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A practical method of finding an H-function distribution
for the sun of two or more independent H-function variates is
presented. Simple formulas exist which immediately give the
probability density function, as an H-function distribution, of
the randam variable defined as the product, quotient, or power
of independent H-function variates. Unfortumately, there are
no similar formulas for the sum or difference of independent H-
function variates.

The new practical technique finds an H-function

distribution whose moments closely match the maments of the
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random variable defined as the sum of independent H-function
variates. This allows an analyst to find the distribution of
more complicated algebraic combinations of independent randam
variables. The method and implementing computer program are
demonstrated through five examples. For camparison, the exact
distribution of the general sum of independent Erlang variates
with different scale parameters is derived using Laplace
transforms and partial fractions decomposition.

The H-function is the most general special function,
enconpassing as a special case nearly every named mathematical
function and continuous statistical distribution. The Laplace
and Fourier transforms (and their inverses) and the derivatives
of an H-function are readily-determined H-functions. The
Mellin transform of an H-function is also easily obtained. The
H-function exactly represents the probability density function
and cumulative distribution function of nearly all continuous
statistical distributions defined over positive values.

A previously unstated restriction on the variable in the
H-function representations of power functions and beta-type
functions is highlighted. Several ways of overcaming this
limitation when representing mathematical functions are

presented. The restriction, however, is an advantage when
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representing certain statistical distributions. Many new H-
function representations of other mathematical functions are
also given.

The hierarchical structure among classes of H-functions is
given through seven new theorems. Every class of H-functions
is wholly contained in many higher-order classes of H-~functions
through the application of the duplication, triplication, and
multiplication formulas for the gamma function.

Four new theorems show when and how a generalizing
constant may be present in an H-function representation. Many
generalized H-function representations are given, including

those of every cumlative distribution function of an H-

function variate.
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CHAPTER 1

INTRODUCTION AND REVIEW

1.1. PURPOSE AND SCOPE

The primary purpose of this research effort was to develop
a practical method of finding an H-function distribution for
the sum of two or more independent H-function variates. Simple
formulas exist which inmediately give the probability density
function (p.d.£.), as an H-function distribution, of the randam
variable defined as the product, quotient, or power of
independent H-function variates. Unfortunately, there are no
similar formmulas for the sun or difference of independent H-
function variates.

A related issue was whether the class of H-functions is
closed under the operation of multiplication. In other words,
is the product of two H-functions another H-function? It is
important to make the distinction here between the product of
two H-functions and the p.d.f. of the random variable defined
as the product of two H-function variates. It is well known
that the latter case is an H-function. But the former case was

unproven. Of course, similar statements can be made about the




quotient of two H-functions.

If the «class of H-functions is closed under
multiplication, one could easily find the p.d.f. (as an H-
function) of the sun or difference of independent H-function
variates. The Laplace (or Fourier) transforms of the H-
function variates in the sum (or difference) are immediately
available as H-functions of higher order. The product of these
H-functions (in transform space) would yield the transform of
the desired density. 1If this product was available as another
H-function, it c¢ould be inverted fram transform space
analytically.

Because the H-function can exactly represent nearly every
cammon mathematical function and statistical density, there was
ample reason to suspect that the product of two H-functions
was, in general, another H-function. 1Indeed, there are many
cases where two individual functions and their product are all
special cases of the H-function.

Throughout this thesis, a number of other new results are
identified with an asterisk. Sufficient convergence conditions
for the alternate definition of the H-function are given in
Section 2.3. These show how the H-function may be evaluated by
the sum of residues, without first changing the form of the

alternate definition of the H-function to that of the primary




definition.

The hierarchical structure among classes of H-functions is
given through seven new theorems in Section 2.4.6. Every class
of H-functions is wholly contained in many higher-order classes
of H-functions through the application of the duplication,
triplication, and multiplication formulas for the gamma
function. Figure 1 in Section 3.5 1illustrates this
hierarchical structure with a venn diagram showing many cammon
statistical distributions as first and second order H-function
distributions.

Four new theorems in Section 2.4.7 show when and how a
generalizing constant may be present in an H-function
representation. Many generalized H-function representations
are given, including those of every cumilative distribution
function of an H-function variate. The generalizing constant
is also possible in the H-function representations of power
functions, the error function and its complement, the
incamplete gamma function and its complement, the incanplete
beta function and its complement, many inverse trigonametric
and hyperbolic functions, and the logarithmic functions.

A nurber of new H-function representations of certain
mathematical functions and statistical distributions are given

in Sections 2.5, 2.6, and 3.6. Several of these expand upon a




previously unstated limitation on the variable in the H-
function representations of power functions and beta-type
functions.

The exact distribution of the general sum of independent
Erlang variates with different scale parameters, A, is derived
in Section 5.1.3. An Erlang variate is simply a gamma variate
with an integer shape parameter r. The derivation uses partial
fractions to decarpose the product of Laplace transforms of the
individual densities. This produces a sum of terms, each of
which can easily be inverted fram transform space, yielding the
desired density of the sum of independent variates.

Since the H-function is not defined for zero or negative
real arguments, the scope of this research effort was limited
to continuous randam variables defined only over positive
values. Continuous and doubly infinite distributions such as
the normal and Student's t are only represented as H-functions

in their folded forms.

1.2. LITERATURE SURVEY

Regrettably, little research in the field of H-functions
has been done in the United States. Much of what is known
about the H-function is due to Indian mathematicians. Mathai

and Saxena [1978] and Srivastava et al [1982] campiled many

results of the early study of H-functions. In recent years,




Soviet mathematicians [Prudnikov et al, 1990] have shown a
considerable interest in the H-function and have developed
significant new results.

The foundation of H-function theory is grounded in the
gamma function, integral transform theory, camplex analysis,
and statistical distribution theory. Therefore, several
landmark references such as Abramowitz and Stegun [1970],
Erdélyi [1953]), Erdélyi [1954], and Springer [1979], though
samewhat dated, have timeless value.

Carter [1972] defined the H-function distribution and,
using Mellin transform theory, gave startling and powerful
results showing that products, quotients, and rational powers
of independent H-function variates are themselves H-function
variates. Further, the p.d.f. of the new randam variable can
immediately be written as an H-function distribution. The
usual techniques of conditioning on one of the randam variables
and/or using the Jacobian of the transformation are no longer
necessary.

The above results becane especially useful when one
realizes that nearly every common positive continuous random
variable can be written as an H-function distribution.
Therefore, the p.d.f. of any algebraic cambination involving

products, quotients, or powers of any number of independent




positive continuous random variables can immediately be written
as an H-function distribution.

Carter [1972] also wrote a FORTRAN computer program to
calculate the moments of an algebraic combination of
independent H-function variates and approximate the p.d.f. and
cumulative distribution function (c.d.f.) fram these moments.
The approximation procedure was developed by Hill [1969] and,
if possible, uses either a GramCharlier type A series (Hermite
polynanial) or a Laguerre polynomial series. If a series
approximation is not possible, the first four moments are used
to £fit a probability distribution from the Pearson family. As
Carter [1972] himself notes "... there were many situations in
which the methods did not work or in which the approximations
were totally unsatisfactory."

Springer [1979] literally wrote the book on the algebra of
random variables. He gives an excellent explanation of the
value of integral transforms in finding the distribution of
algebraic combinations of random variables. He also gave the
known applications of the H-function in these problems.

Cook [1981] gave a very thorough survey and an extensive
bibliography of the literature related to H-functions and H-

function distributions. He also presented a technique for

finding, in tabular form, the p.d.f. and c.d.f. of an algebraic




carbination (including sums and excluding differences) of
independent H-function variates.

Cook's technique [1981; Cook and Barnes, 1981] first uses
Carter's [1972] results to find the H-function distribution of
any products, quotients, or powers of random variables. The
Laplace transform of each term in the resulting sum of
independent H-function variates is then obtained. These
transform functions are evaluated and multiplied at
corresponding values of the transform variable, yielding a
tabular representation of the Laplace transform in transform
space. This Laplace transform is then numerically inverted
using Crump’s method. His FORTRAN camputer program implements
this technique and will plot the resulting p.d.f. and c.d.f.

Bodenschatz and Boedigheimer [1983; Boedigheimer et al,
1984] developed a technique to fit the H-function to a set of
data using the method of moments. The technique can be used to
curve-fit a mathematical function or to estimate the density of
a particular probability distribution. Their FORTRAN carvputer
program will accept known moments, univariate data, ordered
pair data from a relative frequency, or ordered pair data
directly from the function.

Kellogg [1984; Kellogg and Barnes, 1987; Kellogg and

Barnes, 1989] studied the distribution of products, quotients,




and powers of dependent random variables with bivariate H-
function distributions. Jacobs [1986; Jacobs et al, 1987]
presented a method of obtaining parameter estimates for the H-
function distribution using the method of maximum likelihood or
the method of maments.

Prudnikov et al [1990] gave extensive tables of H-function
results and Mellin transforms. Their books, although more
terse than the series by Erdélyi [1953 and 1954], are at least
as cawplete and, likely, will become the new standard reference

for special functions.

1.3. INTEGRAL TRANSFORMS AND TRANSFORM PAIRS

Integral transforms are frequently encountered in several
areas of mathematics, probability, and statistics. Although
various integral transforms exist, certain characteristics are
common among them. The function to be transformed is usually
multiplied by another function (called the kernel) and then
integrated over an appropriate range. What distinguishes the
various transforms are the kernel function, the limi.ts. of
integration, and the type of integration (e.g. Riemann or
Lebesgue).

Often the use of integral transforms can simplify a
difficult problem. Laplace transforms are usually first

encountered in the solution of systems of linear differential




equations. In probability and statistics, certain integral
transforms are often known by other names such as the moment
generating function, characteristic function, or probability
generating function.

The definitions of most integral transforms are not
standard. It is important, therefore, to explicitly state the
form of the definition to be used. Listed below are the
definitions of certain integral transforms and the
corresponding inverse transforms as used in this thesis.
Together, each transform and its corresponding inverse

constitute a transform pair.

1.3.1. LAPLACE TRANSFORM

Consider a function f(t) which is sectionally continuous
and defined for all positive values of the variable t with
£(t)=0 for t<0. A sectionally continuous function may not have
an infinite number of discontinuities nor any positive vertical
asymptotes. I1f f£(t) grows no faster than an exponential
function, then the Laplace transform of f£(t) will exist. There
must exist two positive numbers M and T such that for all t>T

and for some real number a,

f(t)
ot

e

<M (1.1)




The definition of the Laplace transform of the function

£(t), zs{ £(t) } is

scs{ £(t) }=J e St gty at (1.2)
0

In general, s is a camplex variable. The Laplace transform of
f(t) will exist for the real part of s greater than «
(Re(s) > a).

The inversion integral or inverse Laplace transform is

given by
w+im
£(t) = p J St zs{ £(t) } ds (1.3)
w-iw

where 25{ f(t) } is an analytic function for Re(s) > w. A
function is analytic at s=s if its derivative exists at S, and
at every point in same neighborhood of S, The Taylor series
expansion of an analytic function of a carplex variable will
exist, converge, and equal the function evaluated at the
argument. For all practical purposes, a function f(t) and its
Laplace transform (if it exists) uniquely determine each other.

In probability and statistics, if £(t) is the p.d.f. of a
randam variable defined only for positive values, its moment

generating function is simply the Laplace transform with r

10




replacing -s in Eq (1.2).

1.3.2. FOURIER TRANSFORM
The form of the exponential Fourier transform used in this

thesis is

O
afs{ £(t) } =J St ft) at (1.4)
-®
The Fourier transform is a function of the camplex variable s.
1f £(t) is a p.d.f., this definition corresponds to the
definition of the characteristic fumction in probability and
statistics. The characteristic function of a p.d.f. will
always exist but the moment generating fumction of a p.d.f. may
or may not exist.

The inversion integral or inverse Fourier transform is

given by
m .
E(t)* = th_[ e 1st 95{ £(t) } ds (1.5)
-0
where
1 . .
£(t)* = lim £(t) + lim £(t) (1.6)
( (J k3 tot t-t
o o
t<t° t>t°

If £(t) exists and is continuous at to' the inverse Fourier

11




transform of 55{ £f(t) } will give f(tJ. If £(t) is not
continuous at t o’ the inverse Fourier transform of Ss{ f(t) }
will produce the average of the limits of £(t) from the left of
to and the right of to.

1.3.3. MELLIN TRANSFORM

Because the Mellin transform is perhaps less well known
than the Laplace or Fourier transforms and because the Mellin
transform is so crucial in the study of H-functians, both
camon sets of transform pairs will be presented. The Mellin
transform uses a power function instead of an exponential
function as its kermel.

Again consider a function £(t) which is sectionally
continuous and defined for all positive values of the variable
t with £(t)=0 for t<0. Using what will be regarded in this
thesis as the primary definition of the Mellin transform, the

Mellin transform of £(t), "’s{ £(t) }, is

‘s{ £(t) ):J 571 fr) at (1.7)
0

The Mellin transform is related to the Fourier and Laplace

transforms as follows [Erdélyi, 1954, p.305]:

12




‘s{ £(t) } = ’-is{ £(e") } (1.8)
=2 f.(er') }+ 25{ f(e'f') } (1.9)

Again, s is a camplex variable. The Mellin transform

inversion integral, or inverse Mellin transform, is given as

w+io

£(t) = 'ﬁlij xS “s{ £(t) } ds (1.10)

w-io
As mentioned earlier, there is another important transform
pair also referred to as a Mellin transform pair. This
alternate definition will arise later when an alternate
definition of the H-function is given. The alternate

definition is
©
x;{ £(t) }=j T ft) at (1.11)
0

with inverse transform

V4+io
£(t) = "ﬂ%fj x* :.;{ £(t) } dr (1.12)

v-imw

1.4. TIONS OF INDEPENDENT RANDOM VARIABLES

A common problem in statistical distribution theory is to
find the distribution of an algebraic cambination of

13




independent randam variables. The algebraic cambination could
include sums, differences, products, and/or quotients of
independent random variables or their powers. It is important
to recognize that the algebraic cambination is itself a random
variable and, therefore, has a probability distribution. The
task is to find this distribution.

Using the properties of mathematical expectation, it is
relatively easy to find the mean, variance, and other moments
of the algebraic cambination of independent randam variables.
For example, the mean of the sum of two independent random
variables is simply the sun of the means of the randam
variables. Finding the completely specified distribution of
the algebraic cambination is usually much more difficult.

For simple combinations of independent random variables,
the method of Jacobians is often employed. An appropriate
one-to-one transformation between the independent random
variables in the algebraic cambination and a set of new randam
variables is first created. After finding the inverse
transformation functions, the Jacobian (the determinant of the
matrix of first partial derivatives of the inverse functions)
may be camputed.

The joint p.d.f. of the newly defined random variables is
the absolute value of the Jacobian multiplied by the product of

14




the original densities with the inverse transformation
functions substituted for the variables. A great deal of care
must be used in determining the values of the new variables for
which the joint density is nonzero. Once this is done, the
desired marginal density can be obtained by integrating over
the complete ranges of the other new variables.

An example of the method of Jacobians will be presented
below. In most of the following sections, however, only the

result using integral transforms will be given.

1.4.1. DISTRIBUTION OF A SUM

Let Xl and x2 be independent randam variables with
respective densities fI(xl) and fz(xz) , each nonzero anly for
positive values of the variable. Suppose we want the density
of Y=xl+x2. Using the method of Jaccbians, we define W=}I{2 so
the inverse transformations are x1=Y-W and X2=W The Jacobian

is

1 -1
o 1

J = =1 (1.13)

The joint density of Y and W is
E(y.w) = £,(y-w) £,(w) O<w<y<o (1.14)

The marginal p.d.f. of Y can be obtained by integrating the

joint p.d.f. with respect to W over the range of W.

15




Yy
B = [ £ 500 & (1.15)

Eq (1.15) may be recognized as the Fourier convolution
integral [Springer, 1979, p. 47]. This is no accident or
coincidence as the Fourier or Laplace transform could also have
been used to find the distribution of Y. It is well known that
the Laplace (or Fourier) transform of the p.d.f. of the sum of
two independent random variables defined for positive values is
the product of the Laplace (or Fourier) transforms of the
individual densities. Further, the product of two transform
functions, upon inversion, yields a convolution integral.

If the product of transform functions can be recognized as
the transform of same function, then the convolution inversion
is not necessary. The p.d.f. of Y is the function whose
transform is the product. When statisticians use the maoment
generating function of each density to find the p.d.f. of Y,
this recognition approach is usually taken. One advantage of
using transform functions is that the procedure easily extends
when the distribution of the sum of three or more independent
randam variables is desired.

Finding the distribution of the sum of independent random
variables with certain special distributional forms is

considerably simplified. Several of these cases are covered in

16




the following subsections.

1.4.1.1. INFINITE DIVISIBILITY

Although a complete discussion of infinite divisibility is
beyond the scope of this thesis, its definition is given below

[Petrov, 1975, p. 25].

A distribution function F(x) and the corresponding
characteristic function f(t) are said to be
infinitely divisible if for every positive integer n
there exists a characteristic function fn(t) such

that
£(t) = (£,(t)"

In other words, the distribution F is infinitely
divisible if for every positive integer n there

*
exists a distribution function Fn such that F=an.
*
Here an is the n-fold convolution of the function
F .
n
Camon examples of infinitely divisible distributions include

the normal and Poisson distributions.

1.4.1.2. SPECIAL CASES
The distribution of the sun of independent randam
variables with certain distributional forms is well known and
immediately available. For example, the sum of n independent
and identically distributed random variables with a Bermoulli
distribution with parameter p has a Binomial distribution with
parameters n and p. Similarly, the sum of independent

geametrically distributed randam variables with a common
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parameter has a negative Binamial (or Pascal) distribution.

In continuous randam variables, the sum of n independent
and identically distributed randam variables with an
exponential distribution with parameter A has a gamma

distribution with parameters n and A.

1.4.1.3. REPRODUCTIVE DISTRIBUTIONS

A probability distribution is "reproductive” if it
replicates under positive addition of independent randam
variables with the same distributional form. The normal

distribution is reproductive since given that

- 2 . 2
xl Normal ["1' ol) x2 Normal [ Hoo 02)
xl and x2 are statistically independent, and
Y = xl + x2

then

Y ~ Normal [ u1+p2, aiwg

Other exanples of reproductive distributions include the Chi-
Square and Poisson distributions.

It is well known that the gamma distribution is
reproductive provided the scale parameter, A, is the same for

each random variable in the sun. In particular, if

x1~Gamm[rl,11] X2~Garma[r2,x2]




xl and X2 are statistically independent, A, S A, = A
and Y = xl + x2
then
Y~Gamra[rl+r2, 1)
The result for gamma distributions above is readily
verified by considering the product of the Laplace transforms

of each p.d.f. Using the definition in Eq (1.2), the Laplace

transform of the ganma p.d.f. with parameters r and A is
r
[—-é-%x—] . Clearly, then, if Xl and x2 are independent random

variables with gamma distributions and a common scale

parameter, A,

zs'{fy-(y)} = zs{fl.(xl)} 2s'{f2~(x2)} (1.16)
- [_s}r]rl [_s%_lrz (1.17)
= [Ttr F1'%2 (1.18)

which is recognized as the Laplace transform of a gamma p.d.f.
with parameters rl+r2 and A. This confirms the reproductive

property for the gamma distribution when A is cammon.

1.4.2. DISTRIBUTION OF A DIFFERENCE
The study of the distribution of the difference of
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independent random variables has received much less attention
than for the sum. The normal distribution is one notable

exception since given that

2 2
x1 Normal ["'1’ ol] x2 Normal [“2' 02]
Xl and X2 are statistically independent, and
Y= Xl - X2
then
. _ 2,2
Y ~ Normal [ Hy~Hy» °1+°2 ]
If X

1
respective densities fl(xl) and fz-(xz), each nonzero only for

and x2 are independent randam variables with

positive values of the variable, then the density of Y=x1-x2 is

the inverse Pourier transform [Springer, 1979, p. 59]

©

£,(y) = .51J e sy 58{ £,(x;) } 55{ £,(-x) } ds

ha Y

for w < y < » (1.19)

1.4.3. DISTRIBUTION OF A PRODUCT

If Xl and x2

respective densities fl(xl) and fz(xz) , each nonzero only for

are independent randam variables with

positive values of the variable, then the density of Y=(xl)-(x2)

is the inverse Mellin transform [Springer, 1979, p. 97]
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w+ic
1 -
g egs| el afne }e
w-ic
for 0 < ¥y < o (1.20)

1.4.4. DISTRIBUTION OF A QUOTIENT

If Xl and X2

respective densities fl-(xl) and fz-(x2) , each nonzero only for

are independent randam variables with

positive values of the variable, then the density of Y-—;;— is

the inverse Mellin transform [Springer, 1979, p. 100]

w+ico
1 -
(0 =53 J y® "s{ £1(x) } ‘2—5{ £2(x) } ds
w-ix
for 0 < ¥y < o (1.21)

One coammon example of the quotient of two independent
random variables lies in the derivation of the Snedecor F
distribution [Springer, 1979, pp. 328-9]. 1f

Xl ~ Chi-Square (v) x2 ~ Chi-Square (w)

Xl and x2 are statistically independent, and

X

y=___x2__

()

then

Y~F (v,0)
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1.4.5. DISTRIBUTION OF A VARIATE TO A POWER
If X is a continuous randam variable with density f(x),
nonzero only for positive values of the variable, then the
density of Y=xP is the inverse Mellin transform {Springer,
1979, p. 212}
w+ico

£4(¥) = mrr J il Aps_m{ £(x) } ds

w-io
for 0 < ¥y < o (1.22)
One common example of a variate to a power is finding the
distribution of the square of a standard normal (zero mean,
unit variance) random variable. If X ~ Normal (0,1) and Y=X2
then Y ~ Chi-Square (1). The same result holds if X has a

half-normal distribution with 02=1 [Springer, 1979, pp. 213-4].

1l.4.6. MOMENTS OF A DISTRIBUTION
If X is a continuous randam variable with density £(x),
nonzero only for positive values of the variable, then the

maments about the origin of f(x) are
oo )
(Y

I % £(x) dx (1.23)
0

provided the integral in Eq (1.23) exists.
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There is a natural relationship betwean the integral given
in Eq (1.23) and the Mellin transform of the function f(x)
given in Eq (1.7) or Eg (1.11). Using the Mellin transform in

Eq (1.7) we can write

By = M [£(0)] (1.24)

r
This relationship simplifies the camputation of moments for H-

functions and H-function distributions.
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CHAPTER 2

THE H-FUNCTION

The H-function is a very general function, encampassing as
special cases nearly every named mathematical function and
continuous statistical distribution defined over positive
values. Although the H-function does not enjoy an extensive
popularity and acceptance in the fields of mathematics,
probability, and statistics, this is primarily because
mathematicians and statisticians have not yet learned of its
versatility and power. Most analysts are not familiar with the
H-function, and many who have seen the H-function definition
may have been disquieted by its overt camplexity. This is

unfortunate because practical use of the H-function does not

require extensive knowledge of coamplex analysis and integral
transform theory.

Mathematical functions defined by an integral which do not
have a closed form representation are common. Examples include
the gamma function, the error function, and the cumlative
normal probability demsity function. In all of these cases,
the function is usually evaluated with the help of tables. The
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H-function is another example of such functions. Like all of
the transcendental functions (e.g. ex, sin x, cos x), it must
be evaluated using an infinite series expansion. A FORTRAN
camputer program is available [Cook, 1981; Cook and Barnes,
1981] which will evaluate the H-function at desired values ance
the parameters are specified.

Fox [1961] first developed the H-function as a direct
generalization of Meijer's G-function. Mathai and Saxena
[1978] presented many useful properties of the H-functian and
listed the mathematical functions that are known to be special
cases of the H-function. More recently, Prudnikov et al [1990]
canpiled etensive results of all special functions, including
H-functions.

2.1. PRIMARY DEFINITION
The primary definition of the H-function as used in this

thesis is:

H(cz) = HI Dfcz) = 0 2| oz : {[ ]} {(": BJ])]

m n
1 I_] r [bj+8js] 11 r [l-ai -Ais
i P |
nr [a. +Ais] nr [l-b ~B .s]
o il jemt1 33

(2.1)
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where z, ¢, and all a, and bj are real or camplex nurbers, all
Ai and Bj are positive real numbers, and m, n, p, and q are
integers such that O<sm<q and Osns<p. BEmpty products are defined
to be unity (1). The path of integration, C, is a contour in
the camplex s-plane from w-io to wtieo such that all Left Half-
m
Plane (LHP) poles of jglr(bjmjs] lie to the left of C and all
n

Right Half-Plane (RHP) poles of illll‘[l-ai-his] lie to the
right.

Although the H-function is defined for the camplex
variable z, we will often restrict our attention to the real
variable x. Further, since the H-function is not valid for
non-positive real values of z, we will often consider only
positive values of the real variable x.

The definition of the H-function in Eg (2.1) may be
recognized as the inverse Mellin transform where the transform
pair is as given by Eq (1.7) and Eg (1.10).

H-functions are sametimes classified according to their
order, the number of gamma terms in the integrand (pt+q), and
the placement of those terms. References will be made to
certain classes of H-functions as l-l'; D yith particular values

q9
for the parameters m, n, p, and q.
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2.2. ALTERNATE DEFINITION
It should be noted that there is an altermate, but

equivalent definition of the H-function:

s ) )

i=1,...,p
m n
1 jr=]l r bj-B .r] iI=11 I‘[l—ai+Air] .
= (cz) adr
i P q
n I‘(a.—A.r] n I‘[l-b +B .r]
o i=n+l J=mtl 3

(2.2)
where the restrictions on the variable and parameters are as
above. Here, the path of integration, C’, is a contour in the
carplex r-plane fram v-io to v+io such that all RHP poles of

m
n I‘[bj-Bjr] lie to the right of ¢’ and all LHP poles of
j=1

n
igll‘[l-aiﬂ\ir] lie to the left.

Eq (2.2) above can be derived fram Eq (2.1) by the
substitution r=-s. Under this transformation, v=-w since the
substitution r=-s rotates about the imaginary axis all poles of
the integrand and the contour, C, into a contour, ¢, which
also separates the new LHP poles fram the new RHP poles in the
standard mamner and direction. Again, the definition in




Eg (2.2) corresponds to an inverse Mellin transform where the

transform pair is as given by Eq (1.11) and Eg (1.12).

2.3. SUFFICIENT CONVERGENCE CONDITIONS

Cook [1981; Cook and Barnes, 1981] gave sufficient
conditions for which the H-function could be evaluated as the
sun of residues in the appropriate half-plane for certain
values of the variable. In an unpublished working paper,
Eldred et al [1979] applied the well-known convergence
restrictions of Mellin-Barnes integrals to the H-function.
These restrictions were originally developed by Dixon and
Ferrar [1936] and are also given by Erdélyi [1953, Vol. 1] and
Prudnikov et al [1990].

These conditions help determine how to evaluate the H-
function in Egq (2.1) as the sum of residues and give the values
of the camplex variable z for which this evaluation is valid.
These convergence conditions specify the restrictions on the
argument, arg(z), and the modulus, |z|, of 2z to guarantee
convergence. They indicate that the sum of residues for the H-
function is always convergent for positive real values of the
variable and sometimes convergent for values of z with a
nonzero imaginary part.

For the H-function defined by Eg (2.1), the convergence

conditions are based on the values of D, E, L, and R defined
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as:
n m P §
D= A. + B. - A, - B, (2.3)
iz=:l 1 32=:1 3 i=§+1 1 jeml I
§ A ; B (2.4)
E: . - . .
i1 ! JZ=:1 J
Re| 3 b, -3 f 4 (2.5)
L= e . - - a. + .
;El 3T LAt T
p By
n [a]
- 1
R= —21 (2.6)

i)
)
=1 {2

Once these values are determined, the H-function in BEq (2.1)
may be evaluated by the positive sum of LHP residues, the
negative sum of RHP residues, or both, depending on the value
of the variable z. These criteria are based upon which semi-
circle satisfies the hypotheses of Jordan's Lemma. The types
of convergence and the applicable ranges for the camplex
variable z were given by Eldred et al [1979], Cock [1981], and
Cook and Barnes [1981] and are repeated below in Table 1:
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Table 1. Convergence Types for H-Functions of Eq (2.1)

TYPE P E L H(cz) Izl larg(z))

D

I > <0 >Pw +) LHP res >0 <, <o

D

11 20 <0 <Pw +) LHP res >0 <R, S -

D

111 >0 >0 >Ew -} RHP res >0 <m, <

- b ]

v 20 >0 <P -y RHP res >0 <R, S
+} LHP res <1

R o)

v > =0 20 <1r,<—2—
-} RHP res >}T
R 1
ZLHPr& <T

nD

Vi 20 =0 <0 <n,s—2-—
1l

‘ERRP res T

where, if L. < -1 in Type VI convergence, one may use the sum of
either LHP or RHP residues at {(z| = = Type VI convergent
H-functions play a central role in several new results given in
Sections 2.5, 2.6, 3.6, and 4.3.

Because there was same disagreement [Springer, 1987] about
the validity of the convergence conditions given by Cook [1981;
Cook and Barnes, 198l], it was necessary to develop the

corresponding convergence conditions for the H-function in
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definition (2.2). By rewriting Eq (2.2) as
n m
n I‘[l—a.+A.r] n I‘[b.-—B.r) _
) L NSNS

; q P
2ni n I‘[l-b +B .r] n F[ai-Air]
¢ Il 3 3) j=p#1

(2.7)
and using Eg (2.1) by considering the "A" terms as "B" temms

and the "B" terms as "A" terms, we have
&l )] e
.. <P

Evaluating D, E', L', and R° as in Eq (2.3) through
Eq (2.6) yields

m n q p
*x p = B,+ ) A, - B, - A, (2.9)
21 iz=:1 * jqzr:ﬂl ] i=§+l *
* ; E (2.10)
E = B. - A, .
J}=:1 S+
* L' = Re| T (1-a;) - % - (1-b,) + L
i=1 J=
P q
=Ref-Zai+_§_+ij--§— (2.11)
iz] )=
.




q Bj
B.
'n]_ ( 3]

*x R = 2= (2.12)
P By
f (A.]
i=1 L%

Camparing Eq (2.9) through Eq (2.12) to Egq (2.3) through
Eq (2.6),

D’ in Bq (2.9) = D in Eq (2.3) (2.13)
E' in Eg (2.10) = (-1) [ E in Eq (2.4) ] (2.14)
L’ in Eq (2.11) = L in Eq (2.5) (2.15)
R’ in Bq (2.12) = [ R in Eq (2.6) ]} (2.16)

These relationships allow the corresponding convergence
types for H-functions defined by Egq (2.2) to be written.

Table 2 lists these types of convergence.
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* Table 2. Convergence Types for H-Functions of Eq (2.2)

TYPE D E L H(cz) Iz larg(z)]|
, D’
1 > <0 D>E'v -} RHP res >0 <H, <o
iy '
11 20 <0 <E'v -} RHP res >0 <1t,s-!—
. D’
111 >0 >0 D>E'v +) LHP res >0 <m, <
. D’
v 20 >0 <E'v +Zl’..l-!Prw >0 <n,s—2—
_ R’
Y RHP res <=

= '
v > =0 20 <, <o

RI
+zLHPrw >—c-
K R’
Y. RHP res <—-c—

VI 20 =0 <0 <u,s—?)—’

+2LHPr$ > —

where, if L’ < -1 in Type VI convergence, one may use the sum
of either LHP or RHP residues at |z} = -'é—'

As expected, there is a camplete interchange of LHP and
RHP poles. Type I convergence for the H-function of BEq (2.2)
in Table 2 corresponds to Type III convergence for the H-
function of Eq (2.1) in Table 1. Similar statements apply

between Types II and IV, III and I, and IV and II. Even Types
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V and VI in Table 2 correspond to Types V and VI in Table 1
when considering the relationship between R and R’ in
Eq (2.16).

Either set of conditions is sufficient, but not necessary
for the appropriate H-function to converge. Still, nearly all
of the many special cases of the H-function satisfy the
convergence conditions. Further, the conditions consistently
and correctly identify the valid range of the variable over
which the H-function representation equals the special case.

One should not think of these conditions as constraints on
the H-function, as Springer [1987] did. Instead, they should
be viewed as a sufficient tool to determine how the H-function
can be evaluated with the sum of residues - those in the LHP or
those in the RHP. Depending on where Jordan's Lemma is
satisfied, residues at the LHP poles, or RHP poles, or either
are summed for different values of the variable. These choices
are succinctly given in Table 1 (and Table 2) for most cases of
interest.

To demonstrate that the convergence conditions are
sufficient, but not necessary, consider the following
representation of e® for x>0 as a Meijer G-function [Prudnikov

et al, 1990, p. 633]
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e " Gk g[ x i (1-d) ; (0), (1—d)] (2.17)
S i) ‘2’[ x: (1-d,1) : (0,1), (1-d,1)]

(2.18)
where 4 is an arbitrary constant. For this H-function, D=E=-1,

L= - —%—, and R=1. It does not meet any of the types of
convergence listed in Table 1 above. Using the definition in
Eq (2.1), this H-function can be written as

I'(s)

n 1 s
: (x) © ds
sin (dn) 2ni ‘[C I'(1-d+s) T'(d-s)

(2.19)
Using the reflection formula for the gamma function [Abramowitz
and Stegun, 1970, p.256, 6.1.17] with z=d-s, this is

- 1 ] I's) (x)°% das
%
sin (dx) 2ni c ©® csc (n(d-s))

(2.20)

ﬁn_l(ﬁf)_zid‘[ sin (nd-ns) TI(s) (x)-s ds
C

(2.21)

1 1
sin (dn) 2n1

J (sin(nd)cos(ns) - cos(nd)sin(ns))
C

I'(s) (x)"° ds (2.22)

Now, I'(s) has LHP poles of order 1 at s.,= -J, J=0,1,.... These

J
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are the only poles of the integrand. At these values of s,
sin(ns) vanishes and cos(ns) = (-1)3. Using the residue
theorem to evaluate the cantour integral as the sum of residues

produces

J — ] Zw; [(-1)’sin(ud)] [L:ln)f_] x
J=

(2.23)

hod J
- Z i e 0.E.D. (2.24)
J=

This proves that the convergence conditions given in Table 1
are sufficient, but not necessary, for the H-function to

converge.

2.4. PROPERTIES

Among the useful properties of the H-function are the
identities dealing with the reciprocal of an argument, an
argument to a power, and the multiplication of an H-function by

the argument to a power [Carter and Springer, 1977].
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afe o) l)] o

i=1,..., i=1,...,

..... P Jl,...,
o ‘a-—— b3 (2.26)
¢ pq ’ : :
i=1,..., ) =1,..., q

for ¢ > 0
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- 2 z:{( +Acn]} {[b+BcB]} (2.27)

i= L |

2.4.4. FIRST REDUCTION PROPERTY

If a pair of "A" terms and a pair of "B" terms in an H-
function are identical and one is in the numerator of the
integrand and the other is in the denaminator, then it is
equivalent to an H-function of lower order. Specifically,
[Mathai and Saxena, 1978, p. 4]

w3 () (b} ml]

1- e ’P J-l'ooo'q—l

e ol ) | e

P 3=1,....,9-1

provided n>0 and q@>m. Also,




T (CEN PACVNE {(»ys,n]

i=1,...,p1 =1

i bl Ce)| e

i=1'ua-,p—1 J‘

provided m>0 and p>n.

2.4.5. SECOND REDUCTION PROPERTY

Bodenschatz and Boedigheimer [1983, pp. 11-12] discovered
another way in which the H-function can reduce to one of lower
order, at least in the limit. If any A, or B:i is close to
zero, that gamma term in the integrand of Eg (2.1) is

essentially a constant. Thus,

gunerey 5 3 e fnl) - (b BJJ}]

1-1'
(2.30)

for Bl s 0 and m>0. Here, the symbol ~ means the limit of

H’; g[z] as 81—90 is given by the right side of Eg (2.30).
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1

H: (2] ¥ —m—m _ pq?]. z: {[’i'ai)} ;

-b
q) i=l,...,p

{[bJ,BJ)} (2.31)

3=1,...,9-1
for Bq ~ 0 and m<q.
Hmn[z] ~ l‘(l—al) pTl nql z {[ai,ai]} ;
i=2,...,p
{[bj’Bj]} (2.32)
=1,....,9
for Al » 0 and n>0.
H'; g[z] ~ I‘(;J {[ )) {[bJ'BJ]}
,ees,P"1 351,
(2.33)
for Ap » 0 and n<p.
* 2.4.6. HIERARCHICAL RELATIONSHIPS AMONG ORDERS OF

H- S
One significant, but surprisingly simple, discovery was
that whole classes of H-functions are embedded in other




classes. For example, the Hé g class of H-functions is a
proper subset of both the H. | and H3 ) classes of H-functicns.
These classes, in turn, are embedded in other, higher orders of
H-function classes.

This newly discovered hierarchical relationship among
classes of H-functions results in several new ways in which
certain H-functions can reduce to H-functions of lower order.
Further, while the first and second reduction properties listed
above are readily apparent and easily understood, the new
reduction properties are less transparent.

The new results are based on the Duplication Formula,
Triplication Formula, and Gauss' Multiplication Formula for the
gamma function [Abramowitz and Stegun, 1970, p. 256]. The

Duplication Formula is

1 1

M2 =(x) 2 2 2 rmw r[w_%-) (2.34)
which can be rewritten as

1 w 1l
rw) = —X_ “rwr .
(@) = 1 4 () [T m] (2.35)

or

r[_é_ m) = 2R "II("(Z:T)— o (2.36)

or
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)

Any gamma function present in the integrand of Eg (2.1) in

I'(w) = /R (2.37)

the definition of the H-function can be replaced with an
equivalent expression as in Eg (2.35), Eq (2.36), or Eg (2.37).
Terms of the above equations which do not involve gamma
functions can be cambined with the parameters k or ¢ in the
definition of the H-function. Using Eq (2.35), a Hy § H-
function may be rewritten as a Hg g H-function. Using
Eq (2.36) or Eq (2.37), a Hy | H-function may be written as a
H | H-function. The H-functions resulting from Eq (2.36) and
BEg (2.37) appear distinct, but can be shown to be equivalent.

I will state these new upgrade and reduction results for
first order H-functions as theorems and provide proofs. The
proofs sinmply use the argument to a power property in BEg (2.26)
to change B to unity, the definition of the H-function in
Eq (2.1), and one of the forms of the duplication property in
Eq (2.35) to Bq (2.37).

* Theorem 2.1. H:') g[ ce : ; (b,B)]

- _.1@1_ HE g[ 4Bcs [b--;'—,B] ; (2b—1,2B)] (2.38)
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Proof:
1

"%g[ cz t (b'B)] =-§-u§‘}[ () B & ; (b,l)]

= _B;Ti_ I F(bts) (cz) B ds
c

i [ o Bl
"'EaaT:i_L 5 I’[ba—;:-s] 4~ (cz) ds

using Bq (2.36) with w = b-_é_»fs

R » r|2b-142s —
; Jc r%b-_;_u% [43 cz] T

1

- T':RFI_ He ‘1’[ [4%;]_%_ : [b-_!_1] ; (2b-1,2)]

= _"QI' H;ll g[ 4°cz : [b-—z-,B) ; (2b-1,2B) ] (2.39)

= _2_/:_ Hll g[ & er [M—;—.B] ; (2b,2B) ] (2.40)
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Proof:
1l

ugg[cz:;(b,s)]=-%-l%g[ () B : (b'l)]

1 [ By

il o
1 [ R I‘[2(b+s)] -s -"g_
= . 4 ° (cz) ds
B51 I ¢ r[b+_§_+s]

using Eq (2.37) with w=b+s

2R T(2b+2s) ——
1 L v (F) 7 e

G cz]"l-’" o] (2b.z)]

.
b

n}i’ g [MJZ‘_,B) ; (2b,2B)] (2.41)

©
E"
o

Equivalence between Eq (2.41) and Eq (2.39) can be proven
by using the telescoping property of the gamma function
T(z+l) = 2I'(z). The core of the proof is provided below.
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2/R Ir'(2b+2Bs) ) 2/R (2b-1+2Bs) I'(2b~-1+2Bs)
4 r[b»;_+ss] TP [b——;'-m\s] r[b-%_ms]

I'(2b-1+2Bs)

IS

(2.42)

4b—l

Theorem 2.3. Hg g[ cz ¢ ; (b,B)]

L hi e () ()] ew

Proof:

Hgg[cz:;(b,s)] =-§-H32[ (cz)—é_:;(b,l)]

R _S
-515-1— I'(bts) (cz) B ds
vC

-

! [ 1 1 b btl . s ~5

® —yey 7 2 ’r—2-+_2-s]r—-2—*~—2—) (cz) ds
J¢c

using BEg (2.35) with w = —bz*’_

L | ) ) %) T e

C
-
b~1

2 1 0 - ..[b 1 btl1 1
7 + % [2 “] [TT] [—z—T




g[ 27Beg & ; [_g__g_] [_l_”rl—q?_) ] (2.44)

Upgrade and reduction results for the more general class

Q.E.D.

of H-functions ﬁ? 2 can be proven using the same steps as in
the above proofs by working on any gamma function present in
the integrand of Eq (2.1). Since the proofs are very similar
to those already provided, Theorems 2.4 through 2.7 will be
stated without proof. The generalized results are

*  Theorem2.4. HJ 0 cz={[‘ ]} {[bJ'BJ]}]

1-1 J"l,noo'

i Pa o)) frda)

i=l,...,p

[21:1,231] , {[bj,Bj]} (2.45)

j=2,....9
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47

= 2/; l-l":]' q?lr. 2-31¢z : {[ai’hi]} ;
l i=1,...,p
[:1 ' :1]’ :b]_‘;‘l , 21]’ {[bj’Bj]} (2.46)
5=2,.0 ., q

(el ()|

1 IIIII J-l ooooo

e () )

i=l,..., p-1

(o= oy }] (2.47)

1,...,

e ) B

1-1 o.o'

[ a+l “p) {(b, B,]} 2.48)

j=1,...,

for p>n.
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r—. n:::[ =+t - (o)

i=l,...,p i=1,..., q

.....

{[bJ Bj]} [ S~ Al] (2.49)

,,,,,

_1;Hmn+1[ z:[1 n1}[ *1"‘1

v )} (b BJ]}] 250

i=2,..., i=1,...,

for n>0.




i=

 meemnr £ (o)) {[m:))]

1-b
= 42/? HpTl n;l 4 qcz : [bq-—;—,Bq], {[81'51]} :
i=1l,...,p
{[bJ,BJ]} : [qu-l,ZBq] ] (2.51)
j=1,...,9-1

"l (el (b))

i=1l,...,p 3=1,....9-1

SR I

for g>m.

Similar results are available by using the triplication
formula or Gauss' multiplication formula. For exanple, using
the triplication formula, it is possible to show the Hé g class
of H-functions is also a proper subset of both the Hg g and
H; 2 classes of H-functions.

* 2.4.7. GENERALIZING CONSTANT
Bodenschatz and Boedigheimer [1983; Bodenschatz et al,
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1990] gave the first H-function representations which
recognized the existence of a positive generalizing constant,
u. They showed that for certain mathematical functions and
statistical distributions, the Aiand B:i parameters need not
equal unity. They gave same new generalized H-function
representations, but did not state general conditions under
which a generalizing constant was possible. These general

conditions will be given below as four theorems.

* Theorem 2.8. If m0, pm,APB anda b-l then

= (n)) - b G (0203}

i=1'oo ,p-l 3—2,...

uH o] cz :igai,Ai]}l, [ublﬂ,uBl] ;
(o). {[bJ’BJ]}] (259

j=2,.
for wo.

Proof:

S RN (CEN) R CCEA R CEAR (3]

-1,o-o'p-1 3-2’-00
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m n
n l"b.+B.s) n r[l-a.-a.s)
1 =2 33 i=1 i1 r b1+Bls
. P“]. q
2l m I‘[a.+his] m I‘(l—b -B .s] r[b1+l+Bls]
i=n+l J=mt+l 3 3
(cz)™® ds
m n
n I‘b.+B.s] n l‘[l—a.-A.s]
1 §=2 J i=1 i1 1l
. p-1 q
i n I‘[a.+Ais] n r{i-b.-s .s] b,+B,s
i=n+l jemtl 33
(cz)-s ds
m n
n I‘[b +B .s] 1] I‘[l-a.-n.s]
u j=2 3 3 i=1 h N § 1
R p-1 q
i nr a.+A.s) n rfi-v.-8 .s] ub, +uB, s
i=nt+l J=mtl 33
(cz)™® ds
m n
nr b.+B.sa n-r l—a.fn.sa
u __3=2 j 4=l i F[ub1+uBls]
. p-l q )
i mr a.+Ais) n rfi-b.-s .s] r[“bl*l*“‘?'l’]
i=n+l jemtl 3 3

(cz)™® ds




e (b)) - (aem)

i=l,...,p-1
[ubl,uBl] {(b ]} (2.54)
j=2,....,4

Q.E.D.

* Theorem 2.9. If m>0, p>n, B1=Ap, and bl-ap=l, then

[ (Lo} N ) {fsn)

---------

g3 (o)) o)

i=l,...,p"1

[smgrn) - (b )] (2.55)

3=2,...,
for w0.

Proof:

[ {lend} - Bon) s G- (i)

-1 .oo’ j=2 .... q
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m n
nr [b 4B .s] N Ijl-a.-A, s]
j=2 J 3] b §

i=1 b § I‘[apﬂmsz
P-1 q :
n I‘[ai+Ais] n I‘[l-b B .s] F(apmp’]
o i1 jomtl 33
(c2)™® ds
m n
I=1 I‘[b +Bjs) il=11 l‘[l-ai—l\ls

(c2)™® as
m n
4B . -a.-A.
522 I‘[bJ BJs] n I‘[l a, ;s
+
on T (s [
a.+A s] [1- ~B. ]
o dml U1 gy U730




m
1 I I’[b 4B .s] ﬂ r 1—a -3, s]
_ =2 ) =1
. p-l q
uZxi nr ai+h.s] n I‘[l—b -B .s]
c i=n+l j=mt+l 33

I‘[ua +l+unps] (cz)_s ds
I‘[mp-maps)

-%- H:‘: cz : {[ai’ai]} ’ [uap,uhp] ;

i=1,..-,p‘1

CREN {[bJ,BJ]} ] (2.56)

3-2' cep
Q-E-Do

54




* Theorem 2.10. I1f n>0, g>m, Al=8 and a -b -1 then

L I [bq+1,3q], i(!ai,ni)} ; {b J]} ]

=2,...,p J1,...,9-1

e RN CER AT {[ ]}'

(). (o 'uﬂql]

N o |
for u>0.
Proof:
z : {bqﬂ,Bq], {(al ]} {[b oy q]
i=2,...,p 3=1,. q-]_
m
n rb.+3.s] n rfi-a, -As] [_ i ]
= 1 j=1 i=2 r x qu
' P q-1 —
2ni n I‘[a.+Ais] n r{i-b.-B .s] T[l bq qu)
i=n+l j=mt1 J 3

C

(c2)™2 as




m n
1 I F[bj+BjsJ _g F[l-ai-aisﬂ 1
i=2
. p q-1 -h -
Zi nr aiﬂ\.s] n I‘[l—b -B .s] bq B
i=n+l jemtl J
(cz)™ ds
m n
O T'jb.+B .s] nr 1-a.-A.s)
u 51 i=2 i7i 1
. ) q-1 —uh -
2ni nr a.+A.s] N Tll1-b.-B .s) ubq “qu
i=nt+l J=mtl J
(cz)™® as
n
) O I (SN IR
. P q-1 b -
i n I‘[a.+A.s] n rfi-b.-s .s] [1 ub “Bq’]
¢ imHl jemtl 33

(cz)™® ds
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=uHp gl ez [“bqﬂ'“BQ]’ {[ai'hi]} ;

i=2,..., P

{(bJ"B:i]} ‘ [“bq'“"q) (2.58)

3=1,40., q-1

Q.E.D.

* =, -a.=
Theorem 2.11. 1f n>0, oom, Bq Al, and bq a, 1, then

M[ ) () (E00)) [,lu,ﬁ]]

..... P 31,...,9-1

-1 [m(wl {(n)) -

) o | e

for w0.

H,;:[ il CUARK (LN R (OFR) I St Al]]

i=2,..., P J:1...., q-1
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m
nr b.+a.s] n I‘[l-a -A.s ] o
1 =1 1_ i7" I‘[l a, Als)
. P —a —
2l nr a.+A.s] % rfib,Bs ] r[ 2 “1’)
i=n+l J=mtl 33
(cz)™® ds
m
1 N TI'|b.tB .s] [l-a -A, s]
=1 i=2 -
i jp q-1 ( s | Als]
n l‘[a.ﬂ\.s] n rfi-b.-B .s]
i=n+l =mtl 313
(cz)”® ds
1 I‘[b +B .s] I‘[l-ai-his]
u2ni Tl (-mlﬁals]
ll T a1+nls] n I‘(l—b ~B .s]
i=n+l j=mtl 3

(cz)™® ds
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m
1 n I‘[b ] ll I‘[l-a -A s]
- . 1=
uni q
llI‘a+A] r[-b—as]
c i=n+l J=mtl 3

Q-1

() fronm)] oo

Q.E.D.

2.4.8. DERIVATIVE

It is well known that the derivative of an H-function is

th

an H-function of higher order. Let the r derivative of

HY 2[2] be denoted by #[z). 1f all real by are such that

-b.
) <1 for j=1,...,m then the r

By
[Mathai and Saxena, 1978, p. 7; Cook, 1981, p. 83]

th derivative of H'; :[z] is




(r)[z] = H "‘1 23 gz : (-r,1), {[ai-rai,ni]) H
i=l,...,p

{[bj-rnj.Bj]} , (0,1)

J=1,....9

(2.61)
Cook [1981, p. 83] gave an improved formula for the rth
derivative of an H-function if any real bJ. is such that

-b.

J . 1 for 5=1,...,m. The formula is based on the value of
J
I, defined as
-b,
I= nlinnm 0, largest integer less than BJ
J= ooy o
J

(2.62)
th , . n .
The r derivative of l-l;‘ q[z] is

1(F(z] = (-1)! ;:g z : (-I-r,1), {[a ~TA,; /A ]}.

<P

(-r,1) ; {[bj-rBj,Bj)}, (0,1)

J=1,....q9

(2.63)




2.4.9. LAPLACE TRANSFORM
It is well known that the Laplace transform of an H-

function is an H-function of higher order. If all real b:i are

_b .
such that BJ < 1 for j=1,...,m then the Laplace transform of
J

n'I‘: :[cz] is [Springer, 1979, p. 200; Cook, 1981, p. 35]

zr{ H(cz) } = J: e % H(cz) dz
= -1t on| = {[1— j—nj,sj)} ;
l,....Q

=
(0,1), {[l-ai-hi 'Ai]}

i=1'---,p

(2.64)
Cook [1981, p. 82] gave an improved forrula for the
Laplace transform of an H-function if any real b:j is such that

_bj

B;

2 1 for j=1,...,m.
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1
! aweaf 1
zr{ H(cz)}: SO et IESE IR C )

{[l-bJ BJ,BJ]} ; (1,1), {[1—a1 AI,AI]}, (0,1)
1

j=ll"'lq '=1,...,p

(2.65)
where 1 is given by Egq (2.62).

2.4.10. FOURIER TRANSFORM
It is well known that the Fourier transform of an H-
function is an H-function of higher order. If all real b:j are

.b .
such that

= < 1 for j=1,...,m then the Fourier transform of
J
n;' z[cz] is [Springer, 1979, p. 201; Cook, 1981, p. 35]

@

- itz
s { neer) ) L 2 H(cz) dz
AR B e K
l,. --,q
©0.1), {(1-:. A A, ]) ]

(2.66)
Cook [1981, p. 82] gave an improved forrula for the

Fourier transform of an H-function if any real bj is such that
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-bj

2 1 for j=1,....,m

_ +lmtl] i .

{[ 1-b.-B, ,BJ)} ; (1,1), {[l-a A, A, ]} (0,1)

J=1I "Iq I"'IP

(2.67)
where I is given by Eg (2.62).

2.4.11. MELLIN TRANSFORM
Since the definition of the H-function in Egq (2.1) may be
recognized as the inverse Mellin transform given by Eq (1.10),

the Mellin transform of an H-function is readily obtained.

ns{ H(cz))= r 21 H(cz) az
0

m n

N T{b+B s] n r[l-a.-a.s]

1 V3D g P
(:s P

q
1] I‘[a1+h s] n I‘[l-b ~B .s]
i=n+l j=mtl 3 3
(2.68)

2.5. SPECIAL CASES - MATHEMATICAL FUNCTIONS
With the parameters given below, the H-function can




represent all of the following mathematical functions as a
special case [Mathai and Saxena, 1978; Cook, 1981; Bodenscha:z
and Boedigheimer, 1983; Bodenschatz et al 1990; Prudnikov et
al, 1990; Cook and Barnes, 1991]. In sane of the

representations, uw0 is a generalizing constant.

Exponential and Power Functions:

z - —’i_— o M M

R m Ol : (1-4,1) ; (0,1), (1-d,1) ]
e"=ﬂgg[ z:; (0,1) ]

Ptz D]

) G

+ = =Hy 23 (B,8))

Pem e 0 (k)] lz| <1
*  zuH I z: (uwu); (wbu) ] Iz|] <1
* ,b=ubgi‘1’[_§. : (b41,1) ; (b.l)] jg) <M
. =unbu'}g[-§-=(ub+1.u);(ub,u)] lz] <M

Pl ) k)] jz| >1

* = uﬂg i[ z : (ubtl,u) ; (uwb,u) ] fz} > 1




* 2P = Pl i[ £ : (b1,1) ;5 (b1) ] Iz| > €

* cucbml i[ — ¢ (ubtlu) (ub,u)] 2] > €

1-2)®=r) B Uz 04,0 5 (0,1) ] jz} <1

* (z)® = r1) @ 1 [ 2 (b11,1) 5 (0,1) jz} <M
11| W

(z-1)® = ror)) B 12 0 1) 5 (0,1) ) bzt > 1

* (z-1)° = T(b+1) €P

i[% : (bH1,1) ; (0,1)] |z} > ¢

0
)
P 1P =ra) m s (as1) 5 B ] gl <2

* 2 (42)"? = T(ar2) #*P 11 2[ I (btasl,1) 5 (bo1) ]

|z] <M
(142)P = 1z b1y 5 (0,1) ]
P : :
z° (1+z) 2 = m- l-r.-ll 1[ z : (b-a+l,1) ; (b,1) ]
=xm 3z 00, (3 ;0. [ ]
l - g of = b, (B

|1-2| I'(b) cos[ ]

(,1), %E-,l] ]
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o () s e e, @1 @D, B )
lz] <1

e Lo RS ERNCCRMNCCENERCOICER

|z} > 1
1 a
a % jz] <1
’ =- "‘; ;[ z : (btl,1), (atl,l) ;
Bt x>
(a,1), (b,1) ]
1 I 1 z . 1y . 1
s > Hi 1 _('T:T:]— : (O'T] : (O'T]
a
n>o, larg a| <n
1-2" 1 H§2 o
= . 1— T ¢ 2 z: O,_“n— R
1-2™ m I‘[T] r[l“_m'] [ ‘ ]
1 1 . 1 h 1 1
Ea) ) B ]
n>0,m>1
2 2
(lng)  +=x _ 3 . .
l1+¢2 =2 Hg 3[ z : (0,1), (0,1), (0,1) ;

(0,1), (0,1), (0,1) ]
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1l -1 (2] 6 1l z
- 5 r[_.] 1"[1———-] nt [— :
;2+2azcose+a2 a T " 22 2
(0.1), [-_g_,%] ; (0,1), [—-ﬁ—,%] ]
a>o0, |9| <n
Unit Step Function and its Camplement:
1l x2k>0
(x) =
Sk 0 0<x<k
0 x .
* - 1 1['1? : (L,1) ; (o,l)]
* = ung i’[j’:_ : (1,u) ; (O,U)]
x2k>0
1-8, (%) =
sk 0<x<k

0
(.
;

u H'} g[ o (L (0, ]

g[ %_ 1 (1,1) ; (0,1)]

Error Function and its Complement:

erf x =

2 Ix e—62 do

/R Jo

= .}ﬁ. Hi ;'[ x: (1,1) ; [—;—,—]2'—], (0,1)]




* = _“ﬁ l-r}. g[ x: (1,u) ; [_],‘;_,_é_], (O,u)]
erfcx=—j’_i——ﬁe-62&=1-erfx
* = _;T H g[ x: (L,1) ; [-é--;-] (o,1)]
u

*® =

i

_/17_ g[ x: (1,u) ; (—é—.jl-], (0.\1)]

Inconplete Gamma Function and its Carplement:

¥(a,x) = j: e® el
= 5l x: (L) 5 (@1), (0,1) )

* =ul-l'1

1 ;[ x: (1,u); («1), (O,u) ]

I'(«,x) r e?6*l @ = r) - y(a,x)
X

Hio

O x: (L1 ; (1), (0,1) ]

* = H]2. g[ x: (1,u) ; («,1), (O,u) ]

s




Incarplete Beta Function and its Camplement:

- qx-1 B-1
B (x,B) = jo o* ™t (1-0)" " @
=T(p) W} 30 x : (L,1), (a+p,1) ; (a,1), (0,1) ]

* = u T(B) }r; ;[ x : (1,u), («48,1) ; (a,1), (O,u) ]

B @h = | ot aofle
X
x =T(p) W3 o[ x : (1,1), (x4B,1) ; (a,1), (0,1) ]
X = u I'(B) ag g[ x: (1,u), (a48,1) ; (a,1), (O,u) ]

Trigonometric and Hyperbolic Functions and their Inverses:

sins =g 3 5o () )]
swmze - g3 (54 4]
coozs LB Y 5 ¢ 7 7] (4] ]

e R4 (1) ()
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arcsin z = - —— Hj g[ iz [1-}] [1-%-] ;

5
34 b4

= - 2;; Hy g[ iz : (L), [1_}] ;

34 o]
arcsinh 2 = 4}” l-l% :22[ 2 (l,-%—), [1,—;—) ;
B4 641

- 2;,7 HL g[ z : (Lu), [1-%-] ;

(53] ©ow]
arctan 2 = —i’— H; g[ g : [1,—%—), [11—.—;- :
(- 6]

1 1

=_;..I{;§[z H (l,U), T'T ’

(F) om]
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g of . . 1 1 1) .
arctanhz = TH; 2[ i1 - (1, ]: [T'T] ’

(=) 4]

- 2["“(1") H"%' '

e V% gin (bz) = x Hi g[ b2z : [0,_1_] > (0.1, (0'—%_] ]
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e cos (bz) = n H g[ B2z (_é_,.%_] : (0.1),

4]
e sin (c2) = x Bl ‘2’[/?:? iy [o, mta:['g_] ] ;

oo o=t

e T g (cz) = n Hi g[ Y b2 g [—é— arctan[-g-] ] ;

"
oo (3=t )]

sinz(az) = —14— Hi ;[ 2a z : [1,—;—] ; [L-é—], (0,1) ]
Logarithmic Functions:
0 <zxl

- 12 %z : (1,1), (1L,1) ; (0,1), (0,1) ]
lnz =

“g gl z: (1,1), (3,1) ; (0,1), (0,1) ]
g > 1
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*

-2 Hg g[ z : (1,u), (,u) ; (O,u), (O,u) ]
= 0<z<gl

u? Hg g[ g : (1,u), (1,u) ; (O,u), (O,u) ]

z>1
In (42) = B} 20 2 : (1,1), (1,1) ; (L1), (0,1) ]
=uH 2z : (Lw), (L1 ; (1,1), (0,0) ]
In [1+%] =1 50 2 : (0,1), (1,1) ; (0,1), (0,1) ]
=uH 5l 2 5 (0,1), (1w ; (0,u), (0,1) )
n e s nmg 3 =0 D), @, (5

(1,1), (0,1), [-;-1] ]

= w l-l; g[ z : (1,u), (1,1), [%—,1] :
@D, 0w, (1) ]
In |1-‘%| = H g[ z: (0,1), (1,1), (-}1] ;

(0,1), (0,1), (11-1] ]
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] cwul 20 00, aw, (£
0. @, (33
n(1e2zmesors?-mmi=: a0, @,
(4] s 0. oo (4]
N a2 w, Q.
=) s an, o, (4]
o) - 3B Yo (). b4
p4)- 4]

* = ul'l; g[ z : (1,u), [1,—;‘-] ; :1,—;—). (0,\1)]

Bessel Functions:
o+ B+ ) (-+3)]

w32+ ) (-]
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Yv(z) [T [ v+l );

) (4 (2]

B2) =1y O 2 2 5 (0,1), (~v,u) ]
(Maitland's generalized Bessel function)

Hypergeametric Functions:
M(albl-z) = 1F1 (a;b;'Z)
- _T(b) 1 . (1= -
T m 3z : (1-a,1) ; (0,1), (1-b,1) ]
(Confluent Hypergeometric function)

crmeg) = L) 2 . (1= - .
Fy (abicioe) = ——Ch 15 5l 2 ¢ (1-a1), (b1)

(oll)l (l-cll) ]

(Hypergeametric function)

("i]
()

2l ()
(0.1, {(l-bj.l]} ]

forpsqorforp=q+1and|z| <1

o ({up o) -

(Generaliged Hypergeametric functions)
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{5 &L ()
0. {(i4,2)]

(Maitland's or Wright's Generalized Hypergeametric function)

MacRobert's E-Function:

o oo 0w+ o (fenl)
()]
i (e} (BB - %= ) - ()]

* 2.6. FUNCTIONS REI ED OVER A RESTRICTED RANGE
For same of the special cases of the H-function listed

above, the H-function represents the special case only for
certain values of the variable z. For other values of the
variable, the H-function takes the value zero. These cases can
be identified by a restriction on the variable such as |z| < 1.

These restrictions arise fram the convergence conditions
for the H-function given earlier. These H-functions are of
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Convergence Type VI which means they can be evaluated by the

sun of LHP residues for |z| < —% and by the negative sum of
. 1 0 0
RHP residues for |z| >TQ'" Butthel'lilandﬂg 2c1asses of

H-functions have no RHP poles so the value of the negative sum

of RHP residues is zero. Therefore, H(z)=0 for |z| > 1—

R
Similarly, the Hg i and Hg g classes of H-functions have no LHP

poles so the value of the sun of IHP residues is zero.
1l

Therefore, H(z)=0 for |z| < -

Through scaling the variable with the parameter ¢, it is
possible to change the value where the H-function changes fram
representing the special case to taking the value zero. For
exanple, an l-li g H-function can exactly represent the power
function zb for |z] < M vwhere M is any finite positive
constant. Provided M is finite, M may be as large as desired.
Similarly, an Hg i H-function can exactly represent the same
power function 2® for |2| > € where €>0 may be as small as
desired. These scaled H-function representations (given
earlier in the list of special cases) allow a nearly carplete
representation of the special cases.

Another way to avoid this limitation of Convergence Type
VI H-functions is to allow a slightly different function to be
represented for certain values of the variable. The method

basically involves introducing poles into the other half plane
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so that when the H-function is evaluated by suming the
residues at these poles, a function very close to the desired
special case is obtained.

An important consideration in this approach is to ensure
the LHP and RHP poles may be properly divided by a contour C.
I will give several examples of this technique for the power
function xb. In same of these representations, u>0 and v>0 are
generalizing constants. In all of these representations, €>0
may be as small as desired. The first two examples involve a
horizontal shift of either the RHP poles of Hg i[x] or the LHP
poles of H‘ll g[x] by €.

L 0<x<1

% = ¢ H‘; ;[ x : (btl-e,l), (b+1,1) ;
x x>1

(b,1), (b-e,1) ]

* = uve H% ;‘[ x : (ubtl-uc,u), (vbtl,v) ;
(vb,v), (ub—ue,u) ]

X 0<x<1l
* =ux;§[ x : (b+1,1), (btl+e,1) ;
x x>1

(bte,1), (b,1) ]
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* = uve n; g[ x : (ubtl,u), (vbivetl,v) ;
(vbtve,v), (ub,u) ]

The next two examples involve a vertical shift of either the

01
RHPpolwolel

introduces both conplex poles and a camwplex function for

[x] or the LHP poles of Hi g[x] by €. This

certain values of the variable.

b

X 0<x<l
. . = ie H; ;[ x : (btl-ie,1), (b+l,1) ;
xb-:.e: x>1
(b,1), (b-ie,1) ]
* = uvie H; %[ x : (ubtl-uig,u),
(vbtl,v) ; (vb,v), (ub-uie,u) ]
LPHie 0<x<1
* = ie n; é[ x : (btl,1), (btl+ie,l) ;
b
x x>1
(btie,1), (b,1) 1]
x _

= wvie By 3[ x : (ubtl,u),
(vbtvie+l,v) ; (vbtvie,v), (ub,u) ]

Although these restrictions on the variable z have always
been present for Type VI convergent H-functions, this

limitation of the H-function's ability to represent certain
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functions over all values of the variable was only recently
discovered. The practical methods suggested above to minimize
the impact of this limitation through scaling, a slightly
different function, or use of complex parameters are also newly
developed.

* 2.7. OF AN H-FUNCTION AND INFINITE SUMMABILITY

For a function of a real variable, £(x), which is nonzero
th

only for positive values of the variable, the r moment about
the origin of f(x) is given by
@
- r
B = Io xF £(x) dx (2.69)

provided the integral in Eq (2.69) exists. 1If £f(x) can be
represented as an H-function, it is often easier to find the
rth mament of £(x) using the Mellin transform fornula

Mo = A, [£(x)] (2.70)

In particular, if

£(x) = K f ox : {[a1 ]} {[bJ,BJ]} (2.71)

1-1' uo'p l"‘lq

then using Eq (2.68),
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m n
n TI|b.+B .+Bjr] il=]1 T l—ai-Ai-Ait)

1 U

By = BT P q
nr a.+A.+A.r] nr l—b.-B.-B.r]
i=n+l 111 j=mtl J 33

(2.72)

Use of Eq (2.72) consistently produces the correct values

for the moments of all the special cases of the H~function
presented earlier. But there are same functions for which

Bq (2.72) will produce a value for the rth

mament even when the
integral in BEg (2.69) does not exist. Consider, for example,
the sine function, sin x. The zeroth moment, By, may be
interpreted as the signed area under the sine function between

zero and infinity.
[+ Y
Un = sin x dx
o= [,

= lim IB sin x dx (2.73)
p—x “0

The value of the integral in Eq (2.73) oscillates between zero
and two and does not approach a limit as p—». Similarly, all
moments of sin x do not exist. However, using the H-function
representation of sin x and Eg (2.72) to campute the moments of
sin x does produce valid values. In particular,
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£ i

G

r
2 .
-1 r! r an even integer
R 9 (2.74)
0 r an odd integer

This apparent contradiction can be resolved with the
concept of infinite summbility of integrals. A thorough
discussion of infinite summability is beyond the scope of this
thesis, but a brief introduction to the concept through
infinite suns will be given. Euler began the study of this

@® .
topic by considering the value of the infinite sum ¥ (-1)*71.
i=1

n 3 -
The limit of partial sums sn =y (-1):l 1 does not exist, since
i=l

Sn=1 if n is odd and Sn=0 if n is even. Euler believed the
infinite sum should have the value _;_ since it is the limit of

n
theaverweofthepartialsman=—%-£sivdntbernisodd
i=]l

or even.

Since Euler's time, Cesidro and Hélder have developed well-
accepted schemes to find the values of infinite sums whose
partial sums do not converge to a limit. Holder's schemes are

based on the averages of the partial sums (H-1), the averages
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of those averages (H-2), etc. Cesiro's schemes (C-1, C-2,
etc.) are less intuitive and slightly more camplicated. The
approach described in the previous paragraph defines both the
C-1 and H-1 schemes, which are identical at the first level.

It is important to recognize that if an infinite sum does
converge, any of the summability schemes will produce the same
result. Similarly, an infinite sum which is C-m (H-m) summable
will produce the same result using the C-n (H-n) scheme where
n>m.

There is a direct analog to this approach for integrals
over an infinite range. An integral which does not exist may
still be summable under a summability scheme. The zeroth
moment of the sine function is an example of such an integral.
Under the C-1 or H-1 summability schemes for integrals, the
integral for the zeroth mament of the sine function takes the
value unity, the same as that produced with Bg (2.72).

There are several functions for which Eq (2.72) will

produce a value for the rth

moment even when the integral in
Eg (2.69) does not exist. In this case, however, BEq (2.72)
always produces the '"correct” value under an appropriate
sumability scheme. It is as though the H-function knows about
infinite summability and uses it correctly when it is

appropriate to do so. The first few moments of same
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trigonometric and hyperbolic functions are given in Table 3
below. Although the integrals for these marents as in
Eq (2.69) do not exist, these values are widely accepted as

"correct."

Table 3. Moments of Trigonametric and Hyperbolic Functions

Mament sin x cos x sinh x cosh x
Zeroth 1 0 -1 0
First 0 -1 0 1
Secand -2 0 -2 0
Third 0 6 0 6
Fourth 24 0 -24 0
Fifth 0 -120 0 120

2.8. EVALUATION OF THE H-FUNCTION

Like most contour integrals in the camwplex plane, the H-
function is usually evaluated by sumning the residues at the
poles of the integrand. The contour C, which is sametimes
referred to as the Bramvich path, is connected to a semi-
circular arc to create a Browich contour, a closed curve in
the cowplex plane. By the residue theorem, the value of the
integral around the closed Bramwich contour in the positive
(counter-clockwise) direction is the sum of the residues at the

poles enclosed by the contour. Under very general conditions,




the contribution of the semi-circular arc vanishes as the
radius increases without bound. In this case, the desired
integral over the Branwich path C equals the integral around
the closed Brawich contour, the sum of residues at the poles
interior to the closed contour.

Since the Bramwich path C (by definition) divides the LHP
and RHP poles of the integrand of the H-function, connecting a
semi-circular arc to the left will enclose all the LHP poles of
the integrand as the radius increases without bound.
Travelling around this Bramich contour in the positive
(counter-clockwise) direction, we cover the Bramwich path C in
the desired direction fram w-i®» to wtiom. Under the general
conditions referred to earlier, the desired integral along the
Bramwich path C equals the sum of residues at the LHP poles.

Conversely, connecting to C a semi-circular arc to the
right will enclose all RHP poles of the integrand as the radius
increases without bound. Travelling around this Bramwich
contour in the positive (counter-clockwise) direction, we cover
the Brawich path C in the opposite of the desired direction
from w-io to wtiow. Changing the direction travelled around the
contour fram counter-clockwise to clockwise simply reverses the
sign of the integral. Under the general conditions referred to
earlier, the desired integral along the Bramwich path C from
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w-io to wtiox equals the negative sum of residues at the RHP
poles.

The convergence conditions given in Section 2.3 take care
of these details and indicate where the H-function may be
evaluated as the sum of LHP residues or the negative sum of RHP
residues. Depending on the pattern of the poles of the
integrand, the process will result in a finite or infinite
series. For all of the special cases listed above, this
evaluation method will produce a series which equals the Taylor
series expansion of the special case.

While it is possible to verify the H-function
representations of the special cases in this manner, it is
often difficult and tedious to produce the series, especially
with poles of multiple orders. Eldred [1979] wrote a camputer
program to evaluate the H-function by summing the residues at
the appropriate poles. Cook [1981; Cook and Barnes, 1981]
improved the program and added extra capabilities dealing with
algebraic combinations of independent H-function variates.
Still, Cook's program will evaluate a general H-function over a
specified range (and with a specified interval) of the real
variable x when the parameters are input.

86




CHAPTER 3

THE H-FUNCTION DISTRIBUTION

3.1. DEFINITION

Because the H-function in Eg (2.1) can exactly represent
the kernel of many cammon probability density functions, it was
natural to define an H-function distribution as the product of
an H-function and a constant, k, which normalizes the area
under the H-function (over the appropriate range) to unity. An
H-function variate has the following probability density
function (p.d.f.) [Carter, 1972; Carter and Springer, 1977,
pp. 545-546; Springer, 1979, p. 200]:

<ol e ) {[br%)}]

£(x) = i=1,. j=1,
0 otherwise

(3.1)
In this case, the randam variable X is called an H-function
variate which follows an H-function probability law or H-
function distribution.

Use of an H-function representation as in BEq (3.1) for a

87




88

probability distribution has several advantages. First, it
unifies nearly all cammon continuous probability distributions
of positive random variables under one very general class of
functions. The many named distributional forms which arise
naturally in common problems in probability may be managed with
only one function, the H-function. The H-function can also
represent an infinite number of other, unnamed distributional
forms.

The H-function also eliminates the need to specify the
range of the random variable for which the density is nonzero.
The H-function exactly represents the desired density over the
appropriate range and is zero elsewhere.

Many characteristics of a probability distribution such as
the moments about the origin, the cumlative distribution
function, and the Laplace, Fourier, or Mellin transform are
easily found fram the H-function representation. Finally, if
new random variables are defined by algebraic cambinations of
independent H-function variates, the densities of the new
randam variables are easily obtained.

3.2. MMENTS OF AN H-FUNCTION DISTRIBUTION
For the real random variable X with p.d.f. f£(x) which is

nonzero only for positive values of the variable, the rth

moment about the origin of f£(x) is given by

]



o
M, = IO xt f(x) d=x (3.2)

provided the integral in Eq (3.2) exists. If the density f(x)
can be represented as an H-function, it is often easier to find

the rth

moment of £(x) using the Mellin transform formula
He = A, [£(x)] (3.3)

In particular, if

t(x) =k B} of ox : {[ai,Ai]} ; {[bj,Bj]}] (3.4)

i=1’n-o’p j=1'o.o'

as in Eq (3.1) then using Eq (2.68) [Carter, 1972; Carter and
Springer, 1977, pp. 546-547; Springer, 1979, pp. 201-202],
m n
] jgl l‘[bj+Bj+Bjr] igl I‘[l—ai-ni-hir]

r r+l
c

=
n

P q
n l‘[a +A.+A.r) nr l-b.-B.-B.r]
jenel U3 3 1) g U3 733

(3.5)
Eq (3.5) is very useful in finding the moments of all H-
function variates, including all of the special cases listed in
Section 3.5.

3.3. EVALUATION OF THE H-FUNCTION DISTRIBUTION CONSTANT
Cook ({1981, p. 109; Cook and Barnes, 1991] gave a

practical method to determine the normalizing constant, k, for
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the H-function distribution. If the integrand of li';)l :[cx] has
no pole or zero at s=1, then since the geroth moment of a valid
statistical distribution must be unity,

1. 1
Ho Ay { H’; :;[cx] }

x
i

s=1

P q
nr a.+A.] n ryi-b .-B.]
i=n+l j=mil 3 3

n
Q

m n
nrum) nrrﬁmﬂ
=1 i=1

(3.6)

using BEq (3.2) with r=0.
The condition that the integrand of H';' :[cx] has no pole
at s=1 cames fram the need to evaluate the Mellin transform at

s=1. A camonly met condition of nearly all H-function

b,
distributions which guarantees no pole at s=z1 is that TJ— <1
J
1-ai
for j=1,....m and > 1 for i=1,...,n. For the first
i

order H-function H‘.ol g[cx], Jacobs [1986, p. 46] noted that this
restriction corresponds to the region in his (B,b) plot [p. 53]
above the line b=-B. He also shows [pp. 71-72] that first
order H-function distributions in this region are uniquely
determined by their moments.
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The condition that the integrand of H‘; :[cx] has no zero
at s=l1 arises from the need to have a nonzero Mellin transform
at s=1. If the Mellin transform were Zero at s=1, no constant

¥ would exist to create a valid p.d.f.

3.4, CMILATIVE DISTRIBUTION FUNCTION

The cumlative distribution function (c.d.f.) of an H-
function distribution was available as simply one (unity) minus
another H~function of higher order [Eldred, 1979, pp. 139-140;
Springer, 1979, p. 243; Cook, 1981, ©p. 103]. 1f
£(x) = K glcx] is the p.d.f. of the H-function variate X and
F(x) represents the c.d.f. then

F(x) =1~ x H"*l n [ Cx : {[a.ﬂ\. ,A.]}, (1,1) ;

c "ptl g+l 17171

(0,1), ([bj+Bj’Bj]}]

(3.7)

Cock [1981, p. 103] gave another equivalent representation
which allows simultaneous camputation of the p.d.f. and the
c.d.f. of an H-function distribution by the sum of residues.
The H-function in this representation of the c.d.f. has a
nearly identical pattern of poles and residues as the H-

function representing the p.d.f.
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F(x) =1-kx yrl n [ : {[ai'Ai]}’ (0,1) ;

ptl g+l
. {fon)}]

(3.8)

Cook [1981, p. 104] also showed that the c.d.f. (in

addition to the camplementary c.d.f.) was an H-function. In
particular,

,

2z o (o)
{(bJ+BJ BJ]}, (0,1) ]
_’.l_;. H';ﬁ qﬁl[ ex : {[aiﬂ\i,Ai]}. (1,1) ;

(0,1), {[bJ+BJ BJ]} ]

F(x) =

(3.9)

where I is as given in Eq (2.62).
It is possible to introduce an arbitrary, positive
generalizing constant, u, to Eq (3.9). The new generalized
formula for the H-function representation of the c.d.f. of an

H-function variate is




i 7174

{[bJ+BJ BJ]}, (0,u) ]
el e {(ann)) aw

(0,u), {[bJ+B BJ)}]

Uk gm n+l[cx. (1,u), {[aﬂ\ A]};

* F(x) = 1

(3.10)
where I is as given in Eq (2.62) and w0 is arbitrary.

—— e X L S

With the parameters given below, the H-function
distribution can represent all of the following probability
density functions as a special case [Carter, 1972; Carter and
Springer, 1977, pp. 547-549; Mathai and Saxena, 1978, pp. 10-
12; Eldred, 1979, pp. 104-108; Springer, 1979, pp. 202-207;
Cook, 1981, pp. 85-87; Coock and Barnes, 1981, p. 300;
Bodenschatz and Boedigheimer, 1983, pp. 17-22; Bodenschatz et
al, 1990]. The H-function representations of the cumlative
distribution functions and a formula for the moaments about the
origin are also presented. In some of the representations, v
denotes an arbitrary positive constant. In the c.d.f.

representations, u denotes an arbitrary positive constant.
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*

Gamma distribution

r -
£(xjr,) = L o I
Ir'(r)

- A 0 . o (ye
-r(r)ﬂgltu.,(u,n] x>0

r,A >0

Fx|rA) = o 1y oL A% 2 (L1) 5 (£,2), (O.1) ]

=_u ni ;[ ax : (1,u) ; (r,1), (0,u) ]

I'(r)
x>0
1 I'(r-!-r*]
Hex lr*— r(r)

Exponential distribution (Gamma distribution with r=1)
(Weibull distribution with g=1)

£(x]2) = A e M*

=11-13g[1x:;(o,1)] x>0
x>0

F(x|3) = Hy 30 Ax : (L,1) ; (L,1), (0,1) ]

=uH 303z : (LW 5 (L), (Ou ] x>0
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I
= ——= I'(14r)

A

He

Chi-Square distribution

(Gamma distribution with r = qu- and A = —]2'-)

SR IR

f(xjv) = x e

e

1
o
F(x|v) = _r[i_‘;_]_ H: g[ 3 ) [_;_1) (0,1)]

et o () o]

2

- 1%
Mr = —r[_;—_]— I’[T +1’)




Weibull distribution

£(x|B.A) = B A <81 . 2

B B ]

B >0

1
F(x|B.A) = HE i[ x[T] x: (L,1) ; [1—,1,-] (0.1)]

| &) ,
= uni o 2 x: (1,u) ; [I,T). (0,u)

x>0

T ;5_ r[1+ -5-]

Rayleigh distribution (Weibull distribution with p=2)

2
f(xjr) = 2a x e “Ax

=ﬁﬂég[ﬁx:;[ﬁi—.—%—]] x>0

A>0




*

*

F(x[A) = B ;[ /Rx: (L) [1..,}.] (0,1)]
= qull ;[ﬂ x: (lu) ; [1,11-], (O,u)] x>0

.1 r
By = —% r[1+ T]
/x

Maxwell distribution

0
f(x|o) = x° e
l P
2 ef x 1
= s 11, 0
eﬁ‘%l—r [T]] x>
>0
r(xjo) = 2 m ol 5 : b [S3-5]. 0.1

2
7
= % Hi ]2'- X : (l,U) ’ —;—'—21" ’ (0,“) q

o

x>0
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Half-Normal distribution

2
=
f(x]o) = 2 e
/2o
= 1 0 . . 1
'moﬂ‘l’l {;a.,[o,—r]] x>0
>0
F(x|o) = 1 Hll[ X : (1,1) ; [1 1}.(0,1).
/R o 12 o (22 ]
= 1 . . 1 1 1
At en s A oo
x>0
r
Hr=_[./%’]_l‘—]2'—+ r]

Beta distribution of the first kind

= _T(a4B) (@-1)  (3.4)(B-1)
£(x|a,B) T@) T () x (1-x) 0<x<1l

- T(atp) o, _ . _ o
T'(a) “i il x ¢ (@48-1,1) ; (x-1,1) ]

a,p >0

F(x|a.B) = ‘"—r“:-;-‘;—’— x: @), @) ;

(«,1), (0,1) ]
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= y L(atB) 1 .. .
u I‘(a) lé 2[ X (1,\1), (a+811) ’

(all)' (olu) ]

x>0

_ T(atr) _ T(a+p)
r I'(ax) I'(at+p+r)

Power Function distribution (Beta distribution with g=1)

(x-1)

f(x|a) = a x 0<x<1

- H} g[ x: (a,1) ; (x-1,1) ]

= v H

1 g[ x ¢ (v(a-1)41,v) ; (v(a-1),v) ]

a>0

F(x|o) = « 1 50 x ¢ (L1), (@1,1) ; (x,1), (0,1) ]

= e Hy o0 x 2 (LW, (wel,v) ;5 (wa,v), (O,u) ]
x>0

_ o«
B = —o3F

Uniform distribution (Beta distribution with a=B=1)
(Power Punction distribution with a=1)

f(x) =1 0<x<«1l

= g[ x: (1,1) ; (0,1) ]
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= vHi ‘1’[ x: (1,v); (0Ov)]
*  P(x) =m0 x: (L), (2,1) ; (LD, (0,1) ]

* = uv l-r; ;[ x: (1,u), (v4l,v) ; (v,v), (O,u) ]

x>0
1

e = T3
Pareto distribution

5 (a+l)

f(x|a) = « x>1

: « n‘l’ i[ x: (a,1) ; (~a-1,1) ]

= v H) 10 x 1 (1-v(e#]),v) ; (-v(a+1),v) ]
a>0
*  F(xla) =aH ol x: (L,1), (w1) i (1), (0,1) ]
* = ) O0 x5 (LW, (ww) 5 (-we,w), (0,w)
x>0
o= = for a>r

Half-Cauchy distribution

x [xz + 92]

£(x]0) =
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A ) ] o

0 >0
F(x|0) = 3 I g[-g_ : (1,1), [1 _.12_] ;

() on]

. u 2 x 1 1) .
= 2["6"(1'“)' =z}

(4. om]

x>0
of (1 r 1 r e L
TF[T+T]P[T-T] if r is even
By =
do not exist if r is odd

Half-Student distribution

p+l
2 r[23)

f(xjv) = [ +1]
[
— 2

SR GINES
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1 -

e s e
)]
x>0
v>0
F(xjv) = ,/;z:_‘.}. n’z‘g[ ;B : (1,1), [1— -2"--}] ;
(=) ©v]

u

FTT bl e K

[—%-,—é- ' (O,u)]
x>0

A

A 5] %) rlr - %)

B = if v-rg-2J for J=0,1,2,....

do not exist if v-r=-23 for J=0,1,2,....
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F distribution

o) B )

f(xjv,0) = —
I‘[—;-] I‘[—‘-;-] (vxiw) j—
VX
= )
"[T] [T)

o)
x>0
v, >0

F(xjv,0) = [ : (1,1),

(4] (). o]

[— : (L),

(59 (5 o]

x>0

r[T] (%)
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r ) o
)
v W
of T2 r[2] F(T +r] F[T r]
A =z

M = if -g- -rg-J for J=0,1,2,...
do not exist if & -r=-3 for J=0,1,2,...

{ 2z

Beta distribution of the second kind

* re D
t(xla.p) = [£] s
(34
r@ re) (122
_ B if Bx . (_ s (-
" "« T(a) T(B) n 1[—«_ PR 1’1)]
x>0
«,p >0
F(x|a,B) = -F(;])._I‘-(F H g[ B2, as
@), 0.1 ]
- u 2 X .
e B 3 £+ aw, ae)

(@,1), (0,u) ]

x>0
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[ r
o

B* T'(x) T'(B)

I'(a+r) T'(B-r)

M = if B-r#-J3 for J=0,1,2,....

do not exist if B-r=-3 for J=0,1,2,....
.

General Hypergeametric distribution

n{o

d T'(b) r[_‘%"— -1
X

f(x}a,b,c,d,r) I‘[T] ) r;h_ic_]

Q) e

M[b,r,-axd]

da a2 r(p) r[_’:,"_ o1
b 4

c b-c
I‘T F(e) T —a

ol -
-4
H
]
1
Q

4a| »

SRS
o) () ()

x>0
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[ r-c 1
F(x|a,b,c.d,r) = d H'; g ;a_x :
(5] (5
c 1Y) .
(1:1)1 [1—b+TIT] ’
(53), (rrsd) @]
urf[x:e 1l
=] afa,
rtg) o5
-y, [, ;
{ d'd
(53], [regd): om ]
x>0
r-c c r* c r*
=
* d
‘"(‘a'] ‘"[“ T] a
Mr* = 9
1£b—T T#-J for J=0,1,2,.
do not exi=% *
; if b~ %‘- -§_ =-J for J=0,1,2,...
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It should be noted that since the H-function distribution
is only defined over positive values, symmetric and doubly
infinite distributions like the normal and Student's t must be
manipulated in their folded forms. While the normal, Student's
t, and Cauchy distributions are not special cases of the H-~
function, their folded forms, the half-normal, half-
Student's t, and half-Cauchy, are representable as H-function
distributions.

The venn diagram in Figure 1 shows the relationship
between many common first and second order H-function
distributions. The Erlang distribution is simply a gamma
distribution with an integer shape parameter r. The
exponential distribution is a proper subset of both the Weibull
distribution and the Erlang distribution, which is a proper
subset of the gamma distribution. One exponential distribution
(with A=7-) is a special case of the Chi-Square distribution,
which is also a proper subset of the gamma distribution. If a
Chi-Square distribution has an even number of degrees of
freedam, v, it is also an Erlang distribution with A=—. The
Rayleigh distribution is a proper subset of the Weibull
distribution. All of these named distributions, plus the Half-
Normal and Maxwell distributions, are special cases of the

first order H; (1) class of H-function distributions.
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Gamma

Erlang

\ Chi-
Exponential |\ \Square

Rayleigh .@.l

Waeibull 1001
H-Functions

Power

Function
1011
H-Functions

Figure 1. Venn Diagram of Certain Common
Statistical Distributions as Hy J and
M ) B-Pnction Distributions
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It is well known that the Uniform distribution is a
special case of the Power Function distribution, which is a
special case of the Beta distribution. All of these
distributions are represented as H J H-function distributions.
Purther, it was shown in Section 2.4.6 that the Hy | class of
H-functions is a proper subset of the H J class of H-
functions. Therefore, all of the named distributions in
Figure 1 can be exactly represented as H-function distributions
in the Hi g class.

An H-function representation has not been given for the
p.d.£f. of the Lognormal or Logistic distributions. Conversely,

no one has proven that these distributions cannot be

represented as H-functions. This is an area for future
research.
* 3.6. ARBITRARY RANGES FOR TYPE VI H-FUNCTION VARIATES

The H~-functions in same of the p.d.f. representations in
Section 3.5 are Type VI convergent according to Table 1 in
Section 2.3. Consequently, they represent the desired p.d.f.
over a certain range of the variable and, since they lack poles
in the opposite half-plane, are zero for other values of the
variable.

Specifically, the H-function representations of the Beta
(first kind), Power Function, and Uniform distributions above
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are all rr} g Type VI convergent H-functions with no RHP poles.
As listed above, they represent the desired p.d.f. over
0 < x < 1 and are zero for x > 1.

Similarly, the H-function representation of the Pareto
distribution above is an H) ] Type VI convergent H-functiam
with no LHP poles. As listed, it represents the Pareto p.d.f.
for x > 1 and is zero over 0 < x < 1.

This limitation (as discussed in Section 2.6) of the H-
function to represent a general power function or beta-type
function for all x > 0 is actually an advantage when
representing the statistical distributions. Using the H-
function representation eliminates the need to specify the
range of the variable for which the density is nonzero. The H-
function representation gives the desired p.d.f. for the
appropriate range of the variable and is autamatically zero
othervise.

The newly discovered technique of scaling these Type VI
convergent H-functions discussed in Section 2.6 is also
applicable here. By changing the value of ¢ in the definition
of the H-function, it is possible to alter the point at which
the H-function changes fram representing the special case to
taking the value zero. For the statistical distributions

mentioned earlier, this allows more flexibility in representing
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the same functional form over a more general range. Given
below are the new H-function representations of the densities
for the Three-Parameter Beta distribution, the Power Function
distribution over (0,M), the Uniform distribution over (0,M),
and the Pareto distribution over (e,»). In sane of the
representations, v denotes an arbitrary positive constant.

Three-Parameter Beta distribution of the first kind

- _T'(ax+8) 1 (x-1) _oy(B-1)
O0<x<M
- _TI'(ax+B) of x . - e ferm
* T "‘i 1[ - ¢ @-1,1) ; (a-1,1) ]
a,B,M>0

Power Function distribution over (0,M)
(Three-Parameter Beta distribution with p=1)

_ 1 (x-1)
f(x|ja,M) = a — x 0<x<M
! v
" - ‘1’[-;;- s (@) ; (a-1,1)]
. - = g[ X (v@1)HY) (v(«-n,v)]

a,M>0
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Uniform distribution over (0,M)
(Three-Parameter Beta distribution with a=g=1)

(Power Function distribution over (0,M) with a=1)

f(xm):_‘]i_ 0<x<M
. =11r“i(1)[‘§‘ : (L,1) ; (0,1)]
* =_§_Hig[_a.:(1,v):(0,v)] M>0

Pareto distribution over (ec,»)

o =(atl)

f(x|x,e) =a e x x>e¢€
. e RN RVE (1)) |
* - = g i[ X (1v(at),v) (-v(a+1),v)]
a,e >0
3.7. TRANSFORMATIONS OF INDEPENDENT H-FUNCTION VARIATES

A significant advantage of using the H-function
representations of statistical distributions is that they make
finding the distribution of an algebraic combination of
independent randam variables much easier. Carter [1972; Carter
and Springer, 1977, pp. 549-557; Springer, 1979, pp. 207-219}
showed that the product, quotient, or power of independent H-
function variates themselves had an H-function distribution.
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In fact, the resulting density of the new randam variable can
immediately be written (as an H-function) using only the
parameters of the H-functions in the algebraic cambination.
Springer [1979, pp. 217-219] described a method for
finding the H-function distribution of an algebraic cambinatiaon
(including constants, products, quotients, and powers) of
independent H-function variates. Cook [1981, p. 92] cambined
the three theorems of Carter [1972; Carter and Springer, 1977,
pp. 549-557; Springer, 1979, pp. 207-217] into one very

complicated theorem. Using Cook's theorem, the H-function

P,

v
distribution of Y = 1l X, ? is immediately available, where X;,
J=

j=1,...,V are mutually independent H-function variates and Pj'
5=1,...,V may be positive or negative. Carter's separate

results are given below, not Cook's cambined results.

3.7.1. DISIRIBUTION OF A PRODUCT

1f xl, xz,..., xN are mutually independent H-function
variates with densities fl(xl), fz(xz),..., fN(xN),
respectively, where




fi(xi) =

for i=1,2,...

N
Y=NnX

£,(y) =

4
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(M| ([ iy )} {( n]}
| ” X, >0
| 0 otherwise

(3.11)

N, then the p.d.f. of the random variable

is given by
N N
]I Dy e )}
i=2 i ¥ ¥ =1 3 7° {[ i3’ 13]} ’
Ip I g
i=1px i=1ql
13 13
y>o»0
(o} otherwise

(3.12)

where the sequence of parameters {( i3 1)]} is

j=1'2l“ for i=1,2,...,“

o'n

i
followed by

J=ni+1’ni+2""'pi for i=1,2,...,
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and the sequence of parameters {[13 13]} is

j=112t---r“\i for i=l,2,...,“
followed by r
jqni+1'“‘i+2' LI 'qi for i=1'2' LI ] 'N J

In effect, the formula retains the gamma terms in their
previous place (numerator or denaminator) in the integrand of

the H-function.

3.7.2. DISTRIBUTION OF A QUOTIENT
If xl and x2 are independent H-function variates with
densities fl(xl) and fz(xz), respectively, where

o [ () ()

- J-l'---,P J‘l; .
£(x) = | !

xi>0

{ 0 otherwise

(3.13)

X

for i=1,2 then the p.d.f. of the random variable Y = —xz— is

given by




kky  mpmy mypim, FoSg

—-(qz_ HP1+<12 q,*p, <, y:
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()

5" (-4}
y>o0
0 otherwvise
(3.14)
where the sequence of parameters {[d,D]} is
{ (PR oo P

1-b,, -2B an ..... [1-1:>2m2 2By, 32"5]

®1n, +1 A].nl+1] ..... [ﬁpl' A1;:1]

1 b1 P17 Bam) -0 [1 B, g+ B }

and the sequence of parameters ([e,!:)} is
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3.7.3. DISTRIBUTION OF A VARIATE TO A POWER
If X is an H-function variate with density £(x) where

[“‘"[ () o] oo

i=l1,..., P J=1,...,
0 otherwvise

(3.15)

P
then the p.d.f. of the random variable Y = X is given by




£,(y) =

when P < 0.

3.7.4.
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P-1 mn[ P
ke H c y: {[a.-A.HA. ,A.P]} :

R {[b 5P, p]} ]

0 otherwise

(3.16)

P-1 nmf P
ke H c y: {(l-b 4B .P-BJ.,-BjP]} ;

qp
=1,....9
([l-al-rAlP-A -A P ) >0
i=l,...,p
0 otherwise

(3.17)

USE OF JACOBS' (B.b) PLOT IN FINDING POWERS
OF FIRST ORDER H-FUNCTION VARIATES

Even first order H-functions (possessing only one gamma

term) can represent a wide variety of distributional forms.

For example, an H-function distribution can have a shape which

is not quite that of either a Weibull density or a gamma
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density. The plot given in Figure 2 of the (B,b) parameter
space for first order H-function distributions by Jacobs [1986,
p. 53; Jacobs et al, 1987, p. 134] shows the ability of first
order H-function variates to model an infinite number of other,
unnamed distributional forms.

b . T Legend
C - Chi-Square
G E - Exponential
1.5 C G - Gamma
G H -~ Half-Normal
G M - Maxwell
1.0 4 M C R - Rayleigh
W G W - Weibull
W G Blank space - an
0.5 4 R c unnamed
W G H-function
W G distribution
0.0 4 H E T I >
0.5 G W 1.5 2.0 B
G W
-0.5 Cc W
G W
G AN
"1.0 L 3

Figure 2. Classical Statistical Distributions as
First Order H-Functions in (B.b) Space

Jacobs [1986, p. 55; Jacobs et al, 1987, p. 144] showed
how the (B,b) plane can be used to determine the H-functicn

IR
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distribution of positive powers of H-function variates. Since
Eq (3.16) in Section 3.7.3 for P>0 does not change the values
of m, n, p, or q, positive powers of first order H-function
distributions are also first order H-function distributions.
Further, Jacobs noted that all positive powers of the H-
function variate X with parameters (b*,B*) lie on the line in
the (B,b) plane parallel to the line representing the Weibull
family of probability density functions and through the point
(B*,b*).

Jacobs [1986, p. 55; Jacobs et al, 1987, p. 144] gave
three examples of the use of the (B,b) plane in finding the
distribution of the power of H-function variates. He made a
slight error when he stated that the square of a half-normal
randam variable has a Chi-Square distribution. Instead, the
square of a standard (i.e. 0=1) half-normal random variable has
a Chi-Square distribution with v=1. He correctly stated that
the square of a Rayleigh randam variable has an exponential
distribution and that any positive power of a Weibull random
variable has another, different Weibull distribution.

* In particular, if X has a Rayleigh distribution with
parameter A, then Y=x2 has an exponential distribution with
parameter A. If X has a Weibull distribution with parameters B
and A, then Y=x* where P>0 has a Weibull distribution with
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parameters —g— and A. I do not believe these relationships
were camonly known.

* There are other new relationships between statistical
distributions available from using the (B,b) plane of first
order H-function distributions. If X has a half-normal

distribution with parameter o, then Y=x2 has a gamma

distribution with parameters r = 1 and A = —-iz- If X has a
2

Maxwell distribution with parameter 6, then Y=x2 has a gamma

distribution with parameters r = —;— and A = —]-'2- If X has a
e

Maxwell distribution with parameter © = /2, then Y=X° has a

Chi-Square distribution with parameter v=3. If X has a

1

Rayleigh distribution with parameter A - then Y=x2 has a

Chi-Square distribution with parameter v=2. 1 do not believe
these relationships are cammonly known, either.

% The (B,b) plane is useful for finding the parameters for
powers of first order H-function variates. 1f P>1, the
parameters for Y=xp can be found by traveling down an imaginary
line toward the lower right of the graph and parallel to the
line representing the Weibull family of densities. If O<K<1,
the parameters for ¥=xp can be found by traveling up an
imaginary line toward the upper left of the graph and parallel
to the line representing the Weibull family of densities. In
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either case, the parameter B for Y is simply the product of P
and the parameter B for X.

3.7.5. DISTRIBUTION OF A StM

Although the products, quotients, and powers of
independent H-function variates have H-function distributions,
this characteristic does not, in general, extend to sums.
Analogs to Carter's results in Sections 3.7.1, 3.7.2, and 3.7.3
do not currently exist for sums of independent H-function
variates.

Because the Laplace transform of the p.d.f. of an H-
function variate is readily obtained as another H-function, it
was hoped the distribution of a general sum of H-function
variates had an H-function distribution. The Laplace transform
of a density which is nonzero only over positive values can be
used like the moment generating function or characteristic
function. The Laplace transform of the p.d.f. of the sum of

" two independent random variables is the product of the Laplace

transforms of the individual densities. If this product were
available as another H-function, it could be inverted
analytically, yielding the desired density expressed as an H-
function. The problem reduced to determining whether the
product of two H-functions was, in general, another H-function.

Because the H-function can exactly represent nearly every
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cammon mathematical function and statistical density, there was
ample reason to suspect that the product of two H-functions
was, in general, another H-function. Indeed, there are many
cases where two individual functions and their product are all
special cases of the H-function. Also, the sum of certain
independent H-function variates does have an H-function
distribution. Examples of this are independent exponentially
or gamma distributed variates with a cammon value of A.

Unfortunately, the product of two H-functions might not,
in general, be another H-function. Recently, Prudnikov et al
[1990, p. 354] gave the following result

o

f: 7 | ox {[ ]} {(o54)

s j=1,...,v

£ o (s} {[»,'a,n]

1"10 Y J’
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)

o
i=1’.-.’n j=l’-oo,
()} - (b5 (B}
i=n+l,...,p 3=1,....m i=l,...,u
{(bj,Bj]} (3.18)
j=mtl,....q

under certain general conditions. Comparing the left side of
Eq (3.18) to BEg (1.7), the Mellin transform of the product of
two H-functions is another H-function. Using a result fram
Erdélyi [1954, p. 308, No. 13], it was possible to verify the
result in Eg (3.18). Still, Eg (3.18) is not entirely
satisfying. The H-function on the right side of BEg (3.18) may
not even be a valid H-function or Mellin-Barnes integral. The
variable is a, the transform variable, which does not appear in
the argument location, but in the parameters of the H-function.
The variable « will appear inside certain products and
quotients of gamma functions in the integrand of the H-
function.

It has not been shown that the Mellin transform of an H-
function is another H-function. However, by Eg (2.68), the
Mellin transform of an H-function is basically products and
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quotients of gamma functions. Considering Bq (3.18), if the
product of the two H-functions inside the integral produced an
H-function, then the Mellin transform integral would yield its
products and quotients of gamma functions. Therefore, the H-
function on the right of Egq (3.18) would have to represent
those products and quotients of gamma functions.

An H-function representation has not been given for a
single gamma function. An H-function representation of
products and quotients of gamma functions seems even less
likely.

Although this discussion is not a rigorous mathematical
proof, it leads to the conjecture that the product of two H-
functions is not, in general, another H-function. Further
research is needed to prove or disprove this conjecture.

Because the product of two H-functions was not available
as another H-function, a pure analytical solution for the
density of the sum of independent H-function variates as
another H-function was not possible. Analogs to Carter's
results for the sum of independent H-function variates do not
currently exist. Therefore, development of a practical
technique to find the H-function distribution for the sum (or a
close approximation to it) was necessary. A description of
this technique is presented in the next chapter.




CHAPTER 4

FINDING AN H-FUNCTION DISTRIBUTION FOR THE SUM

Because the product of two H-functions was not available
as another H-function, it was necessary to develop a method to
find a close approximation for the density of the sum of two or
more independent H-function variates. Ideally, this
approximation would also have an H-function representation.
This would allow the inclusion of the sum of random variables
in more camplicated algebraic cambinations with other
independent random variables.

For example, suppose the density of the random variable Z
is desired, where

3
2 = [YI] (4.1)

¥, ¥,
Yl = x1+x2+x3 (4.2)
y2 = x4+x5 (4.3)
Y3 = }{64»x7+x8+x9 (4.4)

and the xi are mutually independent H-function variates for

126
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i=l,...,9. If the Yi (i=1,2,3) were available as H-function
variates, Carter's results in Sections 3.7.1 through 3.7.3
could be wused. Eq (3.16) for a variate to a power in
Section 3.7.3 could be used to find the H-function distribution

of [Y1)3. Similarly, BEgq (3.12) for a product of H-function
variates in Section 3.7.1 could be used to find the H-function
distribution of Y2 Y3. Finally, Bg (3.14) for a quotient of H-
function variates in Section 3.7.2 could be used to find the H-
function distribution for the density of Z. Even a canplicated
algebraic combination of independent randam variables such as
this becames almost trivial if the Y, are available as H-
function variates.

Cook [1981; Cook and Barnes, 1981] developed a method for
finding the p.d.f. and c.d.f. (in tabular form) of an algebraic
cambination involving products, quotients, powers, and sums of
independent H-function variates. Cook also developed a FORTRAN
camputer program which implements the techmique.

Cook's method first uses Carter's results for products,
quotients, and powers so that a sun of independent H-function
variates remains. The Laplace transform of each term in the
sum is obtained, then evaluated and multiplied at corresponding
values of the transform variable. This yields a tabular

representation for the Laplace transform of the sum. This is
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then numerically inverted fram transform space using Crump's
method, yielding a tabular representation of the p.d.f. for the
algebraic cambination.

Since only a tabular representation of the p.d.f. of the
sum is available with Cook's method, it is not possible to use
Carter's results at the next more general level as in finding
the density of Z in Eq (4.1). Thus, Cook's method will work
for certain algebraic combinations involving products,
quotients, powers, and suns of independent H-function variates,
but not others.

Springer [1979, pp. 250-268] describes an approach due to
Carter [1972] to approximate the p.d.f. for the sum or
difference of independent variates based on the moments of the
sum or difference. Carter [1972] also wrote a FORTRAN computer
program to calculate the moments of an algebraic combination of
independent H-function variates and approximate the p.d.f. and
c.d.f. fram these moments. The approximation procedure was
developed by Hill [1969] and, if possible, uses either a Gram-
Charlier type A series (Hermite polynamial) or a Laguerre
polynomial series. If a series approximation is not possible,
the first four moments are used to fit a probability
distribution from the Pearson family. As Carter [1972] himself

notes "... there were many situations in which the methods did
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not work or in which the approximations were totally
unsatisfactory."

Since, at best, only a series approximation of the p.d.f.
of the sum or difference is available with this method, it is
still not possible to use Carter's results at the next more
general level as in finding the density of Z in Egq (4.1).
Thus, this method will also work for certain algebraic
cambinations involving products, quotients, powers, sums, and
differences of independent H-function variates, but not others.

4.1. MOMENTS OF THE SUM

A practical method to approximate the density of the sum
of independent H-function variates with another H-function
distribution is based on the muments of the sum. The moments
of the sun can be camputed using the moments of the individual
variates. Suppose xl,xz, . ,xn are mutually independent random
variables and

n
Y -igl X, (4.5)

The r'® moment about the origin of Y is

u, = g[ y’] = E[ [x1+x2+---+xn]r] (4.6)
For the case n=2, the moments of Y can be found in terms

of the moments of xl and x2 by using the binamial formula.
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v = o ] = o] (e ]

E R HENS xzi]

N HE A xzi]

ROE CaE O

since mathematical expectation is a linear operator and xl and

x2 are independent. Here, [ : ] is the binomial coefficient

defined as
4.8
[ ) it (r—1)' (4.8)
Eq (4.7) gives the moments of Y in terms of the moments of X

1
and x2 There are r+l terms in the sum in Eq (4.7).

For the case n>2, the moments of Y can be found in terms
- of the moments of x1 to xn by using a generalization of the
binanial formula.

E[ y’] - z[ [x1+xz+...+xn]r]

r! i, i i
E[z AEREEE N T
1" 72 n

Hy
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n i,
: r! 3
= it i1 .. 4 H E xj ] (4.9)
11. 12. ln. J:l

where the sum is over all i ,in such that

prinees
n
Z i.=r (4.10)
519
Here, the multinamial coefficient replaces the binamial
coefficient. Eg (4.9) gives the moments of Y in terms of the
r+n-1
r

moments of xl through xn. There are [ terms in the sum

in Eq (4.9).

4.2. H-FUNCTION PARAMETER ESTIMATES

It is possible to use the moments of an H-function to
estimate its parameters. Bodenschatz and Boedigheimer [1983;
Boedigheimer et al, 1984] developed and verified an effective
and reliable method to estimate the H-function parameters using
the method of moments. The technique can be used to curve-fit
a mathematical function or to estimate the density of a
particular probability distribution. Their FORTRAN carputer

program will accept known moments, univariate data, ordered
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pair data fram a relative frequency, or ordered pair data
directly fram the function. Output from the program are the
parameters of the H~function whose moments most closely match
the given maments.

This technique to estimate the parameters of the H-
function from the exact moments of an unknown distribution was
also generally described by Jacobs et al [1987]. A more
carplete derivation is given below, which also shows how,
through algebraic manipulation, it is possible to reduce the

nunber of equations by two.

4.2.1. METHOD OF MOMENTS

The method of maments equates an appropriate number of
analytic moments of the H-function with corresponding known
moments or maments calculated fram data. The method uses
2(ptq)+2 maments because there are this many parameters in an
H-function distribution. This produces a system of nonlinear
equations in the parameters of the H~-function.

Eq (4.9) gives the exact moments of a sum of independent
variates in terms of the moments of the individual variates.
If each randam variable in the sum follows an H-function
distribution, the exact moments of the individual variates are
available by Eg (3.5). Using these moments in Eq (4.9) yields
the exact moments of the sun of independent H-function
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variates.

There are 2(pt+q)+2 unknown parameters of the H-function
distribution, specifically -(ai,Ai , i=1,...,p, ‘ij’Bj)’
j=1,....q, k, and c¢. It is necessary, therefore, to create
2(ptq)+2 equations. If consecutive moments of the sum are used

starting with the zeroth moment, the equations are
po=gf ¥]=—K_ 1(e+41) (4.11)
r cr+I :
for r=0,1,...,2(ptq)+1l where

m n
n I‘[b +B_+B r] I I‘[l-a -A;-B, r]

3=1 s R s i=1
I(r+l) = 5
n I‘[a.+A.+A.r] [l-b .-B —B r]
i=n+l J=mtl

(4.12)
It is obvious the equations are nonlinear since they involve
gamma functions. Given the exact maments of the sum, Her the
system of nonlinear equations as in Eg (4.11) needs to be

solved for the H-function parameters.

4,2.2, REDUCING THE SYSTEM OF NONLINEAR EQUATION
It is possible to eliminate the parameters k and ¢ from
the system of equations through algebraic manipulation. This

procedure reduces by two the number of simultaneous nonlinear
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equations which need to be solved to give the H-function
parameter estimates. Each equation of Eq (4.11) can be solved
for k, producing

u cr+1

k= —FL (4.13)
I(r+l)

for r=0,...,2(ptq)+l, where I(r+l) is given by Eq (4.12).

Since all the equations equal k,

- oS 1y c? _ N )
1(1) 1(2) I(3)
2(ptq)+2
. taprytr © (4.14)
I1(2(p+q)+2)

where I(r+l) is given by Eq (4.12). The adjacent equations in
Eq (4.14) can be solved for c¢ to give
H, I(r+2)

c= (4.15)
"r+1 I(r+l)

for r=0,...,2(ptq), where I(r+l) is given by Eq (4.12). Since

all the equations equal c,




135

o 12) by 1(3)
c = - = eeen
Hy 1(1) Hq 1(2)

Poptq) I(2(PH)*D)
Bo(prqys1 T(2(PHIH)

(4.16)

where I(r+l) is given by Eg (4.12). The adjacent equations in
Eq (4.16) can be solved to give the following hamogeneous

equations:

TR

5 -1=0 (4.17)
(43, " 1(i#1) 1(i#3)

for i=0,...,2(p+q)-1, where I(xr+l) is given by Eq (4.12). This
reduced system of equations involves only the H-function
parameters -(ai,Ai), i=1l,...,p, and -('bj,B:.p, j=1,....q9.

Once the nonlinear system of equations in BEq (4.17) is
solved, ¢ and k can be found by backsubstitution. Using
Eq (4.16),

Ho 1(2)
c= — (4.18)
¥ 1(1)
where I(r+l) is given by Eq (4.12). Using this estimate of c

in Eq (4.14) produces




136

Hg ©
ks ——— (4.19)
I1(1)

where I(r+l) is given by Eq (4.12).
Note that although this algebraic manipulation has reduced
the number of equations from 2(p+q)+2 to 2(ptq), all 2(p+q)+2

moments of the sum are still necessary.

4.2.3., SOLVING THE SYSTEM OF NONLINEAR BOUATIONS

Even after reducing the system of nonlinear equations by
two, there will always be at least two simultaneous equations
involving gamma functions. To complicate matters further, the
unknowns (the H-function parameters) appear in the argument of
every gamma function. A general analytic solution seems
unlikely, if not impossible.

Bodenschatz and Boedigheimer [1983] conducted a literature
review of various numerical methods applicable to the problem.
Most methods are based on Newton's method, which uses the
Jacobian matrix of first partial derivatives to move toward the
solution.

Powell developed a quasi-Newton hybrid algorithm which
includes the beneficial features of the Levenberg-Marquardt
method and implements the calculation-saving strategy of

Broyden's procedure. Powell's method was available in an
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International Mathematical and Statistical Library (IMSL)
routine named ZSPOW. In comwparison to available software
designed to solve systems of nonlinear equations, 2ZSPOW had
outstanding performance and initial estimates of the parameters
had little effect on the algorithm's super linear convergence
[Hiebert, 1980].

Bodenschatz and Boedigheimer [1983] used ZSPOW to solve
many systems of nonlinear equations as in Eq (4.17) with great
success. In their FORTRAN camputer program, they allow the
user to make initial estimates of the H-function parameters and
also provide default guesses which nearly always led to
convergence to the correct parameters.

When trying to fit a third- or higher-order H-function,
however, the numerical solution of the system of nonlinear
equations with ZSPOW is soanetimes numerically unstable.
Several other numerical methods were tried, but none worked as
well as 2SPON in sclving the type of nonlinear equations
generated using the method of moments with the H-function. An
area of further research is to develop a better way to solve
the system of nonlinear equations.

Jacobs et al [1987] discussed using equations as in
Eq (4.11) to estimate the parameters of an H-function if the

exact moments, Hyr of the unknown distribution were available.
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They also gave analytic solutions to these equations for
certain first order H-function distributions with B=1 or
B= —21— However, restrictions such as these may not give an H-

function with as good a fit to the moments as an unrestricted

solution to the equations might allow.

* 4,3. SPECIAL CONSIDERATIONS FOR TYPE VI H-FUNCTION VARIATES

Sums of certain H-function distributions have special

properties which allow an analytic solution to the system of

n
nonlinear equations. For example, if Y = 2 xi where the xi
i=l

are mutually independent random variables which have beta

distributions over (0,1), then the p.d.f. of Y will be nonzero

n
only over (0,n). Similarly, if Y = E xi where the xi are
i=1
mutually independent random variables which have Pareto

distributions over (1l,»), then the p.d.f. of Y will be nonzero
only over (n,»). A new way to take advantage of these ranges
was discovered which eliminates the need for a numerical
solution to the system of nonlinear equatians.

Certain simplifications occur if each H-function
distribution in the sum is a Type VI convergent H-function
according to Table 1 in Section 2.3. Because the sums
described above will also have restricted ranges, they must

also be Type VI convergent H-functions. Sections 2.6 and 3.6
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gave the new H-function representations of these types of
functions over more general ranges.

Hi 2 Type VI convergent H-functions have a "B'" gamma term
in the numerator and an "A" gamma term in the denaminator of
the definition of the H-function, with A=B. Many Hy | Type VI
convergent H-functions have A=B=1. Scaling over a range
different fram (0,1) is achieved through the H-function
parameter ¢. If the range of the sum, Y, is only over (0,n),
then in the H-function representation of the p.d.f. of Y,
c= —. Exploiting the unique nature of Hi (l) Type VI
convergent H-functions has reduced the number of parameters to
estimate fram six to three. The three nonlinear equations in

the unknown parameters k, b, and a are

.k TI(b4)

Yo © ¢ T (4.20)
.k I(b+2)

! 2 T(at2) (4.21)
_ k_ T(b+3)

Ho c3 T(a3) (4.22)

where c= -—i—, the range of the sum is over (0,n), and Ho
through H, are the exact moments of the sum fram Eg 4.9. These
three nonlinear equations allow an analytic solution. The

solution is
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* a = Ho K1 _ Ho H2 -
)
¢ [“o“z - [”1]2] HoHo ~ [“1)
(4.23)

u
* bzec—1 (atl) -1 (4.24)

Ho

- T'(a+l)

* Ho © Teoany (4.25)

where ¢ and Ho through H, are as given above. A possible H-
function representation for the density of the sum of Hi ?_ Type

V1 convergent H-functions is
x f(y) =k Hi g[ % y : (a,i) ; (b,1) ] (4.26)

where the range of the sum is over (0,n) and a, b, and k are
given by Eq (4.23), Eq (4.24), and Eq (4.25), respectively.

A similar approach applies to sums of Hg :ll Type VI
convergent H-functions which have an "A" gamma term in the
nunerator and a "B" gamma term in the denaminator of the
definition of the H-function, with A=B. Again, let A=B=l.
Scaling over a range different fram (l,») is achieved through
the H-function parameter c. If the range of the sum, Y, is
over (n,»), then in the H-function representation of the p.d.f.

1

of ¥, c= - Exploiting the unique nature of Hg ]1‘ Type VI

convergent H-functions, the three nonlinear equations in the
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unknown parameters k, b, and a are

k T(-a)

= - T 4.27
Ho = —& TES) ( )

k r(-a-1)
Hy = (4.28)

1 2 r(-b1)

k r(-a-2)
Un = (4.29)

2 3 T(-b-2)
where c= —I];—, the range of the sum is over (n,»), and Ho

through H, are the exact maments of the sum from Eq 4.9. These
three nonlinear equations again allow an analytic solution.
The solution for the unknown parameters a, b, and k is
identical to the ones given by Eq (4.23), Eq (4.24), and
Eg (4.25), respectively. A possible H-function representation

01

for the density of the sum of I-I1 1 Type V1 convergent H-

functions is
« #p =kl {4 v:@D:eD] (4.30)

where the range of the sum is over (n,») and a, b, and k are

given by Eq (4.23), Eq (4.24), and Eq (4.25), respectively.

* 4.4, DEMONSTRATION OF THE TECHNIQUE

A FORTRAN computer program was developed to implement the
new technique of finding an H-function distribution which

approximates the distribution of the sun of two or more
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independent H-function variates. The camputer program was
designed to run interactively, asking questions of the user and
expecting a response.

Input to the program can be done interactively or through
an input file. A user will input the number of terms
(independent random variables) in the sum and the type of each
variate. As currently configured, the program will accept up
to five terms in the sun. The type of each variate may be ane
of the named special cases or a general H-function
distribution. If the type is a special case, the program will
convert the parameters of the special case into the correct H-
function parameters for the H-function representation.
Altermnatively, a user may input the H-function parameters
directly.

The program will then compute, using Eq (3.5), the correct
moments of each H-function variate in the sum. The program
will verify a zeroth moment of unmity and query the user if the
H-function parameters do not give a valid density. 1If desired,
the program will recampute the constant k to produce a valid H-
function distribution. The moments of each term in the sum are
used as in Eq (4.9) to campute the exact moments of the sum.

I1If the sun involves only Hi g Type V1 H-function

distributions or Ho 1

11 Type VI H-function distributions, the
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analytic solutions for the H-function parameters derived in
Section 4.3 are used. Otherwise, an adapted version of the
program of Bodenschatz and Boedigheimer [1983] is called to
create and solve, using 2ZSPOW, the system of nonlinear
equations as in Eq (4.17). This produces parameters of the H-
function distribution whose moments will closely match the
exact moments of the sum.

If there are only two terms in the sum, an attempt can be
made to fit an H-function distribution with up to five gamma
terms (fifth-order). 1If there are more than two terms in the
sum, the program currently camputes only the zeroth through the
fifth moments about the origin of the sun. This limits the
choice of an H-function distribution for the sum to a first- or
secaond-order H-function.

This is not a serious restriction for two reasons. First-
and second-order H-function distributions can represent a wide
variety of distributional forms, including nearly every named
special case. Secondly, numerical and carputational
limitations exist in finding the moments of the sum and solving
large systems of nonlinear equations with ZSPOW. Until these
limitations are addressed, an attempt to fit a third- or
higher-order H-function would probably not be successful.

The moments of the new H-function distribution are
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camputed for comparison to the exact maments of the sum. The
program will then, if desired, create an input file for another
camputer program [Cook, 1981; Cook and Barnes, 1981] which will
evaluate and plot the resulting p.d.f. and c.d.f.

An output file is always created, giving the H-function
parameters and moments of each term in the sum, the exact
maments of the sum, the estimated H-function parameters, and
the moments of this new H-function distribution.

The FORTRAN source code of the computer program described
above is not provided in an appendix. Instead, it is available
fran Dr. J. Wesley Barnes in the Department of Mechanical
Engineering at the University of Texas at Austin. If
requested, Dr. Barnes will transfer the program by electronic
mail or by floppy disk.

The new FORTRAN camputer program which implements the
technique currently operates on the instructional VAX cluster
at the University of Texas at Austin. This cluster links two
VAX 6420 computers and several VAX 11/780 camputers and uses
the VMS operating system. The VAX FORTRAN campiler was used
and the program linked to IMSL for the call to ZSPOW. The
program should successfully run on other camputers which
support ZSPOW in IMSL and which have ANSI FORTRAN capabilities.

The new technique and computer program are demonstrated in
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the following examples. In all but the final example, it is
possible to find the exact distribution of these sums of
variates by other methods. Thus, we can measure the
effectiveness of the new technique by comparing the resulting
H-function distribution to the exact distribution. Of course,
the new technique also works with sums for which the solution
by other methods is very difficult (or impossible for all

practical purposes).

4.4.1. EXAMPLE 1 - SUM OF THREE INDEPENDENT, IDENTICALLY

DISTRIBUTED GAMMA VARIATES

Suppose we want to use this technique to find the H-
function distribution of the sum of three independent,
identically distributed gamma variates with parameters r=2 and
A=2. Using the carmputer program, we input 3" as the number of
terms in the sum, "gamma' as the type of each variate, and the
parameters "2" for r and "2" for A.

The moments of each variate in the sum are camputed and

cambined to give the exact moments of the sum. These are

Hg = 1.0000000 My = 3.0000000
Hy = 10.5000000 Hy = 42.0000000
By = 189.0000000 Hg = 945.0000000

The program asks whether we want to fit an H-function

distribution to the maments of the sum and, if so, the order of
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H-function to fit. Since all three variates in the sum are
first order H-functions, we try to fit another first order H-
function. We enter "1 0 0 1" for m, n, p, and g, respectively.
The program uses the zeroth through third moments of the sum to
create and solve the system of nonlinear equations, producing

the H-function parameter estimates

b = 4,99999988853
B = 0.99999999256
k = 0.01666666667
¢ = 2.00000000000

Allowing for roundoff error, we recognize these as the
parameters of the H-function representation of the gamma
distribution with r=6 and a=2. The procedure found the
“correct" distribution since the gamma distribution with a
common A has the reproductive property. The program
autamatically uses these H-function parameters to campute the

moments of the new H-function distribution.

Mg = 1.0000000 Hy = 3.0000000
Hy = 10.5000000 Hy = 42.0000000
Hy = 189.0000000 Hg = 945.0000000

The program then asks whether we want to create an input
file for another computer program [Cook, 1981; Cook and Barmes,

1981] which will evaluate and plot the resulting p.d.f. and
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c.d.f. 1If so, it asks the range and interval of the variable
where we want these functions evaluated. We try the range 0.1
to 7.0 with an interval of 0.1. The camplete output file is

provided in Appendix A.

4.4.2. EXAMPLE 2 - SUM OF TWO INDEPENDENT ERLANG VARIATES

WITH DIFFERENT A

Suppose we want to find an H-function distribution for

Y = xl+x2 where X1

parameters r=2 and A=4 and X

has an Erlang (gamma) distribution with
, has an Erlang (gamma)
distribution with parameters r=1 and A=2. Note that X2 also
has an exponential distribution with A=2. Using the computer
program, we input "2" as the number of terms in the sum,
"gamma' as the type of each variate, the parameters r="2" and

A="4" for X,, and the parameters r="1" and A="2" for X of

1 2°
course, we could have input x2 as type "exponential" with a="2"
or input both randam variables as general (unnamed) H-function
variates by giving their H-function parameter representations.

The moments of each variate in the sum are computed and

cambined to give the exact moments of the sun. These are

Hg = 1.0000000 Hy = 1.0000000
Hy = 1.3750000 Hq = 2.4375000
Hy = 5.3437500 Hg = 14.0625000
He = 43.4179688 Hq = 154.4238281
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Since both variates in the sum are first order H-

functions, we try to fit another first order H-function to the

moments of the sum. We enter "1 0 0 1" for m, n, p, and q,

respectively. The program uses the zeroth through third

moments of the sum to create and solve the system of nonlinear

equations, producing the H-function parameter estimates

b

B

k

C

The

3.02485587519
1.26389176312
0.74895896608
6.53330240202

program automatically uses these H-function parameters

to compute the moments of the new H-function distribution.

We

1.0000000 Hy = 1.0000000
1.3750000 By = 2.4275000
5.3382458 Hg = 14.0112602
43.0835662 Hq = 152.4885870

choose to evaluate and plot the resulting p.d.f. and

c.d.f. over the range 0.05 to 5.50 with an interval of 0.05.

The camplete output file is provided in Appendix A.

4.4.3. EXAMPLE 3 - SUM OF TWO INDEPENDENT STANDARD

UNIFORM VARIATES

Suppose we want to find an H-function distribution for

Y = X.+X. where X, and X. each have a uniform distribution

1

2 1 2
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over (0,1). Using the computer program, we input "2" as the
number of terms in the sum and "uniform over (0,1)" as the type
of each variate.

The moments of each variate in the sum are camputed and

cambined to give the exact moments of the sun. These are

Ho = 1.0000000 My = 1.0000000

Hy = 1.1666667 My = 1.5000000

Hy = 2.0666667 Mg = 3.0000000

Hg = 4.5357143 My = 7.0833333

Hg = 11.3555556 Hg = 18.6000000

Hyg = 31.0151515

Since both variates in the sum are Type VI convergent Hi g

H-functions over (0,1), the program uses the zeroth through
second maments of the sum to campute the analytic solution for

the H-function parameters. We get the H-function parameter

estimates
b = 1.50000000000
B = 1.00000000000
a = 4.00000000000
A = 1.00000000000
k = 9.02703333685

0.50000000000

Q
"

The program automatically uses these H-function parameters
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to campute the moments of the new H-function distribution.

Mo =  1.0000000 My = 1.0000000
, = 1.1666667 iy = 1.5000000
g = 2.0625000 g = 2.9791667
g =  4.4687500 My = 6.9062500
Hg = 10.9348958 ug = 17.6640625
Hyp = 29-0195312

We choose to evaluate and plot the resulting p.d.f. and
c.d.f. over the range 0.05 to 2.00 with an interval of 0.05.

The complete output file is provided in Appendix A.

4.4.4. EXAMPLE 4 - SUM OF TWO INDEPENDENT, IDENTICALLY

DISTRIBUTED BETA VARIATES
Suppose we want to find an H-function distribution for

Y = x1+x2

distributions over (0,1) with parameters a=1l and B=2. Using

where X:L and X2 are independent variates with beta

the computer program, we input *"2" as the number of terms in
the sum, "beta over (0,1)" as the type of each variate, "1" for
«, and "2" for B.

The moments of each variate in the sum are computed and

combined to give the exact moments of the sum. These are

Ho = 1.0000000 My = 0.6666667
Hy = 0.5555556 Hy = 0.5333333
Hyq = 0.5666667 Hg = 0.6507937




pg = 0.7952381 po = 1.0222222
Hg = 1.3703704 Hg = 1.9030303
Hyp = 2-7229437

Since both variates in the sum are Type VI convergent
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H10

11

H-functions over (0,1), the program uses the zeroth through

second maments of the sum to campute the analytic solution for

the H-function parameters. We get the H-function parameter

estimates
b= 1.33333333333

B 1.00000000000

a = 6.00000000000

A = 1.00000000000

»
1]

302.35856086513

c 0.50000000000

The program autamatically uses these H-function parameters

to compute the moments of the new H-function distribution.

Mo = 1.0000000 py = 0.6666667
M, = 0.5555556 My = 0.5349794
g = 0.5706447 pg = 0.6571060
Mg = 0.8031296 po = 1.0296533
g = 1.3728711 Hg = 1.8915113
Hip = 2-6796410

We choose to evaluate and plot the resulting p.d.f

. and
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c.d.f. over the range 0.05 to 2.00 with an interval of 0.05.

The camplete output file is provided in Appendix A.

4.4.5. EXAMPLE 5 - SUM OF TWO INDEPENDENT VARIATES WITH

WEIBULL AND RAYLEIGH DISTRIBUTIONS

A final example demonstrates the technique and camputer
program when the exact distribution of the sun is very
difficult or impossible to obtain.

Suppose we want to find an H-function distribution for
Y = X,+X. where xl has a Weibull distribution with parameters

172

B=5 and A=4 and X, has a Rayleigh distribution with parameter

2
A=3. Using the camputer program, we input '"2" as the number of
terms in the sum, "Weibull" as the type of variate X1 with
parameters B="5" and A="4", and "Rayleigh" as the type of

variate X, with parameter A="3". Of course, we could have

2
input both random variables as general H-function variates by
giving their H-function parameter representations.

The moments of each variate in the sum are camputed and

cambined to give the exact maments of the sun. These are

Hg = 1.0000000 py = 1.2075051
Hy = 1.5550061 Wy = 2.1228284
Wy = 3.0567312 Hg = 4.6225066
g =  7.3134235 Hy = 12.0647384
Hg = 20.6900000 Hg = 36.7858797
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Hyo = 67.6453356

Since both variates in the sum are first order H-
functions, we try to fit another first order H-function to the
moments of the sun. We enter "1 0 0 1" for m, n, p, and q,
respectively. The program uses the zeroth through third

maments of the sum to create and solve the system of nonlinear

equations, producing the H-function parameter estimates

b = 5.29104742893
B = 0.62358286635
k = 0.02369785777
c = 2.45993399245

The program automatically uses these H-function parameters

to compute the moments of the new H-function distribution.

Hg =  1.0000000 uy = 1.2075051
Hy = 1.5550061 y = 2.1228284
Hy = 3.0568212 Hg = 4.6235079
g =  7.3191453 u, = 12.0889706
g = 20.7770136 Hg = 37.0686930
Hyo = 685084603

We choose to evaluate and plot the resulting p.d.f. and
c.d.f. over the range 0.05 to 2.40 with an interval of 0.0S5.

The camplete output file is provided in Appendix A.




CHAPTER 5
COMPARING THE ESTIMATED H-FUNCTION TO THE

EXACT DISTRIBUTION OF THE SUM

It is natural to want to measure the effectiveness of the
newly developed technique which finds an H-function
distribution whose moments closely approximate the exact
maments of the sum of independent H-function variates.
Ideally, the approximate H-function distribution should be
compared to the exact distribution for the sum. Unfortunately,
the exact distribution of the sum is often difficult to obtain.
Because of this, analysts usually resort to computer simulation
to analyze the resulting distribution. Even this approach
yields only information about the resulting distribution, not
the exact density itself.

Four examples included in this thesis were chosen as
representative of suns of independent H-function variates where
the <xact distribution of the sum can be obtained. A FORTRAN
camprter program was written to compare the approximate H-
function distribution to the exact distribution for the sum,

using several different measures of merit. The newly developed
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technique was also effective in finding an H-function
distribution whose maments closely approximate the exact
maments of the sum even when the exact distribution is very

difficult or impossible to obtain.

5.1. FINDING THE EXACT DISTRIBUTION OF THE SUM

As mentioned above, it is often difficult to obtain the
exact distribution for the sum of independent random variables.
While the moment generating function, Laplace transform, or
characteristic function (Fourier transform) of specific
densities are sometimes available from tables, the product of
these transform functions will often produce a functional form
that is not easily inverted.

Suppose xl,xz,...,xn are mutually independent random
variables with respective densities fl(xl) , fz(xz) y ey

fn(xn) , each nonzero only for positive values of the variable.

n
Suppose we want the density of Y = z Xi. If the Laplace
i=l

transforms of the densities are zs{fl(xl)}, Zs{fz(xz)}, -

zs{fn (xn)}, respectively, then the density of Y is available as

the inversion integral
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w+io

_ 1
%(Y)-m J

n
S ’fs{ £, () }] ds  (5.1)
w-iw i=1
The contour integral of a complex variable in Eg (5.1) is
usually difficult to evaluate. The approach is similar (and as
difficult) if the mament generating function or characteristic
function (Fourier transform) is used instead of the Laplace
transform.
In certain situations, there are easier ways to find the

exact distribution of the sum of independent random variables.

These are discussed in the following sections.

5.1.1. CONVOLUTION INTEGRAL

If the product of two transform functions can not be
recognized as the transform of a specific function, the
inversion may be done with the convolution integral. 1If X1 and
X2 are independent random variables with respective densities
fl(xl) and f2(x2) , each nonzero only for positive values of the

variable, then the density of Y=X1+X2 is

y
o fl(y—w) fz(w) dw (5.2)

f(n) = |
The convolution integral in Eq (5.2) is often easier to
evaluate than Eg (5.1).

The convolution integral was used to find the exact
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distribution of the sum of selected random variables with
uniform, power function, or beta distributions. Only 2 of the
15 exact distributions given below for the sun of two
independent variates are used as examples in this thesis. The
others are only included for the reader's benefit, perhaps by
saving the reader the work of deriving them. Consider the

mutually indeperdent randam variables xl,xz,...,xlo with

densities
.
1 0 < X, <1
£, (%)) = { (5.3)
1Y 0 otherwise
.
2 x2 0 < x2 <1
fz(xz) = { ' (5.4)
0 otherwise
\
r
2 - 2x3 0 < x3 <1
£.(xy) = (5.5)
3 3) 0 otherwise
.
r 2
( 3(x4J 0 < x4 <1
£f.(x,) = ¢ (5.6)
4 4) L0 otherwise
r 2
3(1—x5) 0« x5 <1
£ (%) = { (5.7)
5 Q 0 otherwise
.
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1l 0 < x6 <1
fo(xg) = 1 (5.8)
6 6) 0 otherwise
\
r
2 x7 0« x7 <1
£.(x) = { (5.9)
77 0] otherwise
\
[ 2 - 2x8 0 < x8 <1
£ (x = ¢ (5.10)
8 8) 0 otherwise
\
r 2
3(x9) 0 < xg<1
£,(xg) = (5.11)
9 9) 0 otherwise
\
3(1-xy0) 0<xg<l
£.4(% = (5.12)
10 10) 0 otherwise
1f Y=X1+X6, then the exact p.d.f. of Y is
Y 0<yx<1l
f(y) = {4 2-y lsy«<?2 (5.13)
0 otherwise




If ¥=X.+X
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f(y) =

If Y=X.+X

1737

f(y) =

If Y=X2+X7, then the exact

If ¥=X_+X

378’

then the exact

then the exact

2
2y-y

(y-2)°

0

then the exact

-
=% -2

p.d.f.

p.d.£f.

p.d.f.

+ 4y

of Y

of Y

.of Y

of Y

is
0<Kysl

lsy<?2

otherwise

is
0<yx<1l1

l1sy«<?2

otherwise

is
0<y=<l

lg<y«<?2

otherwise

is
0<ysl

lgy<2

otherwise
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(5.14)

(5.15)

(5.16)

(5.17)




If Y=X.+X

2 73
- 2
vt
f(y) = —%— y3 - 2y2 + —g—
0
If Y=x1+x4, then the exact p.d.f.
y3
_ 3
£(y) =4 1 - (y-1)
0
If Y=xl+X5, then the exact p.d.f.
1+ (y-1)°
_ 3
£(y) =4 -(y-2)
0

If Y=X2+X4, then the exact p.d.f.

then the exact p.d.f.

of Y is

0<yx<1l
lgsy«<?2

otherwise

of Y is

0<y=<1l
l1sy<?2

otherwise

of Y is

0<yx<l
lsy«<?2

otherwise

of Y is

O0<ysxl
l<y«<?2

otherwise
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(5.18)

(5.19)

(5.20)

(5.21)

e e e erned




1f Y=X2+X5, then the exact p.d.f. of Y is

1 3 2
TY4 - 2y" + 3y

-1 4 3

O0<yx<l

f(y) = —-Y +2y" -8y + 8 lsy«<?2

0 otherwise

If Y=X_+X , then the exact p.d.f. of Y is

3 74
- 3
v
f(y) = —%— y4 - 2y3 + 3y2 - 4y + 4
0
1f Y=X3+x5, then the exact p.d.f. of Y is
R S
4
£(y) = { o (y-2)
0
If Y=X4+X9, then the exact p.d.f. of Y is
3 5
_ -3 .5 2 _ 18
Ey) = g v + 6y -9y +

0

O0<yx<1l1
lsy«<?2

otherwise

0<y<1
lgsy«<?2

otherwise

O0<yx<1l
lgy«<?2

otherwise

l6l

(5.22)

(5.23)

(5.24)

(5.25)
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If Y=X_+X then the exact p.d.f. of Y is

5 710’

—10—3 y5-3y4+12y3‘l8y2+9y 0<yx<1l

- 5
f(y) = —Ig—(Y‘a?) lgy<?2
0 otherwise
(5.26)

If Y=X4+x5, then the exact p.d.f. of Y is

3y5__§_y4+3y3 0<ys<1
f(y) = —ig—y5+—g—y4-3y3+6yz -12y+—§i-lsy< 2
0 otherwise
(5.27)

These exact distributions could be compared to the
corresponding approximate H-function distributions. The exact
distribution in Eq (5.13) is compared to the approximate H-
function distribution in Section 5.3.3 below. The exact
distribution in Eq (5.17) is campared to the approximate H-
function distribution in Section 5.3.4 below.

Appendix B contains graphical depictions of the 15 exact
distributions in Eq (5.13) through (5.27) above. The graph of
the p.d.f. of each randaom variable in the sum is followed by
the graph of the p.d.f. of the sun. Each series of three

graphs is referenced to the corresponding equation number.
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5.1.2. REPRODUCTIVE DISTRIBUTIONS

As discussed in Section 1.4.1.3, certain distributions
have the reproductive property, which considerably simplifies
finding the exact distribution of the sum of independent random
variables with distributions of these forms. The gamma
distribution is an H-function distribution with the
reproductive property, bprovided A is comon among all

distributions in the sum.
n
Suppose we want the density of Y =} X, where
izl

xl’x2" . .,Xn are mutually independent gamma distributed randam
variables with respective parameters -(rl,x) , -(rz,l) y ey
-(rn,l) , and A is comon to all the distributions. It is well

known that Y also has a gamma distribution with parameters
n

r =Y r, and A. Since the exponential distribution is a
i=1

special case of the gamma distribution with r=1l, the sum of n
independent, identically distributed exponential randam
variables has a gamma distribution with parameters r=n and \.
This result is also widely known.

The reproductive property of the gamma distribution was
used to find the exact distribution of the sum of three

independent, identically distributed gamma variates. This




164

exact distribution is compared to the approximate H-function

distribution in Section 5.3.1 below.

* 5.1.3. ERLANG DISTRIBUTIONS WITH DIFFERENT A

Another new finding permits finding the exact distribution
of the sum of independent Erlang distributed random variables,
even when A is different. B&An Erlang distribution is simply a
gamma distribution with an integer shape parameter r.

Suppose we want the density of ¥=X.+X

1 72 2
independent Erlang distributed random variables with respective

where xl and X, are

parameters (rl,xl) and -(rz,xz), with A.#A,. The Laplace

1*42
transform of the density of Y is the product of the Laplace

transforms of the Erlang densities.

r r
=] =)
s+x1 s+12

mle) (Bt )T e

{50

We proceed by decomposing the final two terms by partial
fractions. The approach presented below is essentially the
same as that described by Kleinrock [1975] and is routinely
given in texts covering Laplace transforms including Churchill
[1972], Widder [1941], Thompson [1960], Smith [1966], Doetsch

[1971], Davies [1978], or LePage [1961]. Since ry and r, are
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positive integers in the Erlang distribution, we have ll and 12

as (possibly repeated) linear factors of the denaminator.

(5.29)

To solve for the constants Aj, we first rewrite Eq (5.29)

as
r ‘1 r,-i
1l 2 _ 1l
) = ) A )
2 - 1
1i=1
> B .
r, r,-i
+ (s Z {5.30)
+A )1
1=1 (S 2
We can immediately solve for AO by setting s=-x1 in Eq (5.30).
Hence,
_ 1
AO - - (5.31)

2
(xz 11)
Then by taking successive derivatives of Eq (5.30) with respect

to s and evaluating both sides at s=-ll, we have

1 d(J) 1 b2
ST RS
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-1)° (z) (£*)) - - - (x,*3-)
. r.+j
J! _ 2
(=)
. . 1
(1) [r2;J 1] - (5.33)
(™)

for j=1,...,r.~-1. Note that in solving for each of the Ai’ all

1
terms on the right side of Eq (5.30) vanish except for ome.
We can take similar steps to solve for the Bj' We get

1

BO = e (5.34)
_1 l
(172)
1 d(J) 1 1A
gt e 6) [[sﬂl] ] (5.39)
J* ds s=-A
2
) (_1)3 (ry) (£q#)) - - (5 +5°D)
- . r.+)
J! l
(172)
3 - 1
= (-1) [‘1;3 1] - (5.36)

SR

for j=1,...,r2-l.
Hence, we can write the Laplace transform of the p.d.f. of

Y as
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51 201 Yo 1 %2
{0} = 00t 09 () ! (o) (5.37)
[Ty A . I B .
rl r2 rl'l r2—1
= () () Z — ¢ Z I
1=1 (S.H‘l) 1=1 (S+x2)
(5.38)
rl-l (‘l)J r2+j_1
-0 a2 3
00707 | ) i
7o () (=)
) [rf;j-lJ
' X % ry73
3=0 (ll-le (sﬂz]
(5.39)

We now use the linearity property of the inverse Laplace

transform to invert this transform term by term. We obtain the

p.d.f. of Y, fy(y)
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r r 1
ORISR SRS &

(5.40)
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y >0
(5.41)
The result is simply a sum of exponential and ganma-type terms.

There are r. +r

1¥55 terms in the sum defining the p.d.f. of

Y=X1+X2.
The practical method described above can be extended to
find the exact distribution of the sum of an arbitrary number

of independent Erlang randam variables. Suppose we want the

n
distribution of Y= Z xi where xl,. .. ,xn are independent Erlang
i=l

distributed random variables with parameters r, and li’
i=1l,...,n. Also assume xi;e).j for iyj. I1f any scale
parameters, A, were common among the random variables in the
sun, they could be immediately cambined into another Erlang
randaom variable using the reproductive property.

We again decoampose the product of Laplace transforms of
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the individual p.d.f.'s by partial fractions.

n Ok [——;—) (5.42)

z {50}

l .

n r. -
2) t E E S

1[!1( 1) 1=1 (S'ﬂ. 1=1 (S+X2)l

n An,r -i
-+ Z ——n—l— (5.43)
= (sﬂn)
n [ r,
r, ﬁ:,rk i ( )
= A 5.44
NG g 2;1 (sﬂk)l
n [ . -1
n ri k Bk,x:k-m—l
= A
1'11( 1) 2 Zo (s-l»)‘k)m+1
(5.45)
The constants Ak 5 can be found as
(3)
_ 1 d D1 YA
by A~ e 1)
J: ds s=-Ay
(5.46)
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for j=0,1,... ,rk-l and k=1,2,...,n.
We again use the linearity property of the inverse Laplace

transform to invert this transform term by term. We obtain the
n
p.d.f. of Yziz-:lxi' fY(y) .

n rk—l _

n r, ym 1ky

* f'y(y) = 1 '(7‘1) Z Br,-m1 W ©
i=1 — k

y >0

(5.47)

where Ak,j are as given in Egq (5.46) for j=0,l,...,rk—1 and
k=1,2,...,n.

Eq (5.47) gives the exact p.d.f. for the sum of an

arbitrary number of independent Erlang random variables with

n
different scale parameters A - Note that there are ¥
k=1

in the sun and each term has either an exponential or gamma-

rk tems

type form.

This new result was used to find the exact distribution of
the sun of two independent Erlang variates. This exact
distribution is campared to the approximate H-function

distribution in Section 5.3.2 below.
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5.2. MEASURES OF MERIT

There is no universally accepted measure to determine how
“close" an approximation is to the exact distribution. It is
likely that any standard statistical test for goodness of fit
(e.g. Chi-Square or Kolamogorov-Smirnov) would fail to reject
the null  hypothesis that the approximate H-function
distribution and the exact distribution were equal. However,
this is because these tests are not very powerful or
discriminatory, not necessarily because the distributions are
nearly identical.

One way to compare the approximate H-function distribution
to the exact distribution involves comparing the corresponding
moments. Assuming ZSPOW successfully "solved" the system of
nonlinear equations, there should at least be a perfect match
of the moments used. For sums of variates where an analytic
solution for the H-function parameters was possible, at least
three moments should match perfectly. Higher order maments of
the approximate H-function distribution may be in error to same
degree.

Although there is no standard measure of the "closeness"
of two distributions, there are several measures that are
camonly used. These are described below and camputed for the

examples listed. The measures were included in a FORTRAN
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carputer program which compares the approximate H-function
distribution to the exact distribution of the sum.

These measures, when considered collectively, give same
idea of how well the approximate H-function distribution
matches the exact distribution of the sum of independent H-
function variates. Of course, the measures can only be
camputed when it is possible to find the exact distribution of
the sun. In many cases, the exact distribution of the sum of
independent H-function variates is very difficult to obtain.

In the descriptions that follow, let the density of the
exact distribution of the sun of independent variates be
represented by f(y), let the density of the approximate H-
function distribution be H(y), and let each density be
evaluated at n equally spaced values of the variable. The
camon interval between consecutive y values is Ay. The
densities should be evaluated over the whole range of values

the variable is likely to assume.

5.2.1. ESTIMATED SUMS OF SQUARES OF ERROR
The estimated suns of squares of error (SSE) is obtained
by adding the squared difference between f(y) and H(y) for all

n values of the variable where the functions were evaluated.
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' n 2
Estimated SSE =i§=;1 [ f(yi) - H(y).J ] (5.48)

5.2.2. ESTIMATED MEAN SQUARED ERROR

Unless f(y) and H(y) are identical, the estimated SSE will
increase if n is increased. This limitation of the estimated
SSE is corrected by dividing by n, yielding the estimated mean
squared error (MSE).

Estimated SSE

Estimated MSE = a

(5.49)

5.2.3. MAXIMUM ABSOLUTE DIFFERENCE

The maximm absolute difference (MAD) measures the maximum
vertical distance of the two densities over the evaluated y
values.

MAD = max

5.50
i=l,...,n ( )

AR

5.2.4. INTEGRATED ABSOLUTE DENSITY DIFFERENCE

The integrated absolute density difference (IADD) is a
measure of the positive area between the two densities. 1If

f(y)=0 for all y<O,

(s3]
IADD = jo | £(y) - H(y) | ay (5.51)

Since the area under a valid p.d.f. is unity, 0 < IADD < 2.
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IADD can be estimated by sumning the positive area of

rectangles (or trapezoids) with width Ay and height

f[yiJ - H(y]._) | The computer program uses the larger of the
vertical distances of the densities at the left and right

endpoints of each interval as the height of each rectangle.

Estimated IADD = g Ay max(a,B) ] (5.52)
where -

A= | f[yi_]J - u(yi_]) | (5.53)

=] 1) - o) | e30
and| £(v,) - H{¥,) l = 0. Therefore, the estimated IADD will

be an upper bound for the IADD.

* 5.3. DEMONSTRATED RESULTS

As shown below, the new technique was successful in
finding an H~function distribution which closely approximates
the exact distribution of the sun of independent H-function

variates.

5.3.1. EXAMPLE 1 - SUM OF THREE INDEPENDENT, IDENTICALLY

DISTRIBUTED GAMMA VARIATES
In this exanmple, all moments of the approximate H-function

distribution were identical to those of the exact distribution
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of the sun. This occurred whenever the reproductive property
was applicable. In these cases, the new technique always found
the H-function distribution which represented the exact
distribution. The measures of merit were

0.0000000004

Estimated SSE

Estimated MSE = 0.0000000000

MAD = 0.0000133056

Estimated IADD = 0.0000050304

As expected, all measures of merit show a very close fit. Even
the small amount of error is probably due to computer roundoff
error in the evaluation of the H-fumction distribution by the
sun of residues. 1f the approximate H-function distribution

were graphically compared to the exact distribution, the two
graphs would be indistinguishable.

WITH DIFFERENT A
Since the parameter A was different for the Erlang
variates in this example, the reproductive property of the
gamma or Erlang distribution did not apply. Only the zeroth
through third moments were identical between the approximate H-
function distribution and the exact distribution. The measures
of merit in this example were

Estimated SSE = 0.0006853443
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Estimated MSE = 0.0000062304

MAD

0.0100130852

Estimated IADD = 0.0065133019
All measures of merit show a close fit of the approximate H-
function distribution to the exact distribution. The
approximate H-function distribution deviated the most from the
exact distribution near y=0.0, achieving its maximum absolute
deviation of 0.01 at y=0.1. 1In the more critical right tail,
all absolute residual values were less than 0.0006.

The two distributions are compared graphically in Figure 3

below. The densities are nearly identical.

I |
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5.3.3. EXAMPLE 3 - SUM OF TWO INDEPENDENT STANDARD

A A A 2 A e e

UNIFORM VARIATES

This is one comon example where the new H-~function
technique did not work very well. It is well known that the
sun of two independent standard uniform variates has the
triangular distribution as in Eg (5.13). There are two
distinct functional forms, aone for y € (0,1] and one for

y € [1,2). The derivative of the exact distribution is not
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continuous at y=1. In general, the new H-function technique
was less effective when the derivative of the exact
distribution was not continuous.

Of course, either linear function in Eq (5.13) could be
exactly represented as an H-function. With a shift in the
argunent of one H-function, it is even possible to perfectly
represent the exact distribution of the sum as a sum of H-
functions. But in the new technique, we try to fit a single H-
function to the maments of the sum. This produces an H-
function variate which (correctly) cannot assume values less
than zero or greater than two. Even the maments of the
approximate H~function distribution were reasonably close to
those of the exact distribution. Still, the measures of merit

were

Estimated SSE = 0.0920133337

Estimated MSE = 0.0023003333

MAD = 0.1511936368

Estimated IADD = 0.0752034552

The approximate H-function distribution was not as effective in
representing the exact distribution as in the earlier examples.
The approximate H-function distribution achieved its maximum

absolute deviation of 0.15 at y=1.0. It more closely

approximated the exact distribution in both tails. The two
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distributions are campared graphically in Figure 4 below.

iy} Voles

y Vdues

Figure 4. Graphical Camparison of the H-Function

e R A R ke T X

Attempts to fit a higher-order H-~-function to the moments
of the sum were generally unsuccessful. Numerical instability
when ZSPOW tried to solve the system of nonlinear equations led
to execution errors, either floating overflow or diviesion by
zero.

It is interesting, though, that when a first-order H-

function is fit to the moments of the sum, a slightly better
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fit is obtained, at least over the range of the variable from

zero to two. The measures of merit were

Estimated SSE = 0.0620352924

Estimated MSE = 0.0015508823

0.1107462928

MAD

Estimated IADD = 0.0581953790

The drawback of this slightly better fit is that this H-
function distribution is positive for all y>0. At y=2.0, the
first-order H-function distribution has £(2)=.0348 and
F(2)=.9966. Therefore, the probability of achieving a value
greater than two with the first-order H-function distribution
is .0034. Of course, this event is impossible and the
probability should be zero. Most of the measures given above
would increase (worsen) if they were camputed over a larger
range of the variable since the exact distribution has £(y)=0
for y>2 but the first-order H-function distribution has f£(y)>0

for y>2.

5.3.4. EXAMPLE 4 - SUM OF TWO INDEPENDENT, IDENTICALLY

DISTRIBUTED BETA VARIATES
This example demonstrates the technique for the sum of two
Type VI convergent Hi (1) variates over (0,1) where the first
derivative of the exact distribution is continuous at y=1. The

exact distribution is given by Eq (5.17). Again, the moments
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of the approximate H-function distribution were reasonably
close to those of the exact distribution. The measures of
merit were

0.0358601689

Estimated SSE

Estimated MSE = 0.0008965042

MAD

0.0579816425

Estimated IADD = 0.0442126253

The approximate H-function distribution more closely matched
the exact distribution than in the previous example, but not as
close as in the gamma and Erlang examples. While the two
functions which represent the exact distribution have a
continuous first derivative at y=1, the second derivative is
not continuous there. The approximate H-function distribution

has continuous derivatives of all orders for y € (0,2). The

two distributions are compared graphically in Figure 5 below.




183

) Voles

12

y Vaues

Figure 5.
and

Graphical Comparison of the H-Function

—_— e A e e TR =




CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

This thesis has presented a practical method to find an H-
function distribution for the sum of two or more independent H-
function variates. The method finds the moments about the
origin of each variate in the sun and uses these to find the
moments of the sun. The parameters of an H-function are then
estimated using the method of moments. This produces an H-
function distribution whose moments closely approximate those
of the sum of independent H-function variates.

The new technique is especially useful because the H-
function can exactly represent nearly every named statistical
distribution of positive random variables. By rewriting the
distributions of the random variables in the sum in their H-
function representations, an analyst can find the sum of two or
more independent variates with practically any distributional
form.

Further, simple formulas exist which immediately give the
distribution, as an H-function, of the random variable defined

as the product, quotient, or power of independent H-function

184
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variates. The new technique for the sum allows an analyst to
exploit these powerful H-function results to find the H-
function distribution of more camplicated algebraic
camnbinations of independent random variables.

When the exact distribution of an algebraic combination of
independent random variables is difficult or impossible to
obtain, an analyst may resort to camputer simulation to analyze
its distributional properties. The method presented here, when
canbined with the other H-function results, give an H-function
distribution for the algebraic carbination, possibly precluding
the need to rely on computer simulation.

A FORTRAN coamputer program which implements the new
technique is demonstrated through five examples. Of course,
the program was also tested on many other examples. When it
was possible to find the exact distribution for the sum of
independent random variables, the approximate H-function
distribution was campared to the exact distribution.

In cases where the exact distribution of the sum is widely
known (e.g. reproductive distributions), the method always
found the correct H-function representation for the sum. 1In
other cases, only the moments used to estimate the H-function
parameters agreed with those of the sum. Other, higher-order

moments were in error to some degree. The method was less
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effective in finding an H-function distribution which closely
approximated the exact distribution of the sum of independent
variates over a restricted range. These suns produce an exact
distribution with two functional forms over distinct ranges of
the variable and do not have continuous derivatives of all
orders at y=1.

The exact distribution of the general sum of independent
Erlang variates with different scale parameters, A, was derived
in Section 5.1.3. An Erlang variate is simply a gamma variate
with an integer shape parameter r. The derivation used partial
fractions to decampose the product of Laplace transforms of the
individual densities. This produced a sum of terms, each of
which could easily be inverted from transform space, yielding
the desired density of the sumn of independent variates.

Throughout the thesis, a number of other new results
relating to the H-function were given. A previously unstated
restriction on the variable in the H-function representatians
of power functions and beta-type functions was highlighted.
Several ways of overqaning this limitation when representing
mathematical functions were presented. These include scaling
the variable, allowing a slightly different function to be
represented for a range of the variable, or the use of camplex

parameters.
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The restriction, however, is an advantage when
representing certain statistical distributions. For random
variables with a restricted range of the variable, the H-
function representation eliminates the need to specify the
range for which the density is nonzero. The H-function
dis. -ibution exactly represents the desired density over the
appropriate range and is zero elsewhere.

Through scaling the variable of these H-functions with the
parameter c¢, the value where the H-function changes fram
representing the special case to taking the value zero can be
changed. This allowed the H-function to represent the power
functions and beta-type functions over a more general range and
also gave the H-function representation of the Unit Step
Function and its complement. The same technique was used to
give the H-function representation of the Three-Parameter Beta
p.d.f., the Power Function p.d.f. over (0,M), the Uniform
p.d.f. over (0,M), and the Pareto p.d.f. over (e,»).

Rnalytic solutions were derived for the system of
nonlinear equations generated by the method of moments to
estimate the H-function parameters for certain distributions.
These distributions have restricted ranges of the variable and
must be represented by Type VI convergent H-functions.

Many new H-function representations of other mathematical




188

functions were also given, including those of the complementary
error function, erfc x, the complementary incamplete gamma

function, I'(x,x), the carplementary incamplete beta function,

Bx(_a,ﬁ)-, and the inverse hyperbolic cotangent function,
arccoth z.

Four new theorems show when and how a generalizing
constant may be present in an H-function representation. Many
generalized H-function representations are given, including
those of every cumlative distribution function of an H-
function variate. The generalizing constant was also possible
in the H-function representations of power functions, the error
function and its camplement, the incomplete gamma function and
its complement, the incomplete beta function and its
canplement, many inverse trigonometric and  hyperbolic
functions, and the logarithmic functions.

Sufficient convergence conditions were developed for the
alternate definition of the H-function. These show where the
H-function may be evaluated by the sum of LHP residues or the
negative sum of RHP residues, without first changing the form
of the alternate definition of the H-function to that of the
primary definition.

The hierarchical structure among classes of H-functions

was given through seven new theorems. Every class of H-
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functions is wholly contained in many higher-order classes of
H-functions through the application of the duplication,
triplication, and multiplication formulas for the gamma
function. In the other direction, the hierarchical structure
gives new reduction properties that are less obvious than the
known reduction properties.

Several new results were obtained for powers of first-
order H-function variates. The square of a random variable
with a Rayleigh distribution with parameter A has an
exponential distribution with parameter A. If X has a Weibull
distribution with parameters g and A, then Y=XP where P>0 has a
Weibull distribution with parameters —g- and A. The square of
a random variable with a half-normal distribution with
parameter ¢ has a gamma distribution with parameters r = —]2'—

and A = —2-1 . The square of a random variable with a Maxwell
20

distribution with parameter & has a gamma distribution with

_ 3 -1
parameters r = - and A = —;7- The square of a randam

variable with a Maxwell distribution with parameter 6 = /2 has
a Chi-Square distribution with parameter v=3. The square of a
random variable with a Rayleigh distribution with parameter
A= -71- has a Chi-Square distribution with parameter v=2.

Many areas of further research proposed by Eldred [1979,
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pp. 258-9], Cook [1981, pp. 145-147], Kellogg [1984, pp.170-
171], and Jacobs [1986, pp. 149-152] remain unfinished.
Readers interested in H-function research should consider those
recamendations and some additional areas that follow.

In Bayesian statistics, the parameters of a distribution
are considered to be randam variables with a particular
distribution. After sampling from the distribution, the
information gained about the parameters is reflected by
updating the prior distribution and creating a posterior
distribution. To my knowledge, a Bayesian approach has not
been attempted with the H-function.

Numerical methods exist for certain comonly-used
transforms such as the Laplace and Fourier transforms. 1f
these methods are sufficiently accurate and will work in both
directions (finding a transform and inverting a transform), it
would be possible to find the distribution (in tabular form) of
suns or differences of independent random variables. If a
nurerical method to invert a Mellin transform exists, it could
be used to evaluate the H-function.

The camputer program by Cook [1981, Cook and Barmes, 1981]
will evaluate an H-function by the sum of residues for certain
values of the real variable, x, when given the parameters of

the H-function. The program's capabilities should be extended
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to allow complex parameters of the H-function and to evaluate
the H-function at values of the camplex variable, z.

The numerical solution of the system of nonlinear
equations with ZSPOW is sametimes numerically unstable.
Several other numerical methods were tried, but none worked as
well as ZSPOAW in solving the type of nonlinear equations
generated using the method of moments with the H-function.
Further research might develop a better way to solve the system
of nonlinear equations.

while the H-function has been shown to exactly represent
many mathematical functions and statistical distributions,
there are a few functions and distributions which have not yet
been shown to be H-functions. Conversely, no one has proven
that these functions cannot be represented as H-functions.
Examples include the gamma function, certain trigonometric and
hyperbolic functions, and the Lognormal and Logistic densities.
A related issue is to prove or disprove that the product of two
H-functions is another H-function.

To my knowledge, the H-function has not been applied to
the study of complex-valued random variables. The H-function
seems the appropriate tool to analyze random variables which
take values in the camplex plane.

The relationship between the H-function and the infinite
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summability of integrals described in Section 2.7 needs to be
more extensively studied. Is there a particular summability
scheme the H-function always follows to obtain the moments of
the functions representable as H-functions?

Theorems similar to those in Section 2.4.6 could be
developed to show upgrade and reduction results for H-functions
by applying the triplication and multiplication formulas for
the gamma function. Then, the search could begin for a class
of H-functions which includes most of the known special cases.
For example, Figure 1 showed the H‘} g class includes many
coammon statistical distributions, including all those in the
Hy ] class. The half-Cauchy, half-Student, and F
distributions, however, are in the Hi Z]L. class of H-function
distributions. Using combinations of theorems based on the
duplication, triplication, or multiplication formulas, is there
a class of H-functions which includes both the Hi (]), and H'i i
classes of H-functions?

The H-function continues to be an extremely rewarding area
of research for me. I am convinced that we have much to
discover about its ability to simplify many difficult problems
in mathematics, probability, and statistics. Those who pursue
H-function research should find it both challenging and

rewarding.




APPENDIX A

OUTPUT FROM COMPUTER PROGRAMS

Listed below are the complete output files fram the
FORTRAN camputer programs for each of the five examples in
Section 4.4. The output from the program which finds a H-
function distribution for the sum of independent H-function
variates is followed by the output from a different program
[Cook, 1981; Cook and Barnes, 1981] which evaluates the p.d.f.
and c.d.f. of the resulting H-function distribution. For the
first four examples for which it was possible to find the exact
distribution, the output from the program which compares the
approximate H-function distribution to the exact distribution
is also presented.

DISTRIBUTED GAMMA VARIATES

PROGRAM SUMVAR RUN IN DOUBLE PRECISION
FOR THE SUM OF 3 INDEPENDENT H-FUNCTION VARIATES
INPUT PARAMETERS FOR VARIABLE NUMBER 1 OF THE SUM:
M,N,P,Q = 1001
K, C = 2.0000000 2.0000000
b, B = 1.00000 1.00000
THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT IS 1.0000000
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THE SECOND MOMENT IS 1.5000000
THE THIRD MCMENT IS 3.0000000
THE FOURTH MOMENT IS 7.5000000
THE FIFTH MOMENT IS 22.5000000

INPUT PARAMETERS FOR VARIABLE NUMBER 2 OF THE SUM:

M,N,P,Q = 1001

K, C = 2.0000000 2.0000000

b, B = 1.00000 1.00000

THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT IS 1.0000000
THE SECOND MOMENT IS 1.5000000
THE THIRD MOMENT IS 3.0000000
THE FOURTH MOMENT IS 7.5000000
THE FIFTH MOMENT IS 22.5000000

INPUT PARAMETERS FOR VARIABLE NUMBER 3 OF THE SUM:

M,N,P,Q = 1001
K, C = 2.0000000 2.0000000
b, B = 1.00000 1.00000

THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT IS 1.0000000
THE SECOND MOMENT IS 1.5000000
THE THIRD MOMENT IS 3.0000000
THE FOURTH MOMENT IS 7.5000000
THE FIFTH MOMENT IS 22.5000000

FOR THE RANDOM VARIABLE GIVEN AS THE SUM
OF THE ABOVE INDEPENDENT H-FUNCTION
VARIATES, THE MOMENTS ABOUT THE ORIGIN ARE:

THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT IS 3.0000000
THE SECOND MOMENT IS 10.5000000
THE THIRD MOMENT IS 42.0000000
THE FOURTH MOMENT IS 189.0000000
THE FIFTH MOMENT IS 945.0000000

PROGRAM H_FIT RUN WITH DOUBLE PRECISION
INPUT WAS OF TYPEO
DEFAULT INITIAL GUESS WAS USED
THE ZEROTH MOMENT WAS USED IN THE FIT
RESULTS OF ZSPOW -
NUMERATOR :

SMALLB(1)= 4.999999888533181114
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BIGB(1)= 0.999999992560842613
DENCMINATOR:
VALUES OF K & C ARE:

K= 0.016666666666666667

c 2.000000000000000000

FNORM= 0.000000000000000000

ESTIMATED H-FUNCTION PARAMETERS
FOR THE SUM OF THE INDEPENDENT
H-FUNCTION VARIATES RRE:
M,N,P,Q = 1001
K, C 0.0166667 2.0000000
b, B 5.00000 1.00000
THE MOMENTS ABOUT THE ORIGIN OF THIS
H-FUNCTION ARE:

THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT IS 3.0000000
THE SECOND MOMENT 1S 10.5000000
THE THIRD MOMENT IS 42.0000000
THE FOURTH MOMENT IS 189.0000000
THE FIFTH MOMENT IS 945.0000000

DETERMINE P.D.F.(2) AND C.D.F.(Z)

FOR VALUES OF Z FRGM 0.1000 TO  7.0000

WITH STEP SIZE 0.1000

FOR THE SUIM OF 1 TERMS, WHERE

THE MAXIMUM NUMBER OF POLES TO BE EVALUATED IS 100.
CRUMP PARAMETERS: NUMBER OF COMPLEX VALUES = 1001,
PERCENT OF HIGHEST Z VALUE = 1.00, AXIS POINT A = 1.3653
FORM FOR OVERALL PROBLEM (WHERE YJ = XJ**PJ):

Z=Y1

VARIATE X 1 IS TYPE NUMBER 4

INPUT PARAMETERS ARE THETA = 0.01667, PHI = 2.00000
AND POWER = 1.00000

THE P.D.F. FOR VARIATE X 1 IS GIVEN BY:

10
0.01667 H (  2.00000 X):

01 ( 5.000, 1.000)
THE P.D.F. FOR TERM 1 OF THE SUM IS GIVEN BY:

10
0.01667 H ( 2.00000 Z), WHERE

01

(BA(1),GBA(I)): ( 5.000, 1.000) (
CONVERGENCE TYPE = 1
E

D= 1.00 = -1.00 L= 4.5 R = 1.0000




BB BAWOWWWWWLWWWLWWNNNNNONNONPOMONNNNDHREPRRRRERRERSERERSEOOQOOOOOOOO

A

.1000
. 2000
. 3000
.4000
.5000
. 6000
.7000
.8000
.9000
.0000
.1000
.2000
.3000
.4000
.5000
. 6000
.7000
.8000
. 9000
.0000
.1000
.2000
.3000
. 4000
.5000
. 6000
.7000
.8000
. 9000
.0000
.1000
.2000
.3000
. 4000

. 6000
.7000

.9000
.0000
.1000
2000

. 4000
.5000

e R eNeololeNoeoNoNooloNoNoNoNolNoNoNooloNeloNoNoNeNoNeNoNeNeNoNoNoNoNoeNelaloNeNoloNoNoNeNe

PDF(Z)

.000004
.000114
.000711
.002454
.006131
.012491
.022104
.035284
.052057
.072179
.095173
.120392
.147079
.174427
.201638
.227959
.252721
.275360
. 295425
.312587
.326632
.337455
. 345051
.349495
.350935
.349570
.345643
.339422
.331193
.321246
.309871
.297347
.283939
.269892
.255433
.240764
.226062
.211484
.197163
.183207
.169708
.156737
.144347
.132578
.121454

CDF(2)

[eNeNeoNeNoNoeleNeNoNofNoNaoRooNoaNolleNoNooNoNoNoloNeNoNeNoNoNeRaoNoNoNoNoNeNeNeNelNoNeoNoNeNeNe!

.000000
.000004
.000039
.000184
.000594
.001500
.003201
.006040
.010378
.016564
.024910
.035673
.049037
.065110
.083918
.105408
.129458
.155881
.184444
.214870
. 246857
.280088
.314240
.348994
.384039
. 419087
.453868
.488139
.521685
.554320
.585887
.616256
. 645327
.673023
.699292
. 724102
.747443
.769319
.789749
.808764
.826405
.842723
.857772
.871613
.884309
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. 6000
.7000
.8000
. 9000
.0000
.1000
.2000
.3000
. 4000
.5000
. 6000
.7000
.8000
. 9000
.0000
.1000
.2000
.3000
. 4000
.5000
. 6000
.7000
.8000
. 9000
7.0000

DA RNANOTNAANNAANTODNO OO OO0 A Db

(=ReleNeNoNeNeNoNeleloNeoNoNe e e NoNeNoNoRoNeNeNe

.110989
.101186
.092040
.083540
.075667
.068398
.061710
.055572
.049956
.044830
.040164
.035926
.032086
.028614
.025481
.022659
.020123
.017847
.015808
.013985
.012357
.010905
.009612
.008462
.007440
NUMBER OF POLES EVALUATED =

[elefoNoNoNoNeNoNoNeNoNeNeNeoNoNeNoNelNeNoNoNoNeNeRe

83

.895926
.906529
.916185
. 924959
.932914
.940112
.946613
. 952472
.957745
. 962480
.966726
.970527
. 973925
. 976957
.979659
. 982063
. 984200
. 986096
. 987777
. 989265
. 990581
. 991742
. 992767
. 993669
. 994464

PROGRAM COMPAR RUN IN DOUBLE PRECISION

X

.1000
.2000
.3000
.4000
. 5000
. 6000
.7000
.8000
. 9000
.0000
.1000
.2000
.3000
. 4000
.5000
. 6000
.7000

R ERRMRERFOOO0OO000000

CO0OO0000DO0O0O0O0O0DO0OO0OO0O0OO0O0

Y (H-FCN)

.0000043666
.0001144013
.0007112599
.0024539353
.0061313241
.0124911263
.0221042938
.0352839727
.0520572460
.0721788138
.0951731110
.1203921499
.1470787062
.1744272435
.2016376070
.2279587426
.2527214162

OO00000000DO0O0O0DO0O0O00O0

Y (EVAL)

.0000043666
.0001144013
.0007112599
.0024539352
.0061313240
.0124911264
.0221042943
.0352839739
.0520572483
.0721788177
.0951731171
.1203921587
.1470787183
.1744272593
.2016376269
. 2279587669
.2527214452

I
COO0O0O0O0O0O0OO0OO0OO0OO0O0O0O0O0O
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RESIDUAL

.0000000000
.0000000000
.0000000000
.0000000001
.0000000001
.0000000001
.0000000005
.0000000012
.0000000023
.0000000039
.0000000061
.0000000088
.0000000121
.0000000158
.0000000199
.0000000243
.0000000290




ORI LE L LELEBAEBEBEEEBRWWWWWWLWWWLWWWINRNDNONNONNNODODNODNEM

.8000
. 9000
.0000
.1000
.2000
.3000
. 4000
.5000
.6000
.7000
.8000
. 9000
.0000
.1000
.2000
.3000
. 4000
.5000
. 6000
.7000
.8000
. 9000
.0000
.1000
.2000
. 3000
.4000
.5000
. 6000
.7000
.8000
. 9000
.0000
.1000
.2000
.3000
. 4000
.5000
. 6000
.7000
.8000
. 9000
.0000
.1000
.2000
.3000

[eNoNeNeNeNeooloBoRoNoNoNoNoNoNoNoNolooNoNeloNoNeNoleNoN oo NoNoNoNeNoloNoleNeoNaoloNoRoNoloNe)

.2753601348
.2954252728
.3125868609
.3266316878
.3374553719
.3450509461
.3494953096
.3509346792
. 3495699434
.3456426020
.3394217767
.3311926087
.3212462161
.3098712736
.2973471912
.2839388042
.2698924499
. 2554332757
.2407636152
.2260622642
.2114844971
.1971626696
.1832072739
.1697083224
.1567369566
.1443471907
.1325777187
.1214537217
.1109886370
.1011858411
.0920402391
.0835397256
.0756665181
.0683983578
.0617095716
.0555720188
.0499558733
.0448303394
.0401642223
.0359264174
.0320862857
.0286140192
.0254807806
.0226590473
.0201226143
.0178466675

(e NeooNoReoNeNoNoNoNoNaoNeoNo oo NoNojoNoNoRoNoloNoNeNoNoNoRoNoNoNoNaNoNoloRoNeNoolaoNoNoNoNoNa)

.2753601684
.2954253111
. 3125869037
.3266317349
.3374554229
.3450510007
.3494953673
.3509347395
. 3495700059
.3456426662
.3394218420
.3311926746
.3212462821
.3098713394
.2973472562
.2839388681
.2698925124
.2554333366
.2407636741
.2260623210
.2114845515
.1971627215
.1832073232
.1697083691
.1567370007
.1443472324
.1325777577
.1214537587
.1109886714
.1011858741
.0920402710
.0835397566
.0756665496
.0683983922
.0617096146
.0555720692
.0499559385
.0448304269
.0401643429
.0359265830
.0320865265
.0286143510
.0254812775
.0226597557
.0201235965
.0178480594
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.0000000336
.0000000383
.0000000428
.0000000471
.0000000510
.0000000546
.0000000577
.0000000603
.0000000625
.0000000642
.0000000653
.0000000659
.0000000660
.0000000658
.0000000650
.0000000639
.0000000625
.0000000609
.0000000589
.0000000568
.0000000544
.0000000519
.0000000493
.0000000467
.0000000441
.0000000417
.0000000390
.0000000370
.0000000344
.0000000330
.0000000319
.0000000310
.0000000315
.0000000344
.0000000430
.0000000504
.0000000652
.0000000875
.0000001206
.0000001656
.0000002408
.0000003318
.0000004969
.0000007084
.0000009822
.0000013919




6.4000
6.5000
6.6000
6.7000
6.8000
6.9000
7.0000

OO0OO0OO0O0O0OO0

.0158078894
.0139846566
.0123566022
.0109048623
.0096119998
.0084623041
.0074402961

ESTIMRTED SSE IS
ESTIMATED MSE 1S
THE MAXIMUM ABSOLUTE DIFFERENCE BETWEEN THE

H-FUNCTION AND THE ACTUAL FUNCTION IS

[eReRoNoNeNeNe

.0158099039
.0139874081
.0123603635
.0109100486
.0096191863
.0084718905
.0074536017

0.0000000004
0.0000000000

THE INTEGRATED ABSOLUTE DENSITY DIFFERENCE
(AN ESTIMATE OF THE AREA BETWEEN THE

H-FUNCTION AND THE ACTUAL DENSITY) IS

-_ e e M e e e e . e

PROGRAM SUMVAR RUN IN DOUBLE PRECISION
FOR THE SUM OF 2 INDEPENDENT H-FUNCTION VARIATES
INPUT PARAMETERS FOR VARIABLE NUMBER 1 OF THE SUM:

R

» N
’ C
’ B

» Q

14

it nrg

= 1 0 0 1
4.0000000 4.0000000
1.00000 1.00000

THE MOMENTS ABOUT THE ORIGIN ARE:

IS
IS
IS
I8
IS
IS
IS
IS

= 1 0 01
2.0000000 2.0000000
0.00000 1.00000

1.0000000
0.5000000
.3750000
. 3750000
. 4687500
.7031250
.2304688
.4609375

NFHOOOO

2 OF THE SUM:

THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS
THE FIRST MCMENT 1S
THE SECOND MOMENT 1S
THE THIRD MOMENT IS

1.0000000
0.5000000
0.5000000
0.7500000

.0000020145
.0000027515
.0000037613
.0000051863
.0000071865
.0000095864
.0000133056

0.0000133056

0.0000050304
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THE FOURTH MOMENT IS
THE FIFTH MOMENT IS
THE NEXT MCMENT IS
THE NEXT MOMENT IS

1.5000000
3.7500000
11.2500000
39.3750000

FOR THE RANDOM VARIABLE GIVEN AS THE SUM
OF THE ABOVE INDEPENDENT H-FUNCTION
VARIATES, THE MOMENTS ABOUT THE ORIGIN ARE:

THE ZEROTH MOMENT IS
THE FIRST MOMENT IS
THE SECOND MOMENT IS
THE THIRD MOMENT IS
THE FOURTH MOMENT IS
THE FIFTH MOMENT IS
THE NEXT MOMENT IS
THE NEXT MOMENT IS

1.0000000
1.0000000
1.3750000
2.4375000
5.3437500
14.0625000
43.4179688
154.4238281

PROGRAM H_FIT RUN WITH DOUBLE PRECISION

INPUT WAS OF TYPEO

DEFAULT INITIAL GUESS WAS USED

THE ZEROTH MOMENT WAS USED
RESULTS OF ZSPOW -

IN THE FIT

NUMERATOR:
SMALLB(1)= 3.024855875185841148
BIGB(1)= 1.263891763119380202
DENCMINATOR:
VALUES OF K & C ARE:
K= 0.748958966084013356
(o 6.533302402015585986
FNORM= 0.000000000000000000

ESTIMATED H-FUNCTION PARAMETERS
FOR THE SUM OF THE INDEPENDENT

H-FUNCTION VARIATES ARE:
,P,Q = 100
0.7489590
3.02486
THE MOMENTS ABOUT THE ORIG
H-FUNCTION ARE:
THE ZEROTH MOMENT IS
THE FIRST MOMENT IS
THE SECOND MOMENT IS
THE THIRD MOMENT IS
THE FOURTH MOMENT 1S
THE FIFTH MOMENT IS
THE NEXT MOMENT IS

Q=2
non

M,
K,
b,

1
6.5333024

1.26389
IN OF THIS

1.0000000
1.0000000
1.3750000
2.4375000
5.3382458
14.0112602
43.0835662
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THE NEXT MOMENT IS 152.4885870

DETERMINE P.D.F.(Z) AND C.D.F.(Z)

FOR VALUES OF Z FRaM 0.0500 TO 5.5000

WITH STEP SIZE 0.0500

FOR THE SUM OF 1 TERMS, WHERE

THE MAXIMUM NUMBER OF POLES TO BE EVALUATED IS 100.
CRUMP PARAMETERS: NUMBER OF COMPLEX VALUES = 1001,
PERCENT OF HIGHEST Z VALUE = 1.00, AXIS POINT A = 1.7376
FORM FOR OVERALL PROBLEM (WHERE YJ = XJ**PJ):

Z =Yl

VARIATE X 1 IS TYPE NUMBER 4

INPUT PRARAMETERS ARE THETA = 0.74896, PHI = 6.53330
AND POWER = 1.00000

THE P.D.F. FOR VARIATE X 1 IS GIVEN BY:

10
0.74896 H ( 6.53330 X):
01 (  3.025, 1.264)
THE P.D.F. FOR TERM 1 OF THE SUM IS GIVEN BY:
1 0
0.74896 H ( 6.53330 Z), WHERE
o 1

(BA(1),GBA(I)): ( 3.025, 1.264) (

CONVERGENCE TYPE = 1
D= 1.26 E=-1.26 L= 2.52 R = 0.7438
Z PDF(Z) CDF(Z)

0.0500 0.026956 0.000430
0.1000 0.104760 0.003557
0.1500 0.211027 0.011377
0.2000 0.326668 0.024812
0.2500 0.438949 0.043985
0.3000 0.540207 0.068521
0.3500 0.626386 0.097754
0.4000 0.695859 0.130880
0.4500 0.748580 0.167060
0.5000 0.785467 0.205474
0.5500 0.807989 0.245367
0.6000 0.817884 0.286063
0.6500 0.816969 0.326975
0.7000 0.807023 0.367609
0.7500 0.789713 0.407555
0.8000 0.766559 0.446483
0.8500 0.738910 0.484136
0.9000 0.707945 0.520319
0.9500 0.674675 0.554892
1.0000 0.639955 0.587762




WWWWWWWRNRNRRNRNRNRRNNRNNRONRONNRN RN RN b b e et e e

.0500
.1000
.1500
.2000
.2500
.3000
. 3500
. 4000
.4500
.5000
. 5500
. 6000
.6500
.7000
.7500
. 8000
.8500
.9000
.9500
.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
.4000
.4500
.5000
. 5500
. 6000
. 6500
.7000
.7500
.8000
.8500
. 9000
. 9500
.0000
.0500
.1000
.1500
.2000
. 2500
.3000

0000000000000 O0ODDO0O0CO0ODO0O0ODO0OOCOO0OO00O0O0OO0DO00O0OO0O0O0OO0O0O0C0C

. 604498
. 568889
.533601
. 499009
.465403
.433003
.401967
.372404
.344381
.317931
.293060
.269752
.247973
.227679
.208814
.191315
.175116
.160147
.146338
.133618
.121917
.111168
.101305
.092263
.083984
.076410
.069486
.063163
.057391
.052127
.047330
.042959
.038980
.035359
.032066
.029072
.026351
.023880
.021636
.019599
.017751
.016074
.014553
.013174
.011924
.010792

0000000000000 ODODDO0OO0ODDO0ODO0ODO0DO0OODO0OO0O0OO0OD0DO0OD0DO0O0DO0DOD0DO0O00O00O0O

.618875
.648210
.675770
.701581
.725687
. 748142
.769010
.788363
.806276
.822827
.838096
.852159
.865096
.876981
.887888
.897886
.907041
.915418
.923075
.930070
.936454
. 942277
.947855
.952421
. 956824
. 960831
. 964476
.967790
.970802
. 973538
. 976022
.978278
. 980325
.982182
. 983866
.985393
.986778
.988033
.989170
. 990200
.991133
. 991978
. 992743
.993435
. 994062
. 994630
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.3500
. 4000
. 4500
.5000
.5500
. 6000
. 6500
.7000
.7500
.8000
.8500
. 9000
.9500
.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
. 4000
. 4500
. 5000
.5500
.6000
.6500
.7000
.7500
.8000
.8500
. 9000
.9500
.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
. 4000
.4500
.5000

oAb bbb bbb bR RWWWLWLOWLWLOWLWWLWLWLWW

(e YoXeXeRoRoRoNeNoNeRoNoNoNoNeNeNe oo NeoNoNeNoNeNolloNeNoNoRo e No o oo olollo oo NeRo oo

.009766
.008836
.00799%4
.007232
.006541
.005917
.005351
.004839
.004376
.003957
.003578
.003235
.002925
.002644
.002391
.002161
.001954
.001766
.001597
.001444
.001305
.001180
.001067
.000964
.000872
.000789
.000713
.000645
.000584
.000528
.000478
.000433
.000392
.000356
.000323
.000292
.000266
.000242
.000221
.000200
.000185
.000170
.000157
.000145
NUMBER OF POLES EVALUATED =

e XeXo XXX Ko XeXeNeoNeRoNoNoNoNoNoNoNoeNoNloNoNoReReRolleNe o oo oo oo oo loRo oo e e

. 995143
. 995608
.996028
. 996409
. 996753
. 997064
. 997345
. 997600
.997830
.998038
. 998226
. 998397
.998550
. 998690
.998815
.998929
.999032
. 999125
. 999209
. 999285
.999353
. 999415
. 999472
. 999522
. 999568
. 999610
. 999647
.999681
.999712
.999740
. 999765
.999788
. 999808
. 999827
. 999844
.999859
.999873
. 999886
. 999897
.999908
.999918
. 999927
. 999935
. 999942

89
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PROGRAM COMPAR RUN IN DOUBLE PRECISION

NNV R R e b pd o il e N e RO O00000000000000000O0

X

.0500
.1000
.1500
. 2000
.2500
.3000
.3500
. 4000
.4500
.5000
.5500
. 6000
. 6500
.7000
. 7500
.8000
.8500
. 9000
. 9500
.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
. 4000
.4500
.5000
.5500
.6000
. 6500
.7000
.7500
.8000
.8500
. 9000
.9500
.0000
.0500
.1000
.1500
. 2000

0000000000000 0O0O0O0O00O0D0O0DO0OO0ODO0DODOCO0O0O0OODDODO0OO0OOD0DO0OOODOOOO0O0O

Y (H-FCN)

.0269560422
.1047604975
.2110272898
.3266679624
. 4389488040
. 5402072867
.6263855876
.6958594647
.7485799015
.7854665809
.8079891806
.8178843945
.8169693788
.8070228765
.7897133043
. 7665590050
.7389101583
.7079449386
.6746747268
.6399547674
. 6044977968
. 5688889715
.5336009937
.4990087333
. 4654029237
.4330027002
.4019668816
.3724039823
. 3443809949
.3179310207
.2930598403
.2697515271
.2479732076
.2276790667
.2088136949
.1913148623
.1751157994
.1601470554
.1463379965
.1336179992
.1219173875
.1111681551
.1013045089
.0922632656

e XXX XX Xo XX X=X X X=R=X=NeNoNoNoNeNeNeNoNeloNeNole e NeNoloNooNo oo oo Ro o No

Y (EVAL)

.0338687172
.1147735827
.2189047501
.3300759702
.4376919836
.5352071763
.6189637207
.6873218538
.7400141770
.7776709976
.8014756091
.8129177174
.8136205051
.8052225091
.7892999138
.7673183012
.7406055613
.7103397230
.6775470467
.6431069326
.6077611209
.5721253654
.5367022861
.5018945066
.4680174730
.4353115704
.4039533060
. 3740654440
. 3457260524
.3189764773
.2938282943
.2702693074
. 2482686787
.2277812745
.2087513166
.1911154218
.1748051079
.1597488398
.1458736804
.1331066060
.1213755376
.1106101339
.1007423864
.0917070504

[« NeNoNoNeoNoNoNoNo e

204

RESIDUAL

.0069126750
.0100130852
.0078774603
.0034080078
.0012568204
.0050001104
.0074218669
.0085376109
.0085657245
.0077955833
.0065135715
.0049666771
.0033488737
.0018003674
.0004133905
.0007592962
.0016954030
.0023947844
.0028723199
.0031521652
.0032633241
.0032363939
.0031012924
.0028857733
.0026145493
.0023088702
.0019864244
.0016614617
.0013450575
.0010454566
.0007684540
.0005177803
.0002954711
.0001022078
.0000623783
.0001994405
.0003106915
.0003982156
.0004643161
.0005113932
.0005418499
.0005580212
.0005621225
.0005562152




Db BB BRBE B RERARBWWWWWWWWWWWWWWWWWWWWONNONNNNOMNONNNNNOONMDNONDONON

.2500
.3000
.3500
. 4000
.4500
.5000
.5500
. 6000
. 6500
.7000
. 7500
.8000
.8500
.9000
. 9500
.0000
.0500
.1000
.1500
.2000
.2500
. 3000
.3500
. 4000
. 4500
.5000
.5500
. 6000
.6500
.7000
.7500
.8000
.8500
. 9000
. 9500
.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
. 4000
. 4500
.5000

(e Yol oYeYoRololoNaeloleNoReRoNoNoNeNoNoNoNoNeNe e N NeNeoNooNooNe oo o llofeNo oo o jeloNo o je)

.0839841259
.0764098507
.0694863578
.0631627543
.0573913195
.0521274483
.0473295640
.0429590129
.0389799364
.0353591407
.0320659524
.0290720785
.0263514586
.0238801228
.0216360554
.0195990566
.0177506130
.0160737745
.0145530391
.0131742345
.0119244243
.0107918007
.0097656028
.0088360115
.0079940810
.0072316960
.0065414505
.0059166029
.0053510603
.0048392420
.0043761116
.0039570862
.0035779964
.0032350765
.0029249240
.0026444213
.0023907019
.0021613239
.0019539329
.0017664002
.0015968516
.0014436486
.0013051134
.0011798299
.0010667957
.0009643209

(e XXX XoXoXo kol XeX-R=XeX-ReXeNeNoNoNlcNoNeNaNoNeNoNo oo e NeNeolle oo NojoNo No oo oo lela)

.0834419409
.0758881208
.0689899994
.0626953630
.0569553491
.0517243794
.0469600610
.0426230642
.0386769844
.0350881930
.0318256831
.0288609122
.0261676457
.0237218028
.0215013070
.0194859415
.0176572119
.0159982144
.0144935125
.0131290204
.0118918938
.0107704277
.0097539623
.0088327943
.0079980955
.0072418379
.0065567237
.0059361217
.0053740084
.0048649142
.0044038736
.0039863804
.0036083458
.0032660609
.0029561618
.0026755985
.0024216056
.0021916766
.0019835396
.0017951361
.0016246006
.0014702432
.0013305330
.0012040833
.0010896381
.0009860600

OO0OO0ODDODODODODODDODOODODODODOLOOODOOOO
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.0005421850
.0005217299
.0004963584
.0004673913
.0004359704
.0004030689
.0003695030
.0003359487
.0003029520
.0002709477
.0002402693
.0002111663
.0001838129
.0001583200
.0001347484
.0001131151
.0000934011
.0000755601
.0000595266
.0000452141
.0000325305
.0000213730
.0000116405
.0000032172
.0000040145
.0000101419
.0000152732
.0000195188
.0000229481
.0000256722
.0000277620
.0000292942
.0000303494
.0000309844
.0000312378
.0000311772
.0000309037
.0000303527
.0000296067
.0000287359
.0000277490
.0000265946
.0000254196
.0000242534
.0000228424
.0000217391




4.5500
4.6000
4.6500
4.7000
4.7500
4.8000
4.8500
4.9000
4.9500
5.0000
5.0500
5.1000
5.1500
5.2000
5.2500
5.3000
5.3500
5.4000
5.4500
5.5000

0.0008721016
0.0007885237
0.0007132715
0.0006450051
0.0005836256
0.0005283933
0.0004781645
0.0004330106
0.0003921517
0.0003557943
0.0003226795
0.0002919937
0.0002664966
0.0002422554
0.0002211998
0.0002000859
0.0001845803
0.0001702609
0.0001565074
0.0001445091

ESTIMATED SSE IS
ESTIMATED MSE IS
THE MRXIMUM ABSOLUTE DIFFERENCE BEIWEEN THE
H-FUNCTION AND THE ACTUAL FUNCTION IS

THE INTEGRATED ABSOLUTE DENSITY DIFFERENCE
(AN ESTIMATE OF THE AREA BETWEEN THE
H-FUNCTION AND THE ACTUAL DENSITY) IS

0.0008923190
0.0008074822
0.0007307051
0.0006612232
0.0005983440
0.0005414409
0.0004899465
0.0004433471
0.0004011779
0.0003630181
0.0003284866
0.0002972388
0.0002689625
0.0002433754
0.0002202218
0.0001992705
0.0001803119
0.0001631567
0.0001476334
0.0001335868

0.0006853443
0.0000062304

UNIFORM VARIATES

PROGRAM SUMVAR RUN IN DOUBLE PRECISION
FOR THE SUM OF 2 INDEPENDENT H-FUNCTION VARIATES
INPUT PARAMETERS FOR VARIABLE NUMBER 1 OF THE SUM:

M, N,
K, C
a, A
b, B

P,Q = 1 011

= 1.0000000 1.0000000
= 1.00000 1.00000
= 0.00000 1.00000

THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS
THE FIRST MOMENT IS
THE SECOND MOMENT IS
THE THIRD MOMENT IS

1.0000000
0.5000000
0.3333333
0.2500000

-0.0000202174
-0.0000189585
-0.0000174336
-0.0000162181
-0.0000147184
-0.0000130476
-0.0000117820
-0.0000103365
-0.0000090262
-0.0000072238
-0.0000058071
-0.0000052451
-0.0000024659
-0.0000011200

0.0000009780

0.0000008154

0.0000042684

0.0000071042

0.0000088740

0.0000109223

0.0100130852

0.0065133019
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THE FOURTH MOMENT IS 0.2000000
THE FIFTH MOMENT 1S 0.1666667
THE NEXT MOMENT IS 0.1428571
THE NEXT MOMENT IS 0.1250000
THE NEXT MOMENT IS 0.1111111
THE NEXT MOMENT IS 0.1000000
THE NEXT MOMENT IS 0.0909091
INPUT PARAMETERS FOR VARIABLE NUMBER
M,N,P,Q = 1011
K, C = 1.0000000 1.0000000
a, A = 1.00000 1.00000
b, B = 0.00000 1.00000
THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS 1.0000000
THE FIRST MQOMENT IS 0.5000000
THE SECOND MOMENT IS 0.3333333
THE THIRD MOMENT IS 0.2500000
THE FOURTH MOMENT IS 0.2000000
THE FIFTH MOMENT IS 0.1666667
THE NEXT MOMENT IS 0.1428571
THE NEXT MOMENT IS 0.1250000
THE NEXT MOMENT IS 0.1111111
THE NEXT MOMENT IS 0.1000000
THE NEXT MOMENT IS 0.0909091

FOR THE RANDOM VARIABLE GIVEN AS THE SUM
OF THE ABOVE INDEPENDENT H-FUNCTION
VARIATES, THE MOMENTS ABOUT THE ORIGIN ARE:

THE ZEROTH MOMENT
THE FIRST MOMENT
THE SECOND MOMENT
THE THIRD MOMENT
THE FOURTH MOMENT
THE FIFTH MOMENT
THE NEXT MOMENT
THE NEXT MOMENT
THE NEXT MOMENT
THE NEXT MOMENT
THE NEXT MOMENT

IS
IS
I8
) ]
Is
IS
IS
IS
IS
IS
Is

1.0000000
1.0000000
1.1666667
1.5000000
2.0666667
3.0000000
4.5357143
7.0833333
11.3555556
18.6000000
31.0151515

PROGRAM H_FIT RUN WITH DOUBLE PRECISION

INPUT WAS OF TYPEO

THE ZEROTH MOMENT WAS USED IN THE FIT

RESULTS OF ANALYTIC SOLUTION -

NUMERATOR :

2 OF THE SUM:
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SMALLB(1)= 1.499999999999999667

BIGB(1)= 1.000000000000000000
DENOMINATOR:

SMALLA(1)= 3.999999999999999334

BIGA(1)= 1.000000000000000000
VALUES OF K & C RRE:

K= 9.027033336853110823

C= 0.500000000000000000

ESTIMATED H-FUNCTION PARAMETERS
FOR THE SUM OF THE INDEPENDENT
H-FUNCTION VARIATES ARE:

M,N,P,Q = 1011

K, C = 9.0270333  0.5000000
a, A = 4.00000 1.00000
b, B = 1.50000 1.00000

THE MOMENTS ABOUT THE ORIGIN OF THIS
H-FUNCTION ARE:

THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT IS 1.0000000
THE SECOND MOMENT IS 1.1666667
THE THIRD MOMENT IS 1.5000000
THE FOURTH MOMENT IS 2.0625000
THE FIFTH MOMENT IS 2.9791667
THE NEXT MOMENT IS 4.4687500
THE NEXT MOMENT IS 6.9062500
THE NEXT MOMENT IS 10.9348958
THE NEXT MOMENT IS 17.6640625
THE NEXT MOMENT IS 29.0195312

DETERMINE P.D.F.(Z) AND C.D.F.(Z)
FOR VALUES OF Z FROM 0.0500 TO 2.0000
WITH STEP SIZE 0.0500
FOR THE SUM OF 1 TERMS, WHERE
THE MAXIMUM NUMBER OF POLES TO BE EVALUATED IS 100.
CRUMP PARAMETERS: NUMBER OF COMPLEX VALUES = 1001,
PERCENT OF HIGHEST Z VALUE = 1.00, AXIS POINT A = 4.7785
FORM FOR OVERALL PROBLEM (WHERE YJ = XJ**PJ):
Z=Yl
VARIATE X 1 IS TYPE NUMBER 4
INPUT PARAMETERS ARE THETA = 9.02703, PHI = 0.50000
AND POWER = 1.00000
THE P.D.F. FOR VARIATE X 1 IS GIVEN BY:

10 ( 4.000, 1.000)

9.02703 H ( 0.50000 X):
11 ( 1.500, 1.000)
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THE P.D.F. FOR TERM 1 OF THE SUM IS GIVEN BY:

1 0
9.02703 H (  0.50000 Z), WHERE

11

(BA(I),GBA(I)): ( 1.500, 1.000) (

(cp(1),6eD(1)): (  4.000, 1.000) (

CONVERGENCE TYPE = 7

D= 0.00 E= 0.00 L = -2.50 R = 1.0000

Z PDF(2) CDF(2)
0.0500 0.025842 0.000523
0.1000 0.070299 0.002876
0.1500 0.124083 0.007706
0.2000 0.183346 0.015375
0.2500 0.245633 0.026091
0.3000 0.309153 0.039958
0.3500 0.372518 0.057003
0.4000 0.434599 0.077189
0.4500 0.494465 0.100426
0.5000 0.551329 0.126585
0.5500 0.604526 0.155498
0.6000 0.653488 0.186967
0.6500 0.697733 0.220768
0.7000 0.736853 0.256655
0.7500 0.770506 0.294362
0.8000 0.798410 0.333610
0.8500 0.820340 0.374104
0.9000 0.836126 0.415541
0.9500 0.845645 0.457612
1.0000 0.848826 0.500000
1.0500 0.845645 0.542388
1.1000 0.836126 0.584459
1.1500 0.820340 0.625896
1.2000 0.798410 0.666390
1.2500 0.770506 0.705638
1.3000 0.736853 0.743345
1.3500 0.697733 0.779232
1.4000 0.653488 0.813033
1.4500 0.604526 0.844502
1.5000 0.551329 0.873415
1.5500 0.494465 0.899574
1.6000 0.434599 0.922811
1.6500 0.372518 0.942997
1.7000 0.309153 0.960042
1.7500 0.245633 0.973909
1.8000 0.183346 0.984625
1.8500 0.124083 0.992294
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1.9000 0.070297 0.997124
1.9500 0.025793 0.999477
2.0000 -0.001952 0.999977

NUMBER OF POLES EVALUATED = 100

PROGRAM COMPAR RUN IN DOUBLE PRECISION

X Y (H-FCN) Y (EVAL) RESIDUAL
0.0500 0.0258419798 0.0500000000 -0.0241580202
0.1000 0.0702990184 0.1000000000 -0.0297009816
0.1500 0.1240833016 0.1500000000 -0.0259166984
0.2000 0.1833464944 0.2000000000 -0.0166535056
0.2500 0.2456325663 0.2500000000 -0.0043674337
0.3000 0.3091534688 0.3000000000 0.0091534688
0.3500 0.3725176396 0.3500000000 0.0225176396
0.4000 0.4345990979 0.4000000000 0.0345990979
0.4500 0.4944645689 0.4500000000 0.0444645689
0.5000 0.5513288954 0.5000000000 0.0513288954
0.5500 0.6045258790 0.5500000000 0.0545258790
0.6000 0.6534882583 0.6000000000 0.0534882583
0.6500 0.6977334553 0.6500000000 0.0477334553
0.7000 0.7368531561 0.7000000000 0.0368531561
0.7500 0.7705055551 0.7500000000 0.0205055551
0.8000 0.7984095245 0.8000000000 -0.0015904755
0.8500 0.8203402272 0.8500000000 -0.0296597728
0.9000 0.8361258520 0.9000000000 -0.0638741480
0.9500 0.8456452546 0.9500000000 -0.1043547454
1.0000 0.8488263632 1.0000000000 -0.1511736368
1.0500 0.8456452546 0.9500000000 -0.1043547454
1.1000 0.8361258520 0.9000000000 -0.0638741480
1.1500 0.8203402272 0.8500000000 -0.0296597728
1.2000 0.7984095245 0.8000000000 -0.0015904755
1.2500 0.7705055551 0.7500000000 0.0205055551
1.3000 0.7368531561 0.7000000000 0.0368531561
1.3500 0.6977334553 0.6500000000 0.0477334553
1.4000 0.6534882583 0.600000000C 0.0534882583
1.4500 0.6045258790 0.5500000000 0.0545258790
1.5000 0.5513288954 0.5000000000 0.0513288954
1.5500 0.4944645689 0.4500000000 0.0444645689
1.6000 0.4345990979 0.4000000000 0.0345990979
1.6500 0.3725176396 0.3500000000 0.0225176396
1.7000 0.3091534687 0.3000000000 0.0091534687
1.7500 0.2456325660 0.2500000000 -0.0043674340
1.8000 0.1833464889 0.2000000000 -0.0166535111
1.8500 0.1240831901 0.1500000000 -0.0259168099
1,9000 0.0702967579 0.1000000000 -0.0297032421
1.9500 0.0257925005 0.0500000000 -0.0242074995




2.0000 -0.0019520985 0.0000000000
ESTIMATED SSE IS 0.0920133337
ESTIMATED MSE IS 0.0023003333

THE MAXIMUM ABSOLUTE DIFFERENCE BETWEEN THE
H-FUNCTION AND THE ACTUAL FUNCTION IS

THE INTEGRATED ABSOLUTE DENSITY DIFFERENCE
(AN ESTIMATE OF THE AREA BETWEEN THE
H-FUNCTION AND THE ACTUAL DENSITY) IS

DISTRIBUTED BETA VARIATES

PROGRAM SUMVAR RUN IN DOUBLE PRECISION
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-0.0019520985

0.1511736368

0.0752034552

FOR THE SUM OF 2 INDEPENDENT H-FUNCTION VARIATES
INPUT PARAMETERS FOR VARIABLE NUMBER 1 OF THE SUM:

M,NP,Q = 1011
K, C 2.0000000 1.0000000

a, A = 2.00000 1.00000

b, B = 0.00000 1.00000

THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT IS 0.3333333
THE SECOND MOMENT IS 0.1666667
THE THIRD MOMENT 1S 0.1000000
THE FOURTH MOMENT IS 0.0666667
THE FIFTH MOMENT IS 0.0476190
THE NEXT MOMENT IS 0.0357143
THE NEXT MOMENT IS 0.0277778
THE NEXT MOMENT IS 0.0222222
THE NEXT MOMENT IS 0.0181818
THE NEXT MOMENT IS 0.0151515

INPUT PARAMETERS FOR VARIABLE NUMBER 2 OF THE SUM:

M,N,P, Q= 1011

K, C = 2.0000000 1.0000000
a, A = 2.00000 1.00000
b, B = 0.00000 1.00000

THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT 1S 0.3333333
THE SECOND MOMENT 1S 0.1666667
THE THIRD MCMENT IS 0.1000000
THE FOURTH MOMENT IS 0.0666667




MOMENT IS
MCMENT IS
MOMENT 1S
MCMENT 1S
MOMENT 1S
MCMENT 1S

0.0476190
0.0357143
0.0277778
0.0222222
0.0181818
0.0151515

FOR THE RANDOM VARIABLE GIVEN AS THE SUM

OF THE ABOVE INDEPENDENT H-FUNCTION

VARIATES, THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS
THE FIRST MOMENT IS
THE SECOND MOMENT IS
THE THIRD MOMENT IS
THE FOURTH MOMENT IS
THE FIFTH

THE
THE
THE
THE
THE

NEXT
NEXT
NEXT
NEXT
NEXT

MOMENT IS
MOMENT IS
MOMENT IS
MCMENT 1S
MOMENT 1S
MOMENT IS

1.0000000
0.6666667
0.5555556
0.5333333
0.5666667
0.6507937
0.7952381
1.0222222
1.3703704
1.9030303
2.7229437

PROGRAM H_FIT RUN WITH DOUBLE PRECISION
INPUT WAS OF TYPEO
THE ZEROTH MOMENT WAS USED IN THE FIT

RESULTS OF ANALYTIC SOLUTION -

NUMERATOR:

SMALLB(1)=

BIGB(1)=

DENCMINATOR:
SMALLA(1)=

BIGA(1)=

K=  302.358560865130122863
C= 0.500000000000000000

ESTIMATED H-FUNCTION PARAMETERS
FOR THE SUM OF THE INDEPENDENT

1.333333333333333204
1.000000000000000000

5.999999999999999556
1.000000000000000000
VALUES OF K & C ARE:

H-FUNCTION VARIATES ARE:

M, N, P,

K, C
a, A
b, B

Q =
302.

1 011

3585609 0.5000000

6.00000
1.33333

1.00000
1.00000

THE MOMENTS ABOUT THE ORIGIN OF THIS
H-FUNCTION ARE:
THE ZEROTH MOMENT IS

1.0000000
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THE FIRST MOMENT IS 0.6666667
THE SECOND MOMENT IS 0.5555556
THE THIRD MOMENT 1S 0.5349794
THE FOURTH MOMENT IS 0.5706447
THE FIFTH MOMENT IS 0.6571060
THE NEXT MOMENT IS 0.8031296
THE NEXT MOMENT IS 1.0296533
THE NEXT MOMENT IS 1.3728711
THE NEXT MOMENT IS 1.8915113
THE NEXT MOMENT IS 2.6796410

DETERMINE P.D.F.(Z) AND C.D.F.(Z)

FOR VALUES OF Z FROM 0.0500 TO 2.0000

WITH STEP SIZE 0.0500

FOR THE SUM OF 1 TERMS, WHERE

THE MAXIMUM NUMBER OF POLES TO BE EVALUATED IS 100.
CRUMP PARAMETERS: NUMBER OF COMPLEX VALUES = 1001,

PERCENT OF HIGHEST Z VALUE = 1.00, AXIS POINT A = 4.7785

FORM FOR OVERALL PROBLEM (WHERE YJ = XJ**PJ):

Z =Yl

VARIATE X 1 IS TYPE NUMBER 4

INPUT PARAMETERS ARE THETA = 302.35856, PHI = 0.50000
AND POWER =  1.00000

THE P.D.F. FOR VARIATE X 1 IS GIVEN BY:

1 0 ( 6.000, 1.000)
302.35856 H ( 0.50000 X):

11 ( 1.333, 1.000)
THE P.D.F. FOR TERM 1 OF THE SUM IS GIVEN BY:

10
302.35856 H ( 0.50000 Z), WHERE

11

(BA(1),GBA(I)): ( 1.333, 1.000) (
(ep(1),6CD(1)): ( 6.000, 1.000) (
CONVERGENCE TYPE = 7
D= 0.00 E= 0.00 L = -4.67 R = 1.0000

Z PDF(Z) CDF(2)
0.0500 0.136922 0.003018
0.1000 0.313676 0.014247
0.1500 0.488431 0.034343
0.2000 0.648272 0.062838
0.2500 0.787247 0.098821
0.3000 0.902663 0.141169
0.3500 0.993688 0.188680
0.4000 1.060648 0.240137
0.4500 1.104632 0.294361
0.5000 1.127231 0.350243
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.5500
.6000
. 6500
.7000
.7500
.8000
.8500
.9000
.9500
.0000
.0500
.1000
.1500
.2000
. 2500
.3000
.3500
. 4000
.4500
.5000
.5500
.6000
.6500
.7000
.7500
.8000
.8500
. 9000
.9500
.0000

NHEHMHRHR R R R R R R RERRRHNOO00000000

leNojoNeNoeNoNoNoNojloReNoNojoNo oo NolofoNoNoNeoNoNo i R SN Sl ol

-0

.130362
.116150
.086825
.044659
. 991905
. 930756
.863314
.791555
.717316
.642271
.567924
.495600
. 426434
.361374
.301178
.246416
.197475
.154565
.117726
.086842
.061651
.041760
.026665
.015767
.008399
.003848
.001390
.000326
.000026
.000001
NUMBER OF POLES EVALUATED =

ol e NeNoNoeNoNe oo NooNoNeNoNoNoNoNoNeNoRo oo NNoNeNe oo N

100

.406760
.462990
.518123
.571459
.622412
.670510
.715383
.756769
.794498
.828487
.858736
.885314
.908349
.928025
. 944568
.958234
. 969306
. 978082
.984864
. 989954
. 993643
. 996207
.997899
. 998944
. 999535
.999831
. 999954
. 999993
.000000
.000000

PROGRAM COMPAR RUN IN DOUBLE PRECISION

X

.0500
.1000
.1500
.2000
.2500
.3000
.3500
. 4000
.4500
.5000
.5500
. 6000

[eN=NeloNoNoNeNoNoNoNoNe]

HiHERRHEHOOOOOOO

Y (H-FCN)

.1369215248
.3136760423
. 4884305603
. 6482720923
. 7872469795
. 9026634638
. 9936878985
.0606483104
.1046322658
.1272305972
.1303624979
.1161501217

o pd et = = OO0OO0OO0OO0OO0O

Y (EVAL)

.1900833333
.3606666667
.5122500001
.6453333335
.7604166670
.8580000005
. 9385833342
.0026666679
.0507500018
.0833333358
.1009166700
.1040000043

OCOO0OO0OO0O0O0O0O0

RESIDUAL

.0531618085
.0469906244
.0238194398
.0029387588
.0268303125
.0446634633
.0551045643
.0579816425
.0538822640
.0438972614
.0294458279
.0121501174
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.6500
.7000
. 7500
.8000
.8500
. 9000
. 9500
.0000
.0500
.1000
.1500
.2000
.2500
.3000
. 3500
.4000
. 4500
.5000
.5500
.6000
.6500
. 7000
. 7500
.8000
.8500
. 9000
.9500
2.0000

FHRRHMNERMBRHEHEPHERERHRERHEEFOOO0OO000O0O

1.0868253832
1.0446588587
0.9919045410
0.9307563999
0.8633140228
0.7915554397
0.7173157774
0.6422707533
0.5679242735
0.4955995779
0.4264335126
0.3613736037
0.3011776887
0.2464159201
0.1974750104
0.1545646276
0.1177258977
0.0868420048
0.0616509293
0.0417604104
0.0266652853
0.0157674444
0.0083987678
0.0038476138
0.0013897874
0.0003256263
0.0000264951
-0.0000011508

ESTIMATED SSE IS
ESTIMATED MSE 1S
THE MAXIMUM ABSOLUTE DIFFERENCE BETWEEN THE
H-FUNCTION AND THE ACTUARL FUNCTION IS
THE INTEGRATED ABSOLUTE DENSITY DIFFERENCE
(AN ESTIMATE OF THE AREA BETWEEN THE
H-FUNCTION AND THE ACTUAL DENSITY) IS

— e

1.09308333838
1.0686666735
1.0312500084
0.9813333435
0.9194166789
0.8460000145
0.7615833504
0.6666666865
0.5715833504
0.4860000145
0.4094166789
0.3413333435
0.2812500084
0.2286666735
0.1830833388
0.1440000043
0.1109166700
0.0833333358
0.0607500018
0.0426666679
0.0285833342
0.0180000005
0.0104166670
0.0053333335
0.0022500001
0.0006666667
0.0000833333
0.0000000000

0.0358601689
0.0008965042

-0.0062579556
-0.0240078148
-0.0393454674
-0.0505769436
-0.0561026561
-0.0544445748
-0.0442675730
-0.0243959332
-0.0036590769
0.0095995634
0.0170168337
0.0200402602
0.0199276803
0.0177492466
0.0143916716
0.0105646233
0.0068092277
0.0035086690
0.0009009275
-0.0009062575
-0.0019180489
-0.0022325561
-0.0020178992
-0.0014857197
-0.0008602127
-0.0003410404
-0.0000568382
-0.0000011508

0.0579816425

0.0442126253

VARIATES WITH

WEIBULL AND RAYLEIGH DISTRIBUTIONS

PROGRAM SUMVAR RUN IN DOUBLE PRECISION
FOR THE SUM OF 2 INDEPENDENT H-FUNCTION VARIATES
INPUT PARAMETERS FOR VARIABLE NUMBER 1 OF THE SUM:

M, N, P, Q =

1 001
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K, C = 1.3195079 1.3195079

b,B = 0.80000 0.20000

THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT IS 0.6958418
THE SECOND MOMENT IS 0.5095992
THE THIRD MOMENT IS 0.3889251
THE FOURTH MOMENT 1S 0.3072421
THE FIFTH MOMENT IS 0.2500000
THE NEXT MOMENT IS 0.2087525
THE NEXT MOMENT IS 0.1783597
THE NEXT MOMENT IS 0.1555701
THE NEXT MOMENT IS 0.1382589
THE NEXT MOMENT 1S 0.1250000

INPUT PARAMETERS FOR VARIABLE NUMBER 2 OF THE SUM:

M,N,P,Q = 1001

K, C = 1.7320508 1.7320508

b, B = 0.50000 0.50000

THE MOMENTS ABOUT THE ORIGIN ARE:
THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT IS 0.5116634
THE SECOND MOMENT IS 0.3333333
THE THIRD MOMENT IS 0.2558317
THE FOURTH MOMENT IS 0.2222222
THE FIFTH MOMENT 1S 0.2131931
THE NEXT MOMENT IS 0.2222222
THE NEXT MOMENT IS 0.2487252
THE NEXT MOMENT IS 0.2962963
THE NEXT MOMENT IS 0.3730879
THE NEXT MOMENT IS 0.4938272

FOR THE RANDOM VARIABLE GIVEN AS THE SUM
OF THE ABOVE INDEPENDENT H-FUNCTION
VARIATES, THE MOMENTS ABOUT THE ORIGIN ARE:

THE ZEROTH MOMENT
THE FIRST MOMENT
THE SECOND MOMENT
THE THIRD MOMENT
THE FOURTH MOMENT
THE FIFTH
THE NEXT
THE NEXT
THE NEXT
THE NEXT
THE NEXT

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

.0000000
.2075051
.5550061
.1228284
.0567312
.6225066
.3134235
12.0647384
20.6900000
36.7858797
67.6453356

SR WN e
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PROGRAM H_FIT RUN WITH DOUBLE PRECISION
INPUT WAS OF TYPEO

DEFAULT INITIAL GUESS WAS USED

THE ZEROTH MOMENT WAS USED IN THE FIT
RESULTS OF ZSPOW -

NUMERATOR :
SMALLB(1)= 5.291047428929997909
BIGB(1)= 0.623582866349619888
DENCMINATOR:
VALUES OF K & C ARE:
K= 0.023697857773422697

C= 2.459933992450636764
FNORM= 0.000000000000000000

ESTIMARTED H-FUNCTION PARAMETERS
FOR THE SUM OF THE INDEPENDENT
H-FUNCTION VARIATES ARE:

M,N,P,Q = 1001
K, C = 0.0236979  2.4599340
b, B = 5.29105 0.62358
THE MOMENTS ABOUT THE ORIGIN OF THIS
H-FUNCTION ARE:
THE ZEROTH MOMENT IS 1.0000000
THE FIRST MOMENT IS 1.2075051
THE SECOND MOMENT IS 1.5550061
THE THIRD MOMENT IS 2.1228284
THE FOURTH MOMENT IS 3.0568212
THE FIFTH MOMENT IS 4.6235079
THE NEXT MOMENT IS 7.3191453
THE NEXT MOMENT IS 12.0889706
THE NEXT MOMENT IS 20.7770136
THE NEXT MOMENT IS 37.0686930
THE NEXT MOMENT IS 68.5084603
DETERMINE P.D.F.(Z) AND C.D.F.(2)
FOR VALUES OF Z FROM 0.0500 TO  2.4000
WITH STEP SIZE 0.0500

FOR THE SUM OF 1 TERMS, WHERE
THE MAXIMUM NUMBER OF POLES TO BE EVALUATED IS 100.
CRUMP PARAMETERS: NUMBER OF COMPLEX VALUES = 1001,

PERCENT OF HIGHEST Z VALUE = 1.00, AXIS POINT A =

FORM FOR OVERALL PROBLEM (WHERE YJ = XJ**PJ):

Z2=Yl

VARIATE X 1 IS TYPE NUMBER 4
INPUT PARAMETERS ARE THETA =

0.02370, PHI =

3.9820

2.45993
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AND POWER =
THE P.D.F. FOR VARIATE X 1 IS GIVEN BY:

0.02370 H

1.00000

10

(
01
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2.45993 X):

( 5.291, 0.624)

THE P.D.F. FOR TERM 1 OF THE SUM IS GIVEN BY:

0.02370 H

(BA(1),GBA(I)): (

1 0

(
01

CONVERGENCE TYPE = 1
E = -0.62 L= 4.79 R = 1.3425
CDF(2)

D=
Z
.0500
.1000
.1500
.2000
.2500
.3000
.3500
.4000
.4500
.5000
.5500
.6000
. 6500
.7000
. 7500
.8000
.8500
. 9000
. 9500
.0000
.0500
.1000
.1500
. 2000
.2500
.3000
.3500
. 4000
.4500
.5000
.5500
. 6000
.6500

R RREREEHRREREHNHEO0OO000000000000000000

0.62

OQOOOCOOKHKFHFHKFKFHFFHKFMEHEFOOOOOODOOOODODODOOOOOO

PDF(2)

.000000
.000000
.000007
.000067
.000388
.001561
.004860
.012505
.027742
.054613
.097399
.159805
. 244059
.350144
.475360
.614318
.759413
.901657
.031744
.141135
.223000
.272868
. 288939
.272029
.225228
.153351
.062279
. 958308
.847563
.735552
.626854
.524979
.432336

5.291,

[eNeoReoNeoloRoNoNoNeNoNoojoeNoloRoNojeNolNoNofoloNoNeNoRNeNoloNaNeNe

2.45993 2), WHERE

0.624) (

.000000
.000000
.000000
.000001
.000011
.000054
.000202
.000612
.001579
.003580
.007305
.013648
.023651
.038419
.058986
.086185
.120521
.162079
.210484
.264908
.324137
.386673
. 450859
.515016
.577563
.637120
.692578
.743133
.788296
.827869
.861907
.890669
.914559




.7000
.7500
.8000
.8500
.9000
. 9500
.0000
.0500
.1000
.1500
.2000
.2500
.3000
.3500
.4000

NNRONDNONNODNDO M

[eN=NeoloNoRoleNoNoNoNoleNoNoNo

.350321
. 279456
.219576
.170015
.129779
.097705
.072574
.053205
.038504
.027513
.019386
.013441
.009088
.005791
.002836
NUMBER OF POLES EVALUATED =

[=NeNeoloNeNeoNoNoNoNoNoNoRoNoNo/

. 934080
. 949778
.962209
.971907
. 979366
. 985021
. 989252
.992375
. 994650
. 996287
. 997448
. 998262
.998819
.999188
.999396

94
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APPENDIX B
GRAPHICAL DEPICTIONS OF SUMS OF SELECTED INDEPENDENT

UNIFORM, POWER FUNCTION, AND BETA VARIATES

Listed below are graphical depictions of the examples in
Section 5.1.1 of analytic convolutions performed to find the
exact distribution of the sum of selected independent random
variables. The exact distributions of sums of two independent
variates with certain uniform, power function, and beta
distributions were found using the convolution integral. These
graphs may provide same insight to the sum of independent
variates with a restricted range. These sums produce a
distribution with two functional forms over distinct ranges of
the variable and do not have continuous derivatives of all
orders at x=1.

The two leftmost graphs in each row show the densities of
2(x2) . The

rightmost graph in each row shows the density of Y=x1+x2,

" each random variable in the sum, fx (x and fx
1

fY(y), when xl and x2 are independent. Each series of graphs
is also referenced to the corresponding equation number fram

Section 5.1.1.
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