longer re-
stricted to integer order. This powerful generalization allows a
simpler reduced relaxation function to be used !viz., a single-
exponential equivalent", while still maintaining a high degree of
flexibility in the relaxation response.

An instructive way to describe the difference between the FOV
and QLV models is by analogy with spring-dashpot systems. The
QLV model uses a continuous spectrum reduced relaxation func-
tion, implying an infinite series of Kelvin–Voigt solids connected
in series #Fig. 1!a"$. A summation !i.e., integration" of the re-
sponses of the Kelvin–Voigt solids produces a wide and flat fre-
quency response. For the FOV model, this concept can be ex-
panded to imply a hierarchical arrangement of Kelvin–Voigt
solids. This is loosely analogous to a fractal-type tree model #Fig.
1!b"$, where the depth and branching of the tree depends on the
so-called order of evolution, which is simply the noninteger frac-
tional order of integration !labeled !". When the fractional order
!=1, the FOV model reduces to a single exponential response;
hence it becomes the standard viscoelastic solid of Kelvin–Voigt.
! values near 1 are considered high values, producing only a

slightly fractional response. In contrast, when the fractional order
is reduced #e.g., 0.7 or 0.3, as shown in Fig. 1!b"$, the degree of
the hierarchy is increased, and the response spectrum is widened.
Hence, !=0.3 is considered a low value, producing a considerably
fractional response. This ability to characterize the relaxation be-
havior in a fractional sense provides a new and promising frame-
work for representing the underlying mechanisms of soft tissue
viscoelasticity.

Our goals for this project were to implement equivalent FOV
and QLV constitutive models in one dimension, estimate their
viscoelastic material parameters for aortic valve cusp tissue, com-
pare the accuracy of the model fits, and investigate the sensitivity
of the parameters. Because collagenous tissues are arranged in a
hierarchy !from collagen molecule to microfibril to fibril to fas-
cicle, and so on", we hypothesized that the FOV constitutive
model would more accurately represent the response of the tissue
than would the QLV model. To maintain objectivity of the com-
parison, an automated direct-fit method #19$ was used to estimate
material parameters for both models.

Materials and Methods

QLV Constitutive Model. We use the alternate form of the
QLV constitutive equation described by Fung #1,20$. Assuming a
zero initial stress state, continuous elastic and reduced relaxation
functions over the interval 0" t#$, and the constraint G!0"=1,
the constitutive relationship for linear viscoelasticity in one di-
mension can be written as

T!t" = Te#%!t"$ +%
0

t

Te#%!t − s"$
!G!s"

!s
ds , !1"

where t is time, s is a dummy variable of integration, %!t" is the
time-dependent stretch, Te#%!t"$ is the elastic response, and G!&"
is the reduced relaxation function. The assumptions of this model
!and also of the FOV model" are that the instantaneous nonlinear
elastic and time-dependent linear viscoelastic responses are inde-
pendent, with the total stress response being a convolution of the
two !hence, the usage of the term “quasilinear” by Fung".

Because of the relative strain rate independence of soft tissues,
Fung proposed using a continuous “box spectrum” relaxation
function:

G!t" =
1 + C#E1!t/&2" − E1!t/&1"$

1 + C ln!&2/&1"
, !2"

where &1, and &2 are the short and long-term time constants, re-
spectively, and

E1!z" =%
z

$
e−t

t
dt !3"

defines the exponential integral and z any real number.
Taking the partial derivative of Eq. !2" gives

!G!t"
!t

=
C

t
& e−t/&2 − e−t/&1

1 + C ln!&2/&1"' , !4"

where the parameters C, &1, and &2 are to be evaluated from ex-
perimental data. It should be noted that Eq. !4" is simpler to evalu-
ate than Eq. !2", because the exponential integral functions are
eliminated.

FOV Constitutive Model. The FOV formulation is exactly the
same as QLV with regard to splitting the response into separate
nonlinear elastic and linear viscoelastic behaviors. For FOV, how-
ever, the reduced relaxation function is replaced by a function
containing the fractional equivalent of an exponential, called the
Mittag–Leffler function. This function is defined by the power
series

Fig. 1 Spring and dashpot representations of QLV „serial… and
FOV „fractional… models. QLV can be represented by a number
of Kelvin–Zener solids connected in series „a…, while FOV can
be represented by a fractal-type tree model „b… with varying
breadth and depth depending on the fractional order !. Note
that in the special case !=1, the FOV model reduces to a single
Kelvin–Zener solid.
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Simple parametric integer-order models

Standard Linear Solid model (SLS):

�(t) + ⌧�
d�(t)

dt
= E[✏(t) + ⌧✏

d✏(t)

dt
] 3 parameters

• Linear elastic response 
• Simplest model that accounts for viscoelastic creep and relaxation 
• Two discreet relaxation time-scales



Why fractional equations?…a motivating example

Modeling approach #2: More complex parametric integer-order models

QLV Kelvin-Zener solids in series

Briefly, the direct-fit method uses an adaptive-grid-refinement glo-
bal optimization algorithm !Global Optimization, Loehle Enter-
prises, Naperville, IL" programmed in MATHEMATICA™ !Wolfram
Research Inc., Champaign, IL" to directly fit the stress response to
the actual strain input data !not an idealization". The direct-fit
method accounts for the relaxation during ramp loading, and also

for the potential for small errors in the displacement control. An-
other distinct advantage of the direct-fit method is that the consti-
tutive model is treated as a “black box,” eliminating the possibil-
ity of bias due to the parameter estimation method or analyst.

As with any optimization method, an objective function !least
squares error function" was defined as

Fig. 2 Plots of FOV and QLV model fits and data from a typical specimen for
„a… the entire relaxation time, „b… the QLV fit expanded to the first 5 s, and „c…
the FOV fit. Also shown are plots of the pointwise rms errors for each model fit.
The apparent “noise” in the model fit results from using actual pointwise
stretch data to compute the stress response, rather than an idealization.
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O(10) parameters

• Linear elastic response 
• Can capture more complex viscoelastic creep and relaxation behavior 
• Multiple discreet relaxation time-scales

relaxation. The apparent “noise” in the model fit results from us-
ing actual pointwise stretch data to compute the stress response,
rather than an idealization.

Overall RMS errors between computed and experimental
stresses were low for both models, typically under 2% !Fig. 3".
Errors were consistently slightly lower for the FOV model than
the QLV model. The means and standard deviations of the esti-
mated nonlinear elastic parameters !A, B, and !c" were statisti-
cally similar for both models !Table 1". The FOV viscoelastic
parameters !" ,# ,$" exhibited lower variation than the correspond-
ing QLV viscoelastic parameters !C ,#1 ,#2". Also, the coefficients
of variation for each parameter were consistently lower for the
FOV model than for the QLV model, particularly for " and # !see
Table 1". For both models, the A parameter had the highest coef-
ficient of variation, however, this was due to interspecimen varia-
tion, not error in the model fits.

Predictions of subsequent cyclic loading were good for both

methods #Fig. 4!a"$, with the overall RMS error always below
5%. FOV predictions were slightly better overall, by approxi-
mately 2%. Both models accurately predicted the peak stresses for
all 20 cycles; however, neither was very accurate in predicting the
valley stresses. Focusing on the first three cycles #Figs. 4!b" and
4!c"$, the FOV model was slightly less accurate in the first cycle,
but more accurate in the later cycles. The pointwise RMS error
plots #Fig. 4!d"$ revealed that the error was lowest at the peaks
and highest during the valleys and just before and after the peak
stresses. For both methods, the prediction of the loading part of
the waveform was better than for the unloading part. The FOV
model was slightly better at predicting the valley stresses than the
QLV model.

Results from the sensitivity analysis revealed good uniqueness
for all the FOV parameters !Fig. 5". The characteristic “U” shapes
of the plots indicated the existence of a unique minimum value for
each parameter. The FOV parameter # was the most unique

Fig. 4 Plots of the cyclic response data and model predictions for a typical specimen for „a… all
20 cycles, and expanded to the first three cycles †„b… and „c…‡. Also shown are the pointwise
rms errors for both methods „d….
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is similar to QLV, but the convolution integral is no longer re-
stricted to integer order. This powerful generalization allows a
simpler reduced relaxation function to be used !viz., a single-
exponential equivalent", while still maintaining a high degree of
flexibility in the relaxation response.

An instructive way to describe the difference between the FOV
and QLV models is by analogy with spring-dashpot systems. The
QLV model uses a continuous spectrum reduced relaxation func-
tion, implying an infinite series of Kelvin–Voigt solids connected
in series #Fig. 1!a"$. A summation !i.e., integration" of the re-
sponses of the Kelvin–Voigt solids produces a wide and flat fre-
quency response. For the FOV model, this concept can be ex-
panded to imply a hierarchical arrangement of Kelvin–Voigt
solids. This is loosely analogous to a fractal-type tree model #Fig.
1!b"$, where the depth and branching of the tree depends on the
so-called order of evolution, which is simply the noninteger frac-
tional order of integration !labeled !". When the fractional order
!=1, the FOV model reduces to a single exponential response;
hence it becomes the standard viscoelastic solid of Kelvin–Voigt.
! values near 1 are considered high values, producing only a

slightly fractional response. In contrast, when the fractional order
is reduced #e.g., 0.7 or 0.3, as shown in Fig. 1!b"$, the degree of
the hierarchy is increased, and the response spectrum is widened.
Hence, !=0.3 is considered a low value, producing a considerably
fractional response. This ability to characterize the relaxation be-
havior in a fractional sense provides a new and promising frame-
work for representing the underlying mechanisms of soft tissue
viscoelasticity.

Our goals for this project were to implement equivalent FOV
and QLV constitutive models in one dimension, estimate their
viscoelastic material parameters for aortic valve cusp tissue, com-
pare the accuracy of the model fits, and investigate the sensitivity
of the parameters. Because collagenous tissues are arranged in a
hierarchy !from collagen molecule to microfibril to fibril to fas-
cicle, and so on", we hypothesized that the FOV constitutive
model would more accurately represent the response of the tissue
than would the QLV model. To maintain objectivity of the com-
parison, an automated direct-fit method #19$ was used to estimate
material parameters for both models.

Materials and Methods

QLV Constitutive Model. We use the alternate form of the
QLV constitutive equation described by Fung #1,20$. Assuming a
zero initial stress state, continuous elastic and reduced relaxation
functions over the interval 0" t#$, and the constraint G!0"=1,
the constitutive relationship for linear viscoelasticity in one di-
mension can be written as

T!t" = Te#%!t"$ +%
0

t

Te#%!t − s"$
!G!s"

!s
ds , !1"

where t is time, s is a dummy variable of integration, %!t" is the
time-dependent stretch, Te#%!t"$ is the elastic response, and G!&"
is the reduced relaxation function. The assumptions of this model
!and also of the FOV model" are that the instantaneous nonlinear
elastic and time-dependent linear viscoelastic responses are inde-
pendent, with the total stress response being a convolution of the
two !hence, the usage of the term “quasilinear” by Fung".

Because of the relative strain rate independence of soft tissues,
Fung proposed using a continuous “box spectrum” relaxation
function:

G!t" =
1 + C#E1!t/&2" − E1!t/&1"$

1 + C ln!&2/&1"
, !2"

where &1, and &2 are the short and long-term time constants, re-
spectively, and

E1!z" =%
z

$
e−t

t
dt !3"

defines the exponential integral and z any real number.
Taking the partial derivative of Eq. !2" gives

!G!t"
!t

=
C

t
& e−t/&2 − e−t/&1

1 + C ln!&2/&1"' , !4"

where the parameters C, &1, and &2 are to be evaluated from ex-
perimental data. It should be noted that Eq. !4" is simpler to evalu-
ate than Eq. !2", because the exponential integral functions are
eliminated.

FOV Constitutive Model. The FOV formulation is exactly the
same as QLV with regard to splitting the response into separate
nonlinear elastic and linear viscoelastic behaviors. For FOV, how-
ever, the reduced relaxation function is replaced by a function
containing the fractional equivalent of an exponential, called the
Mittag–Leffler function. This function is defined by the power
series

Fig. 1 Spring and dashpot representations of QLV „serial… and
FOV „fractional… models. QLV can be represented by a number
of Kelvin–Zener solids connected in series „a…, while FOV can
be represented by a fractal-type tree model „b… with varying
breadth and depth depending on the fractional order !. Note
that in the special case !=1, the FOV model reduces to a single
Kelvin–Zener solid.
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• Many parameters to be estimated from few data 
• High parametric sensitivity 
• The response behaves like a stochastic process and depends on patient-specific factors, age, etc.

Fung, Yuan-cheng. Biomechanics: mechanical properties of living tissues. Springer Science & Business Media, 2013.



Why fractional equations?…a motivating example

Modeling approach #3: Even more complex parametric integer-order models

QLV Kelvin-Zener solids in series

…Guess how many parameters?

• Linear elastic response 
• Can capture even more complex viscoelastic creep 

and relaxation behavior 
• Continuous spectrum of relaxation time-scales

is similar to QLV, but the convolution integral is no longer re-
stricted to integer order. This powerful generalization allows a
simpler reduced relaxation function to be used !viz., a single-
exponential equivalent", while still maintaining a high degree of
flexibility in the relaxation response.

An instructive way to describe the difference between the FOV
and QLV models is by analogy with spring-dashpot systems. The
QLV model uses a continuous spectrum reduced relaxation func-
tion, implying an infinite series of Kelvin–Voigt solids connected
in series #Fig. 1!a"$. A summation !i.e., integration" of the re-
sponses of the Kelvin–Voigt solids produces a wide and flat fre-
quency response. For the FOV model, this concept can be ex-
panded to imply a hierarchical arrangement of Kelvin–Voigt
solids. This is loosely analogous to a fractal-type tree model #Fig.
1!b"$, where the depth and branching of the tree depends on the
so-called order of evolution, which is simply the noninteger frac-
tional order of integration !labeled !". When the fractional order
!=1, the FOV model reduces to a single exponential response;
hence it becomes the standard viscoelastic solid of Kelvin–Voigt.
! values near 1 are considered high values, producing only a

slightly fractional response. In contrast, when the fractional order
is reduced #e.g., 0.7 or 0.3, as shown in Fig. 1!b"$, the degree of
the hierarchy is increased, and the response spectrum is widened.
Hence, !=0.3 is considered a low value, producing a considerably
fractional response. This ability to characterize the relaxation be-
havior in a fractional sense provides a new and promising frame-
work for representing the underlying mechanisms of soft tissue
viscoelasticity.

Our goals for this project were to implement equivalent FOV
and QLV constitutive models in one dimension, estimate their
viscoelastic material parameters for aortic valve cusp tissue, com-
pare the accuracy of the model fits, and investigate the sensitivity
of the parameters. Because collagenous tissues are arranged in a
hierarchy !from collagen molecule to microfibril to fibril to fas-
cicle, and so on", we hypothesized that the FOV constitutive
model would more accurately represent the response of the tissue
than would the QLV model. To maintain objectivity of the com-
parison, an automated direct-fit method #19$ was used to estimate
material parameters for both models.

Materials and Methods

QLV Constitutive Model. We use the alternate form of the
QLV constitutive equation described by Fung #1,20$. Assuming a
zero initial stress state, continuous elastic and reduced relaxation
functions over the interval 0" t#$, and the constraint G!0"=1,
the constitutive relationship for linear viscoelasticity in one di-
mension can be written as

T!t" = Te#%!t"$ +%
0

t

Te#%!t − s"$
!G!s"

!s
ds , !1"

where t is time, s is a dummy variable of integration, %!t" is the
time-dependent stretch, Te#%!t"$ is the elastic response, and G!&"
is the reduced relaxation function. The assumptions of this model
!and also of the FOV model" are that the instantaneous nonlinear
elastic and time-dependent linear viscoelastic responses are inde-
pendent, with the total stress response being a convolution of the
two !hence, the usage of the term “quasilinear” by Fung".

Because of the relative strain rate independence of soft tissues,
Fung proposed using a continuous “box spectrum” relaxation
function:

G!t" =
1 + C#E1!t/&2" − E1!t/&1"$

1 + C ln!&2/&1"
, !2"

where &1, and &2 are the short and long-term time constants, re-
spectively, and

E1!z" =%
z

$
e−t

t
dt !3"

defines the exponential integral and z any real number.
Taking the partial derivative of Eq. !2" gives

!G!t"
!t

=
C

t
& e−t/&2 − e−t/&1

1 + C ln!&2/&1"' , !4"

where the parameters C, &1, and &2 are to be evaluated from ex-
perimental data. It should be noted that Eq. !4" is simpler to evalu-
ate than Eq. !2", because the exponential integral functions are
eliminated.

FOV Constitutive Model. The FOV formulation is exactly the
same as QLV with regard to splitting the response into separate
nonlinear elastic and linear viscoelastic behaviors. For FOV, how-
ever, the reduced relaxation function is replaced by a function
containing the fractional equivalent of an exponential, called the
Mittag–Leffler function. This function is defined by the power
series

Fig. 1 Spring and dashpot representations of QLV „serial… and
FOV „fractional… models. QLV can be represented by a number
of Kelvin–Zener solids connected in series „a…, while FOV can
be represented by a fractal-type tree model „b… with varying
breadth and depth depending on the fractional order !. Note
that in the special case !=1, the FOV model reduces to a single
Kelvin–Zener solid.

Journal of Biomechanical Engineering AUGUST 2005, Vol. 127 / 701
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Why fractional equations?…a motivating example

Modeling approach #4: Fractional-order models

Fractional-order Kelvin-Zener solid

4 parameters!

• Linear elastic response 
• Can capture even more complex viscoelastic creep 

and relaxation behavior 
• Continuous spectrum of relaxation time-scales

is similar to QLV, but the convolution integral is no longer re-
stricted to integer order. This powerful generalization allows a
simpler reduced relaxation function to be used !viz., a single-
exponential equivalent", while still maintaining a high degree of
flexibility in the relaxation response.

An instructive way to describe the difference between the FOV
and QLV models is by analogy with spring-dashpot systems. The
QLV model uses a continuous spectrum reduced relaxation func-
tion, implying an infinite series of Kelvin–Voigt solids connected
in series #Fig. 1!a"$. A summation !i.e., integration" of the re-
sponses of the Kelvin–Voigt solids produces a wide and flat fre-
quency response. For the FOV model, this concept can be ex-
panded to imply a hierarchical arrangement of Kelvin–Voigt
solids. This is loosely analogous to a fractal-type tree model #Fig.
1!b"$, where the depth and branching of the tree depends on the
so-called order of evolution, which is simply the noninteger frac-
tional order of integration !labeled !". When the fractional order
!=1, the FOV model reduces to a single exponential response;
hence it becomes the standard viscoelastic solid of Kelvin–Voigt.
! values near 1 are considered high values, producing only a

slightly fractional response. In contrast, when the fractional order
is reduced #e.g., 0.7 or 0.3, as shown in Fig. 1!b"$, the degree of
the hierarchy is increased, and the response spectrum is widened.
Hence, !=0.3 is considered a low value, producing a considerably
fractional response. This ability to characterize the relaxation be-
havior in a fractional sense provides a new and promising frame-
work for representing the underlying mechanisms of soft tissue
viscoelasticity.

Our goals for this project were to implement equivalent FOV
and QLV constitutive models in one dimension, estimate their
viscoelastic material parameters for aortic valve cusp tissue, com-
pare the accuracy of the model fits, and investigate the sensitivity
of the parameters. Because collagenous tissues are arranged in a
hierarchy !from collagen molecule to microfibril to fibril to fas-
cicle, and so on", we hypothesized that the FOV constitutive
model would more accurately represent the response of the tissue
than would the QLV model. To maintain objectivity of the com-
parison, an automated direct-fit method #19$ was used to estimate
material parameters for both models.

Materials and Methods

QLV Constitutive Model. We use the alternate form of the
QLV constitutive equation described by Fung #1,20$. Assuming a
zero initial stress state, continuous elastic and reduced relaxation
functions over the interval 0" t#$, and the constraint G!0"=1,
the constitutive relationship for linear viscoelasticity in one di-
mension can be written as

T!t" = Te#%!t"$ +%
0

t

Te#%!t − s"$
!G!s"

!s
ds , !1"

where t is time, s is a dummy variable of integration, %!t" is the
time-dependent stretch, Te#%!t"$ is the elastic response, and G!&"
is the reduced relaxation function. The assumptions of this model
!and also of the FOV model" are that the instantaneous nonlinear
elastic and time-dependent linear viscoelastic responses are inde-
pendent, with the total stress response being a convolution of the
two !hence, the usage of the term “quasilinear” by Fung".

Because of the relative strain rate independence of soft tissues,
Fung proposed using a continuous “box spectrum” relaxation
function:

G!t" =
1 + C#E1!t/&2" − E1!t/&1"$

1 + C ln!&2/&1"
, !2"

where &1, and &2 are the short and long-term time constants, re-
spectively, and

E1!z" =%
z

$
e−t

t
dt !3"

defines the exponential integral and z any real number.
Taking the partial derivative of Eq. !2" gives

!G!t"
!t

=
C

t
& e−t/&2 − e−t/&1

1 + C ln!&2/&1"' , !4"

where the parameters C, &1, and &2 are to be evaluated from ex-
perimental data. It should be noted that Eq. !4" is simpler to evalu-
ate than Eq. !2", because the exponential integral functions are
eliminated.

FOV Constitutive Model. The FOV formulation is exactly the
same as QLV with regard to splitting the response into separate
nonlinear elastic and linear viscoelastic behaviors. For FOV, how-
ever, the reduced relaxation function is replaced by a function
containing the fractional equivalent of an exponential, called the
Mittag–Leffler function. This function is defined by the power
series

Fig. 1 Spring and dashpot representations of QLV „serial… and
FOV „fractional… models. QLV can be represented by a number
of Kelvin–Zener solids connected in series „a…, while FOV can
be represented by a fractal-type tree model „b… with varying
breadth and depth depending on the fractional order !. Note
that in the special case !=1, the FOV model reduces to a single
Kelvin–Zener solid.

Journal of Biomechanical Engineering AUGUST 2005, Vol. 127 / 701
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where G(t) is the stress relaxation function and ✏e(x, t) is the static elastic response

of the tissue. The presence of the convolution integral in Eq. 6.1 makes the stress

depend upon the strain time history, but it is the choice of the stress relaxation

function that ultimately determines the tissue model. Typically, one introduces a

parametric representation of G(t) that fits given experimental measurements (see

Steele et al. (2011), Valdez-Jasso et al. (2011)). In the following sections we present

the fractional-order Standard Linear Solid (SLS) model and its implementation in a

one-dimensional blood flow solver.

6.2.1 The Fractional SLS model (Fractional Kelvin-Zener

model)

Before we present the fractional version of the SLS model, we start with the classical

definition of the Caputo fractional derivative of order ↵ (see Mainardi (2010))

C

0 D
↵

t

f(t) :=

8

>

>

<

>

>

:

1

�(n� ↵)

R

t

0

f (n)(⌧)

(t� ⌧)↵+1�n

d⌧, n� 1 < ↵ < n

dnf(t)

dtn
, ↵ = n

, (6.2)

where ↵ > 0 is a real number, n is an integer, and �(·) is the Euler gamma function.

We note that for ↵ 6= n, the Caputo derivative is a non-local operator that depends

on the history of f in the interval [0, t].

The fractional order generalization of the SLS model is constructed using the

parallel combination of a spring with a spring in series with a spring-pot. The stress

is related to strain as

�(t) + ⌧↵
�

C

0 D
↵

t

�(t) = E
⇥

✏(t) + ⌧↵
✏

C

0 D
↵

t

✏(t)
⇤

(6.3)

Näsholm, Sven Peter, and Sverre Holm. "On a fractional Zener elastic wave equation." Fractional Calculus and Applied Analysis 16.1 (2013): 26-50.
Doehring, Todd C., et al. "Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity." Journal of biomechanical engineering 127.4 (2005): 700-708.



Why fractional equations?…a motivating example

Modeling approach #4: More complex fractional-order models

Fractional-order Kelvin-Zener solid

4 parameters!

• Linear elastic response 
• Can capture even more complex viscoelastic creep 

and relaxation behavior 
• Continuous spectrum of relaxation time-scales

is similar to QLV, but the convolution integral is no longer re-
stricted to integer order. This powerful generalization allows a
simpler reduced relaxation function to be used !viz., a single-
exponential equivalent", while still maintaining a high degree of
flexibility in the relaxation response.

An instructive way to describe the difference between the FOV
and QLV models is by analogy with spring-dashpot systems. The
QLV model uses a continuous spectrum reduced relaxation func-
tion, implying an infinite series of Kelvin–Voigt solids connected
in series #Fig. 1!a"$. A summation !i.e., integration" of the re-
sponses of the Kelvin–Voigt solids produces a wide and flat fre-
quency response. For the FOV model, this concept can be ex-
panded to imply a hierarchical arrangement of Kelvin–Voigt
solids. This is loosely analogous to a fractal-type tree model #Fig.
1!b"$, where the depth and branching of the tree depends on the
so-called order of evolution, which is simply the noninteger frac-
tional order of integration !labeled !". When the fractional order
!=1, the FOV model reduces to a single exponential response;
hence it becomes the standard viscoelastic solid of Kelvin–Voigt.
! values near 1 are considered high values, producing only a

slightly fractional response. In contrast, when the fractional order
is reduced #e.g., 0.7 or 0.3, as shown in Fig. 1!b"$, the degree of
the hierarchy is increased, and the response spectrum is widened.
Hence, !=0.3 is considered a low value, producing a considerably
fractional response. This ability to characterize the relaxation be-
havior in a fractional sense provides a new and promising frame-
work for representing the underlying mechanisms of soft tissue
viscoelasticity.

Our goals for this project were to implement equivalent FOV
and QLV constitutive models in one dimension, estimate their
viscoelastic material parameters for aortic valve cusp tissue, com-
pare the accuracy of the model fits, and investigate the sensitivity
of the parameters. Because collagenous tissues are arranged in a
hierarchy !from collagen molecule to microfibril to fibril to fas-
cicle, and so on", we hypothesized that the FOV constitutive
model would more accurately represent the response of the tissue
than would the QLV model. To maintain objectivity of the com-
parison, an automated direct-fit method #19$ was used to estimate
material parameters for both models.

Materials and Methods

QLV Constitutive Model. We use the alternate form of the
QLV constitutive equation described by Fung #1,20$. Assuming a
zero initial stress state, continuous elastic and reduced relaxation
functions over the interval 0" t#$, and the constraint G!0"=1,
the constitutive relationship for linear viscoelasticity in one di-
mension can be written as

T!t" = Te#%!t"$ +%
0

t

Te#%!t − s"$
!G!s"

!s
ds , !1"

where t is time, s is a dummy variable of integration, %!t" is the
time-dependent stretch, Te#%!t"$ is the elastic response, and G!&"
is the reduced relaxation function. The assumptions of this model
!and also of the FOV model" are that the instantaneous nonlinear
elastic and time-dependent linear viscoelastic responses are inde-
pendent, with the total stress response being a convolution of the
two !hence, the usage of the term “quasilinear” by Fung".

Because of the relative strain rate independence of soft tissues,
Fung proposed using a continuous “box spectrum” relaxation
function:

G!t" =
1 + C#E1!t/&2" − E1!t/&1"$

1 + C ln!&2/&1"
, !2"

where &1, and &2 are the short and long-term time constants, re-
spectively, and

E1!z" =%
z

$
e−t

t
dt !3"

defines the exponential integral and z any real number.
Taking the partial derivative of Eq. !2" gives

!G!t"
!t

=
C

t
& e−t/&2 − e−t/&1

1 + C ln!&2/&1"' , !4"

where the parameters C, &1, and &2 are to be evaluated from ex-
perimental data. It should be noted that Eq. !4" is simpler to evalu-
ate than Eq. !2", because the exponential integral functions are
eliminated.

FOV Constitutive Model. The FOV formulation is exactly the
same as QLV with regard to splitting the response into separate
nonlinear elastic and linear viscoelastic behaviors. For FOV, how-
ever, the reduced relaxation function is replaced by a function
containing the fractional equivalent of an exponential, called the
Mittag–Leffler function. This function is defined by the power
series

Fig. 1 Spring and dashpot representations of QLV „serial… and
FOV „fractional… models. QLV can be represented by a number
of Kelvin–Zener solids connected in series „a…, while FOV can
be represented by a fractal-type tree model „b… with varying
breadth and depth depending on the fractional order !. Note
that in the special case !=1, the FOV model reduces to a single
Kelvin–Zener solid.
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where G(t) is the stress relaxation function and ✏e(x, t) is the static elastic response

of the tissue. The presence of the convolution integral in Eq. 6.1 makes the stress

depend upon the strain time history, but it is the choice of the stress relaxation

function that ultimately determines the tissue model. Typically, one introduces a

parametric representation of G(t) that fits given experimental measurements (see

Steele et al. (2011), Valdez-Jasso et al. (2011)). In the following sections we present

the fractional-order Standard Linear Solid (SLS) model and its implementation in a

one-dimensional blood flow solver.

6.2.1 The Fractional SLS model (Fractional Kelvin-Zener

model)

Before we present the fractional version of the SLS model, we start with the classical

definition of the Caputo fractional derivative of order ↵ (see Mainardi (2010))
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where ↵ > 0 is a real number, n is an integer, and �(·) is the Euler gamma function.

We note that for ↵ 6= n, the Caputo derivative is a non-local operator that depends

on the history of f in the interval [0, t].

The fractional order generalization of the SLS model is constructed using the

parallel combination of a spring with a spring in series with a spring-pot. The stress

is related to strain as
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where σ is the applied stress, E is the Young’s modulus 
of the material and ε is the strain. Dashpots represent the 
viscous component of a viscoelastic material. In these 
elements, the applied stress varies with strain rate: 
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where η is viscosity of the dashpot component. In a SLS 
model, these components are connected as shown in left 
side of Fig. 1, resulting in the following differential 
equation 
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The complex elastic modulus E* is defined as the 
quotient between stress and strain in the frequency 
domain. Applying the Laplace transform to Eq. 1 and 
assuming null initial conditions, E* results 
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where s is the complex Laplace variable. The step tem-
poral response g(t) of this model can be predicted using 
a unit step in strain and calculating the resulting stress 
as: 
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where τ=η/E2 is the time constant of the exponential 
decay relaxation. Both frequency and step responses of 
the SLS model are shown in Fig 2. 

The fractional order derivative α of a function f(t) 
can be expressed following the classical definition at-
tributed to Rienman and Liouville as 

∫
−−Γ

=
t

d
t
f

dt
d

tfD
0 )(

)(

)1(

1
)( θ

θ
θ

α α
α  

where Γ is the Euler gamma function. Accordingly, in 
the Laplace domain, the fractional operator results in 
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where null initial conditions were assumed. Thus, a new 
component can be conceived with 
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This element called spring-pot interpolates between 
a spring (α=0) and a dashpot (α=1). Replacing the 
dashpot with a spring-pot, a modified fractional order 
viscoelastic SLS (FOV-SLS) can be conceived (Fig. 1). 
Following Eq. 1, this new fractional model can be rep-
resented with a fractional order differential equation as 
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Applying the Laplace transform and using Eq. 4, E* 
results 

 

 
Fig. 1. Standard-linear solid model and the fractional order 
viscoelastic model. 
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which is the analogy of Eq. 2. Again, the step response 
g(t) can be calculated as 
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where the time constant is now 
αητ 1

2 )( E= and αF  is 

the Mittag-Leffler function defined as 
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and its Laplace transform for 01 >> α  is 
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Frequency and step responses of the SLS and the 
modified FOV-SLS models are shown in Fig 2. 

Finally, and as to analyze a FOV model with the 
same number of parameters as the SLS model, we re-
moved the E2 spring in Fig. 1 leaving only one spring 
(E1) in parallel with a spring-pot. This last alternative 
was called FOV-Voigt model. Removing E2 from Eq. 7, 
the simplified g(t) results: 
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where the Mittag-Leffler function present in Eq. 8 was 
reduced to a simple power-law function. 

B. Experimental Validation 
To estimate the 4 parameters of the FOV-SLS model, 
uniaxial stress-relaxation experiments were conducted. 
Ascending aortic segments were harvested from four 
human donors (3 men and 1 women aging 42-51) de-
ceased from causes not related to atherosclerosis. All 
vessel samples were obtained after acquiring the per-
missions required by current legislation and according 
to a protocol established and approved by the Ethics 
Committee of the Hospital Puerta de Hierro in Madrid.  
 

…fewer parameters to be estimated, hence less parametric sensitivity. 
…combine fractional solids in series and you can fit an elephant in the room (e.g. smooth muscle activation in cerebral auto regulation).



The role of the fractional order

is similar to QLV, but the convolution integral is no longer re-
stricted to integer order. This powerful generalization allows a
simpler reduced relaxation function to be used !viz., a single-
exponential equivalent", while still maintaining a high degree of
flexibility in the relaxation response.

An instructive way to describe the difference between the FOV
and QLV models is by analogy with spring-dashpot systems. The
QLV model uses a continuous spectrum reduced relaxation func-
tion, implying an infinite series of Kelvin–Voigt solids connected
in series #Fig. 1!a"$. A summation !i.e., integration" of the re-
sponses of the Kelvin–Voigt solids produces a wide and flat fre-
quency response. For the FOV model, this concept can be ex-
panded to imply a hierarchical arrangement of Kelvin–Voigt
solids. This is loosely analogous to a fractal-type tree model #Fig.
1!b"$, where the depth and branching of the tree depends on the
so-called order of evolution, which is simply the noninteger frac-
tional order of integration !labeled !". When the fractional order
!=1, the FOV model reduces to a single exponential response;
hence it becomes the standard viscoelastic solid of Kelvin–Voigt.
! values near 1 are considered high values, producing only a

slightly fractional response. In contrast, when the fractional order
is reduced #e.g., 0.7 or 0.3, as shown in Fig. 1!b"$, the degree of
the hierarchy is increased, and the response spectrum is widened.
Hence, !=0.3 is considered a low value, producing a considerably
fractional response. This ability to characterize the relaxation be-
havior in a fractional sense provides a new and promising frame-
work for representing the underlying mechanisms of soft tissue
viscoelasticity.

Our goals for this project were to implement equivalent FOV
and QLV constitutive models in one dimension, estimate their
viscoelastic material parameters for aortic valve cusp tissue, com-
pare the accuracy of the model fits, and investigate the sensitivity
of the parameters. Because collagenous tissues are arranged in a
hierarchy !from collagen molecule to microfibril to fibril to fas-
cicle, and so on", we hypothesized that the FOV constitutive
model would more accurately represent the response of the tissue
than would the QLV model. To maintain objectivity of the com-
parison, an automated direct-fit method #19$ was used to estimate
material parameters for both models.

Materials and Methods

QLV Constitutive Model. We use the alternate form of the
QLV constitutive equation described by Fung #1,20$. Assuming a
zero initial stress state, continuous elastic and reduced relaxation
functions over the interval 0" t#$, and the constraint G!0"=1,
the constitutive relationship for linear viscoelasticity in one di-
mension can be written as

T!t" = Te#%!t"$ +%
0

t

Te#%!t − s"$
!G!s"

!s
ds , !1"

where t is time, s is a dummy variable of integration, %!t" is the
time-dependent stretch, Te#%!t"$ is the elastic response, and G!&"
is the reduced relaxation function. The assumptions of this model
!and also of the FOV model" are that the instantaneous nonlinear
elastic and time-dependent linear viscoelastic responses are inde-
pendent, with the total stress response being a convolution of the
two !hence, the usage of the term “quasilinear” by Fung".

Because of the relative strain rate independence of soft tissues,
Fung proposed using a continuous “box spectrum” relaxation
function:

G!t" =
1 + C#E1!t/&2" − E1!t/&1"$

1 + C ln!&2/&1"
, !2"

where &1, and &2 are the short and long-term time constants, re-
spectively, and

E1!z" =%
z

$
e−t

t
dt !3"

defines the exponential integral and z any real number.
Taking the partial derivative of Eq. !2" gives

!G!t"
!t

=
C

t
& e−t/&2 − e−t/&1

1 + C ln!&2/&1"' , !4"

where the parameters C, &1, and &2 are to be evaluated from ex-
perimental data. It should be noted that Eq. !4" is simpler to evalu-
ate than Eq. !2", because the exponential integral functions are
eliminated.

FOV Constitutive Model. The FOV formulation is exactly the
same as QLV with regard to splitting the response into separate
nonlinear elastic and linear viscoelastic behaviors. For FOV, how-
ever, the reduced relaxation function is replaced by a function
containing the fractional equivalent of an exponential, called the
Mittag–Leffler function. This function is defined by the power
series

Fig. 1 Spring and dashpot representations of QLV „serial… and
FOV „fractional… models. QLV can be represented by a number
of Kelvin–Zener solids connected in series „a…, while FOV can
be represented by a fractal-type tree model „b… with varying
breadth and depth depending on the fractional order !. Note
that in the special case !=1, the FOV model reduces to a single
Kelvin–Zener solid.
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simpler reduced relaxation function to be used !viz., a single-
exponential equivalent", while still maintaining a high degree of
flexibility in the relaxation response.

An instructive way to describe the difference between the FOV
and QLV models is by analogy with spring-dashpot systems. The
QLV model uses a continuous spectrum reduced relaxation func-
tion, implying an infinite series of Kelvin–Voigt solids connected
in series #Fig. 1!a"$. A summation !i.e., integration" of the re-
sponses of the Kelvin–Voigt solids produces a wide and flat fre-
quency response. For the FOV model, this concept can be ex-
panded to imply a hierarchical arrangement of Kelvin–Voigt
solids. This is loosely analogous to a fractal-type tree model #Fig.
1!b"$, where the depth and branching of the tree depends on the
so-called order of evolution, which is simply the noninteger frac-
tional order of integration !labeled !". When the fractional order
!=1, the FOV model reduces to a single exponential response;
hence it becomes the standard viscoelastic solid of Kelvin–Voigt.
! values near 1 are considered high values, producing only a

slightly fractional response. In contrast, when the fractional order
is reduced #e.g., 0.7 or 0.3, as shown in Fig. 1!b"$, the degree of
the hierarchy is increased, and the response spectrum is widened.
Hence, !=0.3 is considered a low value, producing a considerably
fractional response. This ability to characterize the relaxation be-
havior in a fractional sense provides a new and promising frame-
work for representing the underlying mechanisms of soft tissue
viscoelasticity.

Our goals for this project were to implement equivalent FOV
and QLV constitutive models in one dimension, estimate their
viscoelastic material parameters for aortic valve cusp tissue, com-
pare the accuracy of the model fits, and investigate the sensitivity
of the parameters. Because collagenous tissues are arranged in a
hierarchy !from collagen molecule to microfibril to fibril to fas-
cicle, and so on", we hypothesized that the FOV constitutive
model would more accurately represent the response of the tissue
than would the QLV model. To maintain objectivity of the com-
parison, an automated direct-fit method #19$ was used to estimate
material parameters for both models.

Materials and Methods

QLV Constitutive Model. We use the alternate form of the
QLV constitutive equation described by Fung #1,20$. Assuming a
zero initial stress state, continuous elastic and reduced relaxation
functions over the interval 0" t#$, and the constraint G!0"=1,
the constitutive relationship for linear viscoelasticity in one di-
mension can be written as

T!t" = Te#%!t"$ +%
0

t

Te#%!t − s"$
!G!s"

!s
ds , !1"

where t is time, s is a dummy variable of integration, %!t" is the
time-dependent stretch, Te#%!t"$ is the elastic response, and G!&"
is the reduced relaxation function. The assumptions of this model
!and also of the FOV model" are that the instantaneous nonlinear
elastic and time-dependent linear viscoelastic responses are inde-
pendent, with the total stress response being a convolution of the
two !hence, the usage of the term “quasilinear” by Fung".

Because of the relative strain rate independence of soft tissues,
Fung proposed using a continuous “box spectrum” relaxation
function:

G!t" =
1 + C#E1!t/&2" − E1!t/&1"$

1 + C ln!&2/&1"
, !2"

where &1, and &2 are the short and long-term time constants, re-
spectively, and

E1!z" =%
z

$
e−t

t
dt !3"

defines the exponential integral and z any real number.
Taking the partial derivative of Eq. !2" gives

!G!t"
!t

=
C

t
& e−t/&2 − e−t/&1

1 + C ln!&2/&1"' , !4"

where the parameters C, &1, and &2 are to be evaluated from ex-
perimental data. It should be noted that Eq. !4" is simpler to evalu-
ate than Eq. !2", because the exponential integral functions are
eliminated.

FOV Constitutive Model. The FOV formulation is exactly the
same as QLV with regard to splitting the response into separate
nonlinear elastic and linear viscoelastic behaviors. For FOV, how-
ever, the reduced relaxation function is replaced by a function
containing the fractional equivalent of an exponential, called the
Mittag–Leffler function. This function is defined by the power
series

Fig. 1 Spring and dashpot representations of QLV „serial… and
FOV „fractional… models. QLV can be represented by a number
of Kelvin–Zener solids connected in series „a…, while FOV can
be represented by a fractal-type tree model „b… with varying
breadth and depth depending on the fractional order !. Note
that in the special case !=1, the FOV model reduces to a single
Kelvin–Zener solid.
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Fig. 2. Time and frequency effects of adjusting the fractional 

order model α. Up: Stress-relaxation curves. Down: Complex 

elastic modulus(E*). 

One representative specimen was extracted from 

each donor. Each specimen consisted of a circumferen-

tially oriented T-bone strip of nominally 2mm width and 

10mm length dissected using a custom-made steel cut-

ting block. In-vivo diameter ranged from 24 to 35mm 

and specimen thickness from 2.00 to 2.25mm. Details of 

experimental devices are described elsewhere (Atienza 

et al., 2007). Briefly, two stainless steel fixtures joined 

the arterial segments to the grips of an electromechani-

cal tensile testing machine (Instron 5866) equipped with 

a 10N load cell. Specimens were enclosed in a PMMA 

transparent chamber and submerged in PBS solution 

heated by a thermostatic bath (Unitronic 6320200). The 

temperature of the vessel was 37ºC and controlled to 

0.5ºC by a K-type thermocouple located in the chamber 

and close to the artery (<4mm). The elongation was 

measured by the machine’s transducer, which gives a 

precision of 0.001mm.  

In all cases, three preconditioning cycles preceded 1-

hour relaxation phases at 2 stress levels: LOW 

(0.05MPa) and HIGH (0.1MPa). Stress levels were se-

lected to match in-vivo physiological ranges.  The load-

ing and unloading rates were in all cases fixed to 

0.03mm.s
-1

. Data from 1-hour stress-relaxation portions 

were registered at a sampling rate of 10Hz and reduced 

to 0.5Hz using a decimation function based on an 

eighth-order lowpass Chebyshev Type I filter (decimate 

Matlab® function).  

Stress was normalized in each experiment to peak 

stress. For the estimation of parameters, we minimized 

the error between model step responses in Eq. 8 and 

measured true stress data. The curve fitting problem was 

solved in the least-square sense using Matlab® function 

based on the Levenberg-Marquardt algorithm. As the 

relaxation function for our FOV-SLS has a weak singu-

larity at t=0, we computed values from the smallest 

positive time based on the sampling rate. Initial condi-

tions for the parameters in all cases were: E1=0.5, E2 

=0.5, η=1, α=0.5.  

To evaluate the quality of fitting, percentage least-

square errors (LSE) relative to the measured values 

were calculated as 
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III. RESULTS 
All viscoelastic parameters are shown in Table 1 and a 

representative stress-relaxation experiment can be ob-

served in Fig. 3. The fractional order of the spring-pot 
resulted in between 0.10 and 0.36. The elastic constant 

E1 was greater than E2 in all cases and (E1+E2) averaged 

~1.05. Least-squares errors were always below 1%. For 

each viscoelastic parameter mean ±SD was calculated. 

A pooled frequency response was calculated using Eq. 

7, normalized to static complex elastic modulus (E*(ω)/ 
E*(0)) and shown in Fig. 4.  A clear power-law re-

sponse can be visualized. 

When the FOV-Voigt alternative model was tested 

using Eq. 10, the three parameters E1,η, α  did not sig-

nificantly differ from the ones presented in Table 1, 

although fractional orders tended to be slightly lower 

and the viscous constants higher. With respect to the 

curve fitting quality, LSE did not vary significantly and 

remained below 1% in all cases.  

 

TABLE I: Adjusted viscoelastic parameters from the FOV-

SLS model after fitting 1-hour stress-relaxation curves. 

Segment Stress 

level 

E1 E2 η α LSE 

(%) 

LOW 0.68 0.39 2.14 0.23 0.15 

PH45 
HIGH 0.64 0.49 1.80 0.18 0.20 

LOW 0.56 0.48 5.54 0.11 0.39 

PH56 

HIGH 0.61 0.48 1.54 0.16 0.53 

LOW 0.67 0.38 1.88 0.22 0.30 

PH68 

HIGH 0.62 0.51 1.95 0.36 0.22 

LOW 0.80 0.19 3.76 0.10 0.38 

PH76 

HIGH 0.69 0.33 2.77 0.23 0.24 
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using Eq. 10, the three parameters E1,η, α  did not sig-

nificantly differ from the ones presented in Table 1, 

although fractional orders tended to be slightly lower 

and the viscous constants higher. With respect to the 

curve fitting quality, LSE did not vary significantly and 

remained below 1% in all cases.  

 

TABLE I: Adjusted viscoelastic parameters from the FOV-

SLS model after fitting 1-hour stress-relaxation curves. 

Segment Stress 

level 

E1 E2 η α LSE 

(%) 

LOW 0.68 0.39 2.14 0.23 0.15 

PH45 
HIGH 0.64 0.49 1.80 0.18 0.20 

LOW 0.56 0.48 5.54 0.11 0.39 

PH56 

HIGH 0.61 0.48 1.54 0.16 0.53 

LOW 0.67 0.38 1.88 0.22 0.30 

PH68 

HIGH 0.62 0.51 1.95 0.36 0.22 

LOW 0.80 0.19 3.76 0.10 0.38 

PH76 

HIGH 0.69 0.33 2.77 0.23 0.24 

The fractional order effectively controls the balance 
between the conservative (elastic energy storage) and 
dissipative (viscoelastic energy dissipation) behaviors.



Great, but how do we compute now?



Discretize the derivatives

Grunwald-Letnikov approximation
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Podlubny (1998)):

C

0 D
↵

t

f(t) = lim
�t!0

�t�↵

1
X
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k

f(t� k�t), GLa

k

:=
k � ↵� 1

k
GL↵

k�1, (6.8)

with GL↵

0 = 1. By substituting the Grünwald-Letnikov formula in Eq. 6.3, we can

formulate the pressure-area relation for the FO-SLS model as

p(x, t) = p
ext

+
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1 + ⌧↵
�
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(6.9)

where the last term in the summation is the total elastic and viscoelastic pressure

from previous time steps.

An attractive feature of this approach is that for a small time step �t, which

is typically the case for the high-order polynomial approximations employed here

(due to the Courant-Friedrichs-Lewy (CFL) condition), the Grünwald-Letnikov co-

e�cients exhibit fast decay properties. This enables us to reduce the computation

of the convolution sum in Eq. 6.9, by using the “short memory” principle of Pod-

lubny (1998), and approximate the viscoelastic memory e↵ects using only a portion

of the response history, disregarding any terms in the Grünwald-Letnikov expansion

that are below a cuto↵ threshold. However, the elastic behavior of larger systemic

arteries typically corresponds to low values of the fractional order (see Craiem and

Armentano (2007), Craiem et al. (2008)), and the accurate evaluation of these con-

volutions using the “short memory” principle requires one to consider history e↵ects

from the last four cardiac cycles. Our numerical experiments indicate that this is the

minimum amount of time-history required by the Grunwald-Letnikov formula to give

numerically stable and convergent results for the problem considered. With our goal

being the long-time integration of Eq. 5.1, using a time step as low as �t = 10�6,

and with each cardiac cycle being about 1sec long, this results to storing at least
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• Low accuracy 
• Excessive memory requirements, especially for advection dominated 

problems due to the CFL condition

…why should we discretize in the first place?  
These are linear time-fractional evolution equations with well behaved forcing terms… 
…we can use our good old Laplace transforms and solve them analytically!



Computing convolution integrals
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break-frequencies in a Cole-Cole model sense, around which the model characteristics

change (see Näsholm and Holm (2013)).

Finally, by substituting the FO-SLS stress relaxation function of Eq. 6.4 in

Eq. 6.1, integrating by parts and employing the definitions in Eq. 5.5 we arrive

at the FO-SLS pressure-area relation

p(x, t) = p
ext

+ pE(x, t) + pV (x, t), (6.6)

where pE, pV correspond to the elastic and viscoelastic pressure contributions, re-

spectively.
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(6.7)

We observe that the FO-SLS model introduces stress-strain memory e↵ects that

in the long time limit decay algebraically due to the Mittag-Le✏er relaxation kernel

(see Mainardi (2010)). It is important to note here that thanks to the linearity of the

time-fractional ODE governing the fractional-order SLS model (Eq. 6.3), the Laplace

transform allows us to arrive to Eq. 6.6, which corresponds to the exact solution of

Eq. 6.3.

An alternative way of formulating the required pressure-area relation arises from

directly discretizing the Caputo time derivatives in the fractional constitute law that

defines each model using an appropriate discretization technique. The easiest and

most popular way of doing this is by employing the Grünwald-Letnikov formula (see
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An alternative way of formulating the required pressure-area relation arises from

directly discretizing the Caputo time derivatives in the fractional constitute law that

defines each model using an appropriate discretization technique. The easiest and

most popular way of doing this is by employing the Grünwald-Letnikov formula (see

O(N2)

O(N)

O(N)

operations 
evaluations of the kernel (e.g. Mittal-Leffler function)  
active memory

Cost of a naive implementation:

Should be more accurate than the GL discretization but it doesn’t buy us much in terms of computational efficiency.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c⃝ 2008 Society for Industrial and Applied Mathematics
Vol. 30, No. 2, pp. 1015–1037

ADAPTIVE, FAST, AND OBLIVIOUS CONVOLUTION IN
EVOLUTION EQUATIONS WITH MEMORY∗
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Abstract. To approximate convolutions which occur in evolution equations with memory terms,
a variable-step-size algorithm is presented for which advancing N steps requires only O(N logN) op-
erations and O(logN) active memory, in place of O(N2) operations and O(N) memory for a direct
implementation. A basic feature of the fast algorithm is the reduction, via contour integral repre-
sentations, to differential equations which are solved numerically with adaptive step sizes. Rather
than the kernel itself, its Laplace transform is used in the algorithm. The algorithm is illustrated
on three examples: a blowup example originating from a Schrödinger equation with concentrated
nonlinearity, chemical reactions with inhibited diffusion, and viscoelasticity with a fractional order
constitutive law.
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1. Introduction. We consider the problems of computing the convolution

(1.1)

∫ t

0
f(t− τ) g(τ) dτ , 0 ≤ t ≤ T,

possibly with matrix-valued kernel f and vector-valued function g, and of solving
evolution equations with memory containing such convolution integrals where g is
not a function known in advance, but g(τ) depends on the solution at time τ of the
integral equation or integrodifferential equation. In previous papers [16, 20] we have
developed convolution algorithms that are fast and oblivious: To approximate (1.1) on
a grid t = nh (n = 0, 1, . . . , N) with constant step size h and Nh = T , the algorithm
requires

• O(N logN) operations,
• O(logN) evaluations of the Laplace transform F = Lf , none of f , and
• O(logN) active memory.

In the nth time step, g is evaluated at tn = nh, but the history g(tj) for j < n is
forgotten in this algorithm, and only logarithmically few linear combinations of the
values of g are kept in memory. This is to be contrasted with the O(N2) operations,
O(N) evaluations of the kernel f , and O(N) memory for a naive implementation of
a quadrature formula for (1.1). Moreover, we note that in many applications the
Laplace transform F (the transfer function), rather than the kernel f (the impulse
response), is known a priori. A basic feature of the fast algorithm is the reduction, via
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Analytical solution of FPDEs using Laplace transforms gives rise to convolution integrals:
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The fast convolution method of [1] allows to compute such integrals with spectral accuracy and

vs
O(N2)

O(N)

O(N)

for a naive  
quadrature  

implementation

[1] López-Fernández, María, Christian Lubich, and Achim Schädle. "Adaptive, fast, and oblivious convolution in evolution equations with memory." SIAM Journal on Scientific Computing 30.2 (2008): 1015-1037.

by fractionality, and finally arrive at a computable workflow, which employs the exact solution

of Eq. 8 and accounts for the full time history in the evaluation of hereditary integrals.

2.2 Numerical Method

The system of Eq. 1 is hyperbolic and can be discretized in space using the Discontinuous

Galerkin method [24]. Here, we present a brief outline of the numerical method first introduced

in [24] for this problem. The system of equations solved can be written as:

@U

@t

+
@F(U)

@x

= S(U), (16)

The computational domain ⌦ consists of arterial segments, which can be divided in Nel

elemental non-overlapping regions ⌦
e

= (xL
e

, x

R

e

), such that x

R

e

= x

L

e+1 for e = 1, .., Nel. The

solution in each element is approximated by an expansion of orthogonal Legendre polynomials.

Under the Discontinuous Galerkin formulation, the solution may be discontinuous across ele-

mental interfaces, with global continuity being recovered by solving a Riemann problem for the

upwind flux F that propagates information between the elemental regions and the bifurcations

of the system. At the inlet and outlet boundary elements, the fluxes are upwinded by means of

the boundary conditions; the hyperbolic nature of the system requires only one boundary condi-

tion at each terminal end. Finally, time-integration is performed using a standard second-order

accurate Adams-Bashforth scheme:

In the case of the FOV-SLS viscoelastic wall model, the flux F has to be separated in an

elastic part Fe and a visco-elastic part so that: F = Fe + Fv, where:

Fe =

2

64
uA

u

2
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e

⇢

3

75 , Fv =
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3

75 , (17)

where

p
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9

Example: In fractional-order viscoelastic constitute laws we need to compute a memory term: 
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where the tensor product is given by

ϵ(u) : Cϵ(ψ) =
2∑

i,j=1

2µϵij(u)ϵij(ψ) + λϵjj(u)ϵii(ψ).

Equation (6.4) is discretized in space by using linear finite elements. The mesh is
generated using Triangle [22], and the assembly of the mass and stiffness matrices
M and A and the boundary force vector b is done by following [5]. In contrast
to [5] we have chosen not to use Lagrange multipliers to enforce the Dirichlet data
but to incorporate the Dirichlet data directly. Thus (6.4) results in the abstract
integrodifferential equation

Mü(t) + Au(t) − b(t) = γ

∫ t

0
f(t− τ)(Au(τ) − b(τ)) dτ,

u(0) = u0 ; u̇(0) = v0.

The kernel f in (6.1) is given by

(6.5) f(t) = − d

dt
Eα (−tα) , 0 < α < 1,

where Eα denotes the Mittag–Leffler function of order α, defined by

Eα(x) =
∞∑

j=0

xj

Γ(1 + αj)
.

The Laplace transform F of f is given by

F (s) =
1

1 + sα
.

6.2. Adaptive step-size control. The discretization of the fractional order
viscoelastic problem yields a Volterra integrodifferential equation of second order of
convolution type:

Mü(t) + Au(t) = γ

∫ t

0
f(t− τ)(Au(τ) − b(τ)) dτ + b(t) =: c(t).

This is equivalent to

(6.6)

(
u̇
v̇

)
=

(
0 M−1

−A 0

)(
u
v

)
+

(
0
c

)
.

After applying the transformations u → û = M1/2u, v → v̂ = M−1/2v, A → Â =
M−1/2AM−1/2, and c → ĉ = M−1/2c, we get

(
˙̂u
˙̂v

)
=

(
v̂

−Âû + ĉ

)
.

In what follows we drop the ŝ. The time discretization is done by using the Störmer–
Verlet scheme, which is explicit and symmetric and has good properties for the part
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The fast convolution method bypasses costly evaluations of the Mittag-Leffler kernel:

..and only requires simple function evaluations in the Laplace domain:
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Fast convolutions for evolution equations with memory



Lubich, Christian, and Achim Schädle. "Fast convolution for nonreflecting boundary conditions." SIAM Journal on Scientific Computing 24.1 (2002): 161-182.
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Fig. 2.4. Quadrature error versus time.

Figure 2.4 plots the relative errors for (S) on the interval [1 · 10−3, 2] (or any
interval [a, 2000a] with a > 0) for N = 10, 20, 40, 80, 160, 320, 640. The thick part
of the line for N = 10 is identical to that of the right figure in Figure 2.3. This
error behavior clearly demonstrates the advantage of using local approximations with
a rather small B. With B = 10, we need three approximation intervals to cover the
interval [1 · 10−3, 2] so that for a work of 3 ·N with N = 10 we obtain better accuracy
than with N = 640 over the whole interval. The errors also behave similarly for (W).

The error of the quadrature approximation is known to decrease exponentially
with N [12]. The constants in the error bound depend on the distance of the sin-
gularities of the analytic function F to the contour and on bounds of F . This error
behavior would suggest to choose µ large, but this must be counterbalanced with the
increased sensitivity to perturbations in terms multiplied with eµt. For the above
functions F (s), which have inverse square root bounds near the singularities and at
infinity, it can be shown that the required number N to obtain an error bounded by
ϵ/
√
t on (0,∞) decomposed as in (2.1) is bounded by

N ≤ CB log
1

ϵ
,(2.4)

with a moderate constant C, uniformly in ℓ and B ≥ 2.

2.3. Reduction to ordinary differential equations. For general boundary
points a < b in the integral we have

∫ b

a
f(t− τ) g(τ) dτ =

∫ b

a

1

2πi

∫

Γ
F (λ) e(t−τ)λ dλ g(τ) dτ

=
1

2πi

∫

Γ
F (λ) e(t−b)λ

∫ b

a
e(b−τ)λ g(τ) dτ dλ,

where the inner integral, henceforth denoted by y(b, a,λ), is recognized as the solution
at time b of the scalar linear initial value problem

y′ = λy + g , y(a) = 0.(2.5)
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at time b of the scalar linear initial value problem

y′ = λy + g , y(a) = 0.(2.5)
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If [t−b, t−a] ⊂ Iℓ, then the contour integral over the Talbot contour Γ = Γℓ is replaced
with its trapezoidal rule approximation (2.2), which gives (omitting the superscripts
ℓ for notational simplicity)

∫ b

a
f(t− τ) g(τ) dτ ≈

∫ b

a

N∑

j=−N

wj F (λj) e
(t−τ)λj g(τ) dτ

=
N∑

j=−N

wj F (λj) e
(t−b)λj y(b, a,λj).(2.6)

The 2N + 1 differential equations (2.5) with λ = λj are solved approximately by
replacing the function g with its piecewise linear approximation and then solving
exactly. Setting gn = g(a+n∆t), we get approximations yn ≈ y(a+n∆t) recursively
via

yn+1 = e∆tλ yn + h

∫ 1

0
e(1−θ)∆tλ

(
θgn+1 + (1 − θ)gn

)
dθ

= yn +
e∆tλ − 1

∆tλ

(
∆tλyn + ∆tgn + ∆t

gn+1 − gn
∆tλ

)
− ∆t

gn+1 − gn
∆tλ

.(2.7)

To estimate the error, note that in total we approximate

∫ b

a
f(t− τ) g(τ) dτ ≈

∫ b

a
f̃(t− τ) g̃(τ) dτ,

where f̃ is the quadrature approximation to f constructed in the previous subsec-
tion, whose error is well under control, and g̃ is the piecewise linear interpolant of
g. (Higher-order interpolants of g might also be used, but we have not implemented
such an extension.)

2.4. The convolution algorithm with base 2. The approximations of sec-
tions 2.2 and 2.3 can be combined into a fast convolution algorithm that requires
O(Nt logNt) arithmetical operations and O(logNt) memory. This algorithm is best
explained by describing the first few steps for base B = 2. (Here B refers to (2.1).)

First step. We compute the convolution integral at t = ∆t by approximating g(τ)
linearly:

∫ ∆t

0
f(∆t− τ) g(τ) dτ ≈

∫ ∆t

0
f(∆t− τ) dτ g(0) +

∫ ∆t

0
f(∆t− τ) τ dτ

g(∆t) − g(0)

∆t
.

The remaining integrals are approximated as the inverse Laplace transforms of F (s)/s
and F (s)/s2, respectively:

φ1 =

∫ ∆t

0
f(∆t− τ) dτ ≈

N∑

j=−N

wj F (λj)/λj e∆tλj ,

φ2 =

∫ ∆t

0
f(∆t− τ) τ dτ ≈

N∑

j=−N

wj F (λj)/λ
2
j e∆tλj ,

(2.8)

where the weights wj and nodes λj correspond to a Talbot contour with the parameter
µ chosen for t = ∆t (e.g., µ = 8/∆t).
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Figure 2.4 plots the relative errors for (S) on the interval [1 · 10−3, 2] (or any
interval [a, 2000a] with a > 0) for N = 10, 20, 40, 80, 160, 320, 640. The thick part
of the line for N = 10 is identical to that of the right figure in Figure 2.3. This
error behavior clearly demonstrates the advantage of using local approximations with
a rather small B. With B = 10, we need three approximation intervals to cover the
interval [1 · 10−3, 2] so that for a work of 3 ·N with N = 10 we obtain better accuracy
than with N = 640 over the whole interval. The errors also behave similarly for (W).

The error of the quadrature approximation is known to decrease exponentially
with N [12]. The constants in the error bound depend on the distance of the sin-
gularities of the analytic function F to the contour and on bounds of F . This error
behavior would suggest to choose µ large, but this must be counterbalanced with the
increased sensitivity to perturbations in terms multiplied with eµt. For the above
functions F (s), which have inverse square root bounds near the singularities and at
infinity, it can be shown that the required number N to obtain an error bounded by
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where µ > 0 is a scale parameter, σ is the shift in (1.2), and 0 < a < π/2 − ϕ. Thus,
Γ is the left branch of the hyperbola with center at (µ, 0), foci at (0, 0) and (2µ, 0),
and asymptotes forming angles ±(π/2 + a) with the real axis, so that Γ remains
in the sector (1.2) of analyticity of F . After parameterizing (1.3), the function f
is approximated by applying the truncated trapezoidal rule to the resulting integral
along the real axis, i.e.,

f(t) =
1

2πi

∫

Γ
etλ F (λ) dλ ≈

K∑

k=−K

wk e
tλk F (λk),(2.2)

with weights wk and quadrature nodes λk given by

wk =
τ

2πi
γ′(kτ) , λk = γ(kτ),

respectively, and τ > 0 a suitable step length parameter. Different choices of contours
Γ and parameterizations have been studied for the numerical inversion of sectorial
Laplace transforms in recent years. The choice of a hyperbola has been studied in
[14, 15, 17, 21, 9, 10, 27], and actually we follow here the approach in [14, 15]. The
choice of Γ as a parabola has also been considered recently in [9, 10, 27]. Finally
we refer to Talbot’s method [25, 18, 26], which could also be used with the present
algorithm; cf. [19, 16, 20, 13]. The good behavior of this quadrature formula to
approximate (1.3) is due to the good properties of the trapezoidal rule when the
integrand can be analytically extended to a horizontal strip around the real axis
[23, 24]. We refer to [14, 15] for details and give here only the following error bound,
which decays exponentially in the number of quadrature nodes.

Theorem 2.1 (see [15]). Suppose that the Laplace transform F satisfies the
sectorial condition (1.2). For fixed T > 0, Λ ≥ 1, 0 < a < π/2 − ϕ, and K ≥ 1
there are positive numbers C1, C2, C, c depending on a and Λ (C depends additionally
on T unless σ < 0 in (1.2)) such that the choice of parameters τ = C1/K and
µ = C2K/(Λt0) yields a quadrature error in (2.2) bounded by

|EK(t)| ≤ C tν−1
(
ϵ + e−cK

)
,

uniformly for t in intervals [t0,Λt0] with arbitrary 0 < t0 ≤ T/Λ, where ν is the
exponent of (1.2) and ϵ is the precision in the evaluations of the Laplace transform F
and the elementary operations in (2.2).

Hence, K = O(log 1
ε ) quadrature points are sufficient to obtain an accuracy O(ε)

in the approximation of the contour integral. In practice, we choose a ≈ 1
2 (π2 −ϕ) and

compute the values C1 and C2 by following the optimization process described in [15].

3. The variable-step-size, fast, and oblivious convolution algorithm.

3.1. Local reduction to differential equations. We want to approximate

(3.1) u(t) =

∫ t

0
f(t− τ) g(τ) dτ

on a sequence of times 0 < t1 < · · · < tN , spaced arbitrarily. For the moment we
assume that g is a known function, though we will see later how to use the algorithm
for solving integral and integrodifferential equations. For a given tn, we can insert the
Laplace inversion formula in (3.1) and write

(3.2)

∫ tn

0
f(tn − τ) g(τ) dτ =

∫ tn

0

1

2πi

∫

Γ
e(tn−τ)λF (λ) dλ g(τ) dτ .
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The numerical inversion of the Laplace transform is performed very efficiently by the
quadrature rule (2.2). In section 2 we have seen that in this quadrature the same
contour Γ can be used to approximate f at different values of t, ranging over intervals
of the form [t0,Λt0], for a given ratio Λ ≥ 1. Since in (3.2) we need to approximate
f(tn−τ) for tn−τ ∈ [0, tn], we cannot use a unique contour Γ, and we need to split the
integral in (3.1) into several pieces. For suitable intermediate times 0 < t− < t+ < tn,
with (tn − t−)/(tn − t+) ≤ Λ, we select a suitable contour Γ for the time interval
[tn − t+, tn − t−] and approximate

∫ t+

t−
f(tn − τ)g(τ) dτ =

∫ t+

t−

1

2πi

∫

Γ
e(tn−τ)λF (λ) dλ g(τ) dτ

≈
∫ t+

t−

K∑

k=−K

wk e
(tn−τ)λk F (λk) g(τ) dτ

(3.3)

=
K∑

k=−K

wk F (λk) e
(tn−t+)λk

∫ t+

t−
e(t+−τ)λkg(τ) dτ

=
K∑

k=−K

wk F (λk) e
(tn−t+)λk y(t+, t−,λk),

where y(t+, t−,λk) is the solution at t+ to the linear inhomogeneous ODE

(3.4) y′ = λky + g, y(t−) = 0, −K ≤ k ≤ K.

We now approximate y(t+, t−,λk) by interpolating g linearly on each interval [tj , tj+1]
for j = 0, . . . , N − 1 and integrating exactly. (More elaborate integration methods
could be used instead—cf. [7, 20]—but for simplicity of presentation we will consider
just this particular integration scheme.) We denote by ḡ the interpolant of g and
by ȳ(t+, t−,λk) the resulting approximation to y(t+, t−,λk); i.e., ȳ(t+, t−,λk) is the
exact solution at t+ to

y′ = λky + ḡ, y(t−) = 0, −K ≤ k ≤ K.(3.5)

Thus, we approximate

(3.6)

∫ t+

t−
f(tn − τ) g(τ) dτ ≈

K∑

k=−K

wk F (λk) e
(tn−t+)λk ȳ(t+, t−,λk) .

3.2. Filling the mosaic. The key to the algorithm is the way the splitting times
t± for the integral in (3.1) are selected for every tn with 1 ≤ n ≤ N . This is done
by following the mosaic in the triangle {(t, τ) : 0 ≤ τ ≤ t ≤ T} shown in Figure 1,
where patches grow geometrically with increasing distance from the diagonal. For the
moment, we fix a minimum size of the patches closest to the diagonal, corresponding
to a minimum step size h∗. If along the vertical line at tn joining 0 with the diagonal
value tn we have L different patches of the mosaic, then we obtain the values t−ℓ and
t+ℓ for 1 ≤ ℓ ≤ L as the smallest and largest grid points, respectively, within the ℓth
patch along the vertical line at tn. In case the ℓth patch contains a grid point, the ℓ is
collected in an index set J . In case a patch does not contain any grid points, its value ℓ
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integral in (3.1) into several pieces. For suitable intermediate times 0 < t− < t+ < tn,
with (tn − t−)/(tn − t+) ≤ Λ, we select a suitable contour Γ for the time interval
[tn − t+, tn − t−] and approximate

∫ t+

t−
f(tn − τ)g(τ) dτ =

∫ t+

t−

1

2πi

∫

Γ
e(tn−τ)λF (λ) dλ g(τ) dτ

≈
∫ t+

t−

K∑

k=−K

wk e
(tn−τ)λk F (λk) g(τ) dτ

(3.3)

=
K∑

k=−K

wk F (λk) e
(tn−t+)λk

∫ t+

t−
e(t+−τ)λkg(τ) dτ

=
K∑

k=−K

wk F (λk) e
(tn−t+)λk y(t+, t−,λk),

where y(t+, t−,λk) is the solution at t+ to the linear inhomogeneous ODE

(3.4) y′ = λky + g, y(t−) = 0, −K ≤ k ≤ K.

We now approximate y(t+, t−,λk) by interpolating g linearly on each interval [tj , tj+1]
for j = 0, . . . , N − 1 and integrating exactly. (More elaborate integration methods
could be used instead—cf. [7, 20]—but for simplicity of presentation we will consider
just this particular integration scheme.) We denote by ḡ the interpolant of g and
by ȳ(t+, t−,λk) the resulting approximation to y(t+, t−,λk); i.e., ȳ(t+, t−,λk) is the
exact solution at t+ to

y′ = λky + ḡ, y(t−) = 0, −K ≤ k ≤ K.(3.5)

Thus, we approximate

(3.6)

∫ t+

t−
f(tn − τ) g(τ) dτ ≈

K∑

k=−K

wk F (λk) e
(tn−t+)λk ȳ(t+, t−,λk) .

3.2. Filling the mosaic. The key to the algorithm is the way the splitting times
t± for the integral in (3.1) are selected for every tn with 1 ≤ n ≤ N . This is done
by following the mosaic in the triangle {(t, τ) : 0 ≤ τ ≤ t ≤ T} shown in Figure 1,
where patches grow geometrically with increasing distance from the diagonal. For the
moment, we fix a minimum size of the patches closest to the diagonal, corresponding
to a minimum step size h∗. If along the vertical line at tn joining 0 with the diagonal
value tn we have L different patches of the mosaic, then we obtain the values t−ℓ and
t+ℓ for 1 ≤ ℓ ≤ L as the smallest and largest grid points, respectively, within the ℓth
patch along the vertical line at tn. In case the ℓth patch contains a grid point, the ℓ is
collected in an index set J . In case a patch does not contain any grid points, its value ℓ
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The numerical inversion of the Laplace transform is performed very efficiently by the
quadrature rule (2.2). In section 2 we have seen that in this quadrature the same
contour Γ can be used to approximate f at different values of t, ranging over intervals
of the form [t0,Λt0], for a given ratio Λ ≥ 1. Since in (3.2) we need to approximate
f(tn−τ) for tn−τ ∈ [0, tn], we cannot use a unique contour Γ, and we need to split the
integral in (3.1) into several pieces. For suitable intermediate times 0 < t− < t+ < tn,
with (tn − t−)/(tn − t+) ≤ Λ, we select a suitable contour Γ for the time interval
[tn − t+, tn − t−] and approximate

∫ t+

t−
f(tn − τ)g(τ) dτ =

∫ t+

t−

1

2πi

∫

Γ
e(tn−τ)λF (λ) dλ g(τ) dτ

≈
∫ t+

t−

K∑

k=−K

wk e
(tn−τ)λk F (λk) g(τ) dτ

(3.3)

=
K∑

k=−K

wk F (λk) e
(tn−t+)λk

∫ t+

t−
e(t+−τ)λkg(τ) dτ

=
K∑

k=−K

wk F (λk) e
(tn−t+)λk y(t+, t−,λk),

where y(t+, t−,λk) is the solution at t+ to the linear inhomogeneous ODE

(3.4) y′ = λky + g, y(t−) = 0, −K ≤ k ≤ K.

We now approximate y(t+, t−,λk) by interpolating g linearly on each interval [tj , tj+1]
for j = 0, . . . , N − 1 and integrating exactly. (More elaborate integration methods
could be used instead—cf. [7, 20]—but for simplicity of presentation we will consider
just this particular integration scheme.) We denote by ḡ the interpolant of g and
by ȳ(t+, t−,λk) the resulting approximation to y(t+, t−,λk); i.e., ȳ(t+, t−,λk) is the
exact solution at t+ to

y′ = λky + ḡ, y(t−) = 0, −K ≤ k ≤ K.(3.5)

Thus, we approximate

(3.6)

∫ t+

t−
f(tn − τ) g(τ) dτ ≈

K∑

k=−K

wk F (λk) e
(tn−t+)λk ȳ(t+, t−,λk) .

3.2. Filling the mosaic. The key to the algorithm is the way the splitting times
t± for the integral in (3.1) are selected for every tn with 1 ≤ n ≤ N . This is done
by following the mosaic in the triangle {(t, τ) : 0 ≤ τ ≤ t ≤ T} shown in Figure 1,
where patches grow geometrically with increasing distance from the diagonal. For the
moment, we fix a minimum size of the patches closest to the diagonal, corresponding
to a minimum step size h∗. If along the vertical line at tn joining 0 with the diagonal
value tn we have L different patches of the mosaic, then we obtain the values t−ℓ and
t+ℓ for 1 ≤ ℓ ≤ L as the smallest and largest grid points, respectively, within the ℓth
patch along the vertical line at tn. In case the ℓth patch contains a grid point, the ℓ is
collected in an index set J . In case a patch does not contain any grid points, its value ℓ
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0 1 2 3 4
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15

t
3
+=t
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1
+=t
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t

τ

Fig. 1. Mosaic in the triangle τ ≤ t for B = 3 with times tj indicated by points. Each

monochromatic rectangle fully enclosed by black lines corresponds to a solution value y(t+ℓ , t−ℓ ,λ) of
a linear differential equation (3.4).

is not contained in J . The times t±ℓ = t±n,ℓ depend on n, though for simplicity we omit
this dependence in the notation. Each class of patches of the same size in the mosaic
represents a distance class to the diagonal in the mosaic and thus corresponds to a
different approximation interval and a different contour to perform the inversion of the
Laplace transform and to a different set of 2K + 1 scalar differential equations. The
approximation intervals for the values tn − t±ℓ are of the form Iℓ = [Bℓ−1h∗, Bℓ+1h∗],
2 ≤ ℓ ≤ L, so that the ratio Λ is B2. Since we consider a nonequidistant sequence
of times tj , in this splitting there likely appear “gaps” in between the t+ℓ+m and t−ℓ ,
which in Figure 1 correspond to pairs of horizontal lines with any boundary of m
patches in between them. For example, at the time point t15 = 3.45 we have L = 3,
J = {1, 3}, t−3 = 0, t+3 = t11 = 2.11, t−1 = t12 = 3.14, and t+1 = t13 = 3.24.

We split (3.1) into 2|J | + 1 parts

(3.7) u(tn) = ũ(0)(tn) +
∑

ℓ∈J

u(ℓ)(tn) +
∑

ℓ∈J

ũ(ℓ)(tn),

where

(3.8) u(ℓ)(tn) =

∫ t+ℓ

t−ℓ

f(tn − τ)g(τ) dτ

is computed by using (3.3) and

(3.9) ũ(0)(tn) =

∫ tn

tn−1

f(tn − τ)g(τ) dτ and ũ(ℓ)(tn) =

∫ t−ℓ

t+ℓ+m

f(tn − τ)g(τ) dτ

D
ow

nl
oa

de
d 

12
/0

2/
15

 to
 1

8.
18

9.
6.

20
3.

 R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Key ingredients:
Forward Euler, 
Runge-Kutta, 

BDF, etc• Complex plane quadrature (Talbot contours) 
• Local reduction to ODEs 
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where µ > 0 is a scale parameter, σ is the shift in (1.2), and 0 < a < π/2 − ϕ. Thus,
Γ is the left branch of the hyperbola with center at (µ, 0), foci at (0, 0) and (2µ, 0),
and asymptotes forming angles ±(π/2 + a) with the real axis, so that Γ remains
in the sector (1.2) of analyticity of F . After parameterizing (1.3), the function f
is approximated by applying the truncated trapezoidal rule to the resulting integral
along the real axis, i.e.,

f(t) =
1

2πi

∫

Γ
etλ F (λ) dλ ≈

K∑

k=−K

wk e
tλk F (λk),(2.2)

with weights wk and quadrature nodes λk given by

wk =
τ

2πi
γ′(kτ) , λk = γ(kτ),

respectively, and τ > 0 a suitable step length parameter. Different choices of contours
Γ and parameterizations have been studied for the numerical inversion of sectorial
Laplace transforms in recent years. The choice of a hyperbola has been studied in
[14, 15, 17, 21, 9, 10, 27], and actually we follow here the approach in [14, 15]. The
choice of Γ as a parabola has also been considered recently in [9, 10, 27]. Finally
we refer to Talbot’s method [25, 18, 26], which could also be used with the present
algorithm; cf. [19, 16, 20, 13]. The good behavior of this quadrature formula to
approximate (1.3) is due to the good properties of the trapezoidal rule when the
integrand can be analytically extended to a horizontal strip around the real axis
[23, 24]. We refer to [14, 15] for details and give here only the following error bound,
which decays exponentially in the number of quadrature nodes.

Theorem 2.1 (see [15]). Suppose that the Laplace transform F satisfies the
sectorial condition (1.2). For fixed T > 0, Λ ≥ 1, 0 < a < π/2 − ϕ, and K ≥ 1
there are positive numbers C1, C2, C, c depending on a and Λ (C depends additionally
on T unless σ < 0 in (1.2)) such that the choice of parameters τ = C1/K and
µ = C2K/(Λt0) yields a quadrature error in (2.2) bounded by

|EK(t)| ≤ C tν−1
(
ϵ + e−cK

)
,

uniformly for t in intervals [t0,Λt0] with arbitrary 0 < t0 ≤ T/Λ, where ν is the
exponent of (1.2) and ϵ is the precision in the evaluations of the Laplace transform F
and the elementary operations in (2.2).

Hence, K = O(log 1
ε ) quadrature points are sufficient to obtain an accuracy O(ε)

in the approximation of the contour integral. In practice, we choose a ≈ 1
2 (π2 −ϕ) and

compute the values C1 and C2 by following the optimization process described in [15].

3. The variable-step-size, fast, and oblivious convolution algorithm.

3.1. Local reduction to differential equations. We want to approximate

(3.1) u(t) =

∫ t

0
f(t− τ) g(τ) dτ

on a sequence of times 0 < t1 < · · · < tN , spaced arbitrarily. For the moment we
assume that g is a known function, though we will see later how to use the algorithm
for solving integral and integrodifferential equations. For a given tn, we can insert the
Laplace inversion formula in (3.1) and write

(3.2)

∫ tn

0
f(tn − τ) g(τ) dτ =

∫ tn

0

1

2πi

∫

Γ
e(tn−τ)λF (λ) dλ g(τ) dτ .
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large constant a2. With the above choice of τ , this yields K ∼ log 1
ε . The third term

then becomes smaller than εh tν−1 for n ≥ c log 1
ε with a sufficiently large constant c.

In summary, this gives the following bound for the required number of quadrature
points on the hyperbola.

Theorem 3.2. In (3.2), a quadrature error bounded in norm by εh tν−1 for
nh ∈ Iℓ is obtained with K = O(log 1

ε ). This holds for n ≥ c log 1
ε (with some

constant c > 0) with K independent of ℓ and of n and h with nh ≤ T .
No small error bound is, however, obtained for the first few n < c log 1

ε . The
approximation is indeed poor for small n, as will be seen in the numerical experi-
ments in section 3.4. Therefore the first few ωn are not computed using the integral
representation (3.2) but are computed using the method of section 3.5.

We expect that a similar result to Theorem 3.2 holds also for the Talbot contours,
if the Laplace transform has an analytic continuation beyond the negative real axis
from above and below, as is the case for the fractional powers considered below.

3.3. Choice of parameters for the hyperbolas. The estimate in Theorem 3.1
is valid for the discretization of contour integrals of the type considered in (3.2), where
en(hλ) is an approximation to exp(nhλ). Replacing en(hλ) by exp(nhλ) in (3.2) we
obtain the inverse Laplace transform at nh of F . For the numerical inversion of
the Laplace transform there is a spectral order method developed in [9], where the
error estimate is explicit in all constants involved. Getting an estimate explicit in
all constants for the discretization of (3.2) is much more difficult and, in practice,
we choose the parameters following the strategy proposed in [9] for the numerical
inversion of the Laplace transform. This makes sense as for large n and small h with
nh ≤ T the estimate in Theorem 3.1 tends to an expression of the same type as the
error estimate for the approximation of the inverse Laplace transform in [9].

Given the approximation interval [Bℓ−1h, (2Bℓ−2)h] and K the number of nodes
on the hyperbola, the strategy for choosing the parameters is as follows:

1. Choose α = d = (π/2 − ϕ)/2, with ϕ of (1.4).
2. Minimize for 0 < ρ < 1 the expression

eps ϵK(ρ)ρ−1 + ϵK(ρ)ρ,

where

ϵK(ρ) = exp
(
− 2πd

a(ρ)
K
)
, a(ρ) = acosh

( 2B

(1 − ρ) sinα

)

and eps is the machine precision.
3. Take

τ =
1

K
a(ρopt), µ =

2πdK(1 − ρopt)

(2Bℓ − 2)ha(ρopt)
.

This strategy for choosing the hyperbola contours is used in the numerical experiments
below.

3.4. Numerical experiments. In view of the examples of section 5 we present
here numerical experiments with

f(t) =
1√
πt

for which F (s) = s−1/2.

The error is calculated with respect to a reference solution, obtained for a dis-
cretization of the contour integral with a large number of integration points. For the
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