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Natural and Modified Forms of Distributed Order Fractional Diffusion
Equations

Abstract

We consider diffusion-like equations with time and space fractional derivatives of distributed-order
for the kinetic description of anomalous diffusion and relaxation phenomena, whose mean squared
displacement does not changes as a power law in time. Correspondingly, the underlying processes
cannot be viewed as self-affine random processes possessing a unique Hurst exponent. We show that
different forms of distributed-order equations, which we call “natural” and “modified” ones, serve
as a useful tool to describe the processes which become more anomalous with time (retarding sub-
diffusion and accelerated superdiffusion) or less anomalous that demonstrate the transition from
anomalous to normal diffusion (accelerated subdiffusion and truncated Levy flights). Fractional
diffusion equation with the distributed-order time derivative also accounts for the logarithmic dif-
fusion (strong anomaly). We also discuss the underlying random walk models leading to the natural
and modified forms.

? ? ?

Bart lomiej DYBIEC

Statistical Physics Division, Institute of Physics, Jagiellonian University, ul. prof. Stanisawa
 Lojasiewicza 11, 30-348 Krakw, Poland
e-mail: bartek@th.if.uj.edu.pl

Stationary states in systems driven by Levy noise

Abstract

Systems driven by Levy noises, in comparison to their Gaussian analogues, display unexpected
properties. In particular, these intriguing properties are well visible with respect to stationary
states. For α < 2, i.e. in the non-Gaussian regime, stationary states are not of the Boltzmann-
Gibbs type and they exist for potential wells which are steep enough. Otherwise, they do not exist.
Here, we demonstrate, when stationary states for systems driven by Levy noises can be recorder. We
will focus on 2D systems, nevertheless 1D examples will be also provided. Therefore, various version
of (space) fractional Smoluchowski equation will be studied both analytically and numerically.

? ? ?

Roberto GARRAPPA

Department of Mathematics, University of Bari, Italy
e-mail: roberto.garrappa@uniba.it

On the Prabhakar derivative: theory, numerical treatment and applications
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Abstract

In 1967 Havriliak and Negami [1] proposed a new empirical constitutive law to describe the anoma-
lous dielectric behaviour of some glassy materials and amorphous polymers near the glass-liquid
transition. The complex susceptibility in the Havriliak-Negami model

χ̂(ω) =
1[

1 +
(
iτω
)α]γ ,

is characterized by two real powers 0 < α,αγ < 1, which take into account both the asymmetry and
the broadness observed in the shape of the dielectric spectrum, and by a time-relaxation parameter
τ > 0.

Further investigations have highlighted the suitability of the Havriliak-Negami model also for
fitting experimental data from a large extent of heterogeneous systems such as, for instance, bio-
logical tissue.

When moving from the frequency domain to the time domain the Havriliak-Negami model
involves a fractional pseudo-differential operator(

0D
α
t + λ

)γ
which is strictly related to the integral operator studied by Prabhakar in 1971 [5] and based on a
generalization to three parameters of the Mittag-Leffler function

Eγα,β(z) =
1

Γ(γ)

∞∑
k=0

Γ(γ + k)zk

k!Γ(αk + β)
.

also known as the Prabhakar function. For this reason
(
0D

α
t + λ

)γ
is often refereed to as the

Prabhakar derivative.
The problem of characterizing and formally defining the Prabhakar derivative

(
0D

α
t + λ

)γ
has

been the subject of recent investigation. In this talk we discuss the main approaches introduced to
characterize the Prabhakar derivative and, in particular, we focus on recent results [2, 3, 4] which
allow to open new possibilities for the numerical treatment of the Prabhakar derivative, especially
in view of the application in computational electromagnetism.

References
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Ewa GUDOWSKA-NOWAK
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Linear response, fluctuation-dissipation relations and detailed balance breaking
with Lévy noises

Abstract

TBA
? ? ?

Rudolf HILFER

Institute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569 Stuttgart,
Germany
e-mail: hilfer@icp.uni-stuttgart.de

Mathematical Analysis of Time Flow

Abstract

The mathematical analysis of time flow in physical many body systems leads to the study of long
time limits. This work discusses the interdisciplinary problem of local stationarity, how stationary
solutions can remain slowly time dependent after a long time limit. A mathematical definition of
almost invariant and nearly indistinguishable states on C?-algebras is introduced. It is based on
functions of bounded mean oscillation [1]. Rescaling of time yields generalized time flows of almost
invariant and macroscopically indistinguishable states, that are mathematically related to stable
convolution semigroups and fractional calculus. The infinitesimal generator is a fractional derivative
of order less than or equal to unity [2]. Applications of the analysis are given to irreversibility and
experiment.

References

[1] R. Hilfer, Time Automorphisms on C?-Algebras Mathematics, Vol. 3, pages 626-643 (2015).

[2] R. Hilfer, Mathematical analysis of time flow, Analysis 36, 49 (2016).
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Entanglement of one-excitation states in one-dimensional spin and electron
systems
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Abstract

We show that entanglement in one-dimensional spin and electron systems, with one excitation,
depends only on the system size and has very simple form in both multipartite and bipartite
case. We consider the exact solutions given by the Fourier transform known in literature as the
basis of wavelets. Regarding the multipartite case, we present very simple expressions for global
entanglement and N-concurrence, and show that they are mutually related. In the bipartite case,
we give expressions for I-concurrence and negativity, and show that they are also depend on each
other. Presented formulas allow one to calculate entanglement for an arbitrary size N, while the
original definitions practically work only for the systems consisting of a few qubits. We expect
that the size dependence of the entanglement of states with elementary excitation may help to
understand entanglement in the systems with greater number of elementary excitations.

? ? ?

Tadeusz KOSZTO LOWICZ

Institute of Physics, Jan Kochanowski University, ul. Świȩtokrzyska 15, 25-406 Kielce, Poland
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Normal diffusion, subdiffusion, and slow subdiffusion in a membrane system

Abstract

We consider various kinds of diffusion in a system with a thin membrane. The membrane is treated
as a partially permeable wall. Using the random walk model with discrete time and space variables
the probabilities describing a particle?s random walk are found. Probabilities are transformed to the
system in which the variables are continuous. From the obtained probabilities we derive boundary
conditions at the membrane. One of the condition demands the continuity of flux at the membrane,
but the other one is unexpected and contains the Riemann-Liouville fractional time derivative. The
additional memory effect, represented by the fractional derivative, is created by the membrane
even for normal diffusion case. In the presented model a kind of diffusion is defined by a probability
density of time which is needed for the particle to take its next step.

? ? ?

Silvia LICCIARDI
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e-mail: silviakant@gmail.com

Theory of Hermite Calculus

Abstract

The use of umbral methods and of other concepts borrowed from algebraic theory of operators
is a powerful tool to treat problems concerning the theory of special functions and the relevant
applications in physical problems. The Hermite Calculus allows tremendous simplifications in a va-
riety of problems involving Hermite polynomials and functions. It yields the possibility of providing
explicit integration of families of function hardly achievable with conventional means and open new
scenarios for the definition of new integral transforms of noticeable interest in application in optics.

? ? ?
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Magnetic pentagonal ring - Galois extensions and crystallography

Abstract

The Galois symmetry of exact Bethe Ansatz eigenstates for magnetic pentagonal ring is shown
to bear a close analogy to some crystallographic constructions. Automorphisms of number field
extensions associated with these eigenstates prove to be related to choices of Bravais cells in the
finite crystal lattice Z2×Z2, responsible for extension of the cyclotomic field by Bethe parameters.

? ? ?

Francesco MAINARDI

Department of Physics and Astronomy, University of Bologna, Via Irnerio 46, I-40126 Bologna,
Italy
e-mails: francesco.mainari@bo.infn.it; francesco.mainardi@unibo.it

Complete monotonicity for fractional relaxation processes

Abstract

We revisit some models of anomalous relaxation based on evolutions equations of fractional order.
Our attention is on the complete monotonicty of the functions characterizing the relaxation pro-
cesses, both in viscoelastic and dielectric media. The monotonicity requirement is known to provide
a sufficient condition for the physical feasibility of the corresponding models.

Let us recall that a real function f(t) defined for t ∈ R+ is said to be completely monotonic
(CM) if it possesses derivatives f (n)(t) for all n = 0, 1, 2, 3, .. and if (−1)nf (n)(t) ≥ 0 for all t > 0.
The limit f (n)(0+) = lim

t→0+
f (n)(t) finite or infinite exists. It is known from the Bernstein theorem

that a necessary and sufficient condition that f(t) be CM is that

f(t) =

∫ ∞
0

e−rt dµ(r),

where µ(t) is non-decreasing and the integral converges for 0 < t < ∞. In other words f(t) is
required to be the real Laplace transform of a non negative measure, in particular

f(t) =

∫ ∞
0

e−rtK(r) dr , K(r) ≥ 0,

where K(r) is a standard or generalized function known as spectral density of the CM function.
As discussed by several authors, the CM is an essential property for the physical acceptability

and realizability of the models since it ensures that in isolated systems the energy decays mono-
tonically as expected from physical considerations. Moreover, in view of the spectral density, the
relaxation process can be seen as a linear (discrete or continuous) superposition of elementary expo-
nential relaxation processes. The resulting process, however, can decay in a non-exponential way, so
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giving raise to the so-called anomalous relaxation processes. Studying the conditions under which
the response function of a system is CM is therefore of fundamental importance. In particular, it is
found that the governing equations are expressed in terms of derivatives and integrals of fractional
order.

In the enclosed bibliography we report only the papers by the author and his colleagues pub-
lished in recent years related to this field. The fundamental contributions by other authors will be
referred in the lecture.
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? ? ?

Ralf METZLER

Chair for Theoretical Physics, Institute for Physics and Astronomy, University of Potsdam, 14476
Potsdam-Golm, Germany
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Anomalous diffusion in membranes and cytoplasm of biological cells

Abstract

A surging amount of experimental and simulations studies reveals persistent anomalous diffusion
in both cellular membranes and the cytoplasm [1, 2]. The anomalous diffusion is observed for
micron-sized objects down to labelled single molecules such as green fluorescent proteins [3].

This talk will first present results from large scale computer simulations and stochastic analysis
of the motion of lipids and embedded proteins in lipid bilayer model membranes [4], indicating that
increased disorder leads to longer and longer lasting anomalous diffusion. In particular, the motion
of lipids and proteins can become non-Gaussian [4]. In the membranes of living cells anomalous
diffusion of embedded protein channels can last over several hundreds of seconds [5]. In particular,
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this anomalous diffusion can become non-ergodic and exhibit ageing, two topics explained and
discussed in this talk [6].

The findings of anomalous diffusion in membranes will be complemented by a discussion of
anomalous diffusion in the framework of the continuous time random walk and the fractional
Langevin equation [6].

References

[1] M. J. Saxton and K. Jacobsen, Ann. Rev. Biophys. Biomol. Struct. 26, 373 (1997).

[2] F. Hofling and T. Franosch, Rep. Progr. Phys. 76, 046602 (2013).

[3] C. Di Rienzo, V. Piazza, E. Gratton, F. Beltram, and F. Cardarelli, Nature Comm. 5, 5891 (2014).

[4] J.-H. Jeon, H. M.-S. Monne, M. Javanainen, and R. Metzler, Phys. Rev. Lett. 109, 188103 (2012); J.-H. Jeon,
M. Javanainen, H. Martinez-Seara, R. Metzler, and I. Vattulainen, Phys. Rev. X 6, 021006 (2016).

[5] A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, Proc. Natl. Acad. Sci. USA 108, 6438 (2011).

[6] R. Metzler, J.-H. Jeon, A. G. Cherstvy, E. Barkai, Phys. Chem. Chem. Phys. 16 24128 (2014).
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Convolutional approach to fractional calculus for distributions of several
variables

Abstract

We extend the semigroup {Φλ}λ∈C of Gel?fand and Shilov to the semigroup {Φλ}λ∈Cn and the one-
dimensional fractional calculus of distributions to the case of distributions on Rn with supports in
the nonnegative cone Rn+. We use distributional mixed derivatives of an arbitrary complex order to
solve Abel’s multidimensional integral equation and a distributional fractional differential equation
of wave type.

References

[1] I. M. Gelfand and G. E. Shilov, “Generalized functions, Properties and operation”, vol. I, (Academic Press, New
York and London, 1964).

[2] W. Lamb, A distributional theory of fractional calculus, Proc. Royal Soc. Edinburgh Sect. A (English Ed.) 99,
347 (1985).

[3] Chenkuan Li, Several results of fractional derivatives, Fract. Calc. Appl. Anal. 18(1), 192 (2015).

[4] S. Mincheva-Kamińska, Convolutional approach to fractional calculus for distributions of several variables, Fract.
Calc. Appl. Anal., 19(2), 441 (2016).

[5] S. G. Samko, A. A. Kilbas, and O. I. Marichev, “Fractional Integrals and Derivatives”, (Gordon and Breach
Science, Yverdon, Switzerland, 1993).

[6] V. S. Vladimirov, “Methods of the Theory of Generalized Functions”, (Taylor & Francis, London-New York,
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Paulius MIŠKINIS, Vaida VASILIAUSKIENĖ
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Some aspects of the fractional dynamical systems

Abstract

The possible generalization of dynamical systems with a nonlocal evolution operator is considered.
For this purpose, the concepts of fractional phase semiflow, fractional autonomous system and
the generalized exponent of the vector field are introduced. Two examples of their application are
explained in detail. As an example, the fractional generalization of the Lorenz system is introduced
and its two-dimensional reduction is analyzed. Depending on the type of reduction, the fractional
Lorenz system is shown to be closely related to the one-dimensional Richard’s or Gierer-Meinhardt
models.

References

[1] S. Adler, D. Ahluwalia, P. Mǐskinis, ”Concise encyclopedia of supersymmetry: and noncommutative structures
in mathematics and physics” [Adler Stephen, Ahluwalia Dharamvir, Mǐskinis Paulius and [et al.]], (Dordrecht,
Kluwer Academic Publishers, 2004).
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Fractional diffusion from Gaussian processes

Abstract

Following the results presented in [1, 2, 3], it is shown the emergence of space-, time- and space-
time fractional diffusions from Gaussian processes when the medium where the diffusion takes
place is characterised by a population of length-scales and/or time-scales. Different Gaussian pro-
cesses, even based on different physical models, are considered: the Continuous Time Random Walk
(CTRW) model; the fractional Brownian motion (fBm) and the Langevin equation. Moreover, the
proposed approach establishes a relation between the emergence of fractional diffusion and the
ergodicity breaking [4], and the resulting stochastic processes allow for reproducing diffusion with
mixed characteristics as observed for example in single particle tracking experiments in living cells.
Hence, the proposed approach is a promising tool to formulate stochastic processes for biological
and physical systems showing complex dynamics characterised by anomalous diffusion, ergodic-
ity breaking and aging. Furthermore, it is shown that for the same, and supposed experimentally
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observed, macroscopic fractional diffusion equation, the characterisation of the medium by the
population of its length-scales and/or time-scales allows to infer the correct underlying microscopic
Gaussian process, which is eventually not experimentally observable. At the same time, for a given
and expected microscopic Gaussian process the characteristics of the medium can be inferred when
indeed a fractional diffusion process is observed.

References

[1] M. Mura and G. Pagnini, Characterizations and simulations of a class of stochastic processes to model anomalous
diffusion, J. Phys. A: Math. Theor. 41, 285003 (2008).
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On the three parameter Mittag-Leffler function

Abstract

Prabhakar [1] was introduced the three–parameter Mittag–Leffler type function

E γ
α,β(z) =

∞∑
n=0

(γ)n
Γ(αn+ β)

zn

n!
,

(
<(α), γ > 0, β ∈ C

)
. (1)

Deriving a Laplace–integral expression for the function [2]

e γα,β(t;λ) = tβ−1E γ
α,β(−λtα) ,

one extends certain findings by Mainardi [3]. As a consequence of the obtained representation
the complete monotonicity (CM) of e γα,β(t;λ) is studied and related positivity results and certain

uniform upper bounds are established upon e γα,β(t;λ), see [2].
The second part of the talk consists from a study [4] of a probability distribution associated

with the Prabhakar function and consequent related Turán and Laguerre type inequalities will be
presented, pointing out the fresh research paper [5].
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[1] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel Yokohama
Math J 19, 7 (1971).
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Fractional Thermoelasticity

Abstract

The classical theory of thermoelasticity is governed by the equation of motion in terms of displace-
ments

µ∆u + (λ+ µ)grad divu− ρ∂
2u

∂t2
= βTKT gradT, (2)

the stress–strain–temperature relation

σ = 2µe + (λ tr e− βTKTT )I, (3)

and the standard heat conduction equation

∂T

∂t
= a∆T. (4)

Nonclassical theories of heat conduction and generalized theories of thermoelasticty, in which
the Fourier law and the standard heat conduction equation are replaced by more general equations,
constantly attract the attention of the researchers. For example, in materials with complex internal
structure described by memory and long-range interaction, the parabolic heat conduction equation
is substituted the equation with differential operators of fractional order

∂αT

∂tα
= −a(−∆)β/2T, 0 < α ≤ 2, 0 < β ≤ 2 . (5)

Here ∂αT
∂tα is the Caputo fractional derivative, (−∆)β/2 is the Riesz fractional operator being the

fractional generalization of the standard Laplace operator and having the Fourier transform

F
{

(−∆)β/2f(x)
}

= |ξ|βF {f(x)} , (6)

where x is a vector of variables, ξ is a vector of transform variables.
Each generalization of the heat conduction equation leads to the corresponding generalized the-

ory of thermal stresses. Thermoelasticity based on the fractional heat conduction equation (frac-
tional thermoelasticity) was proposed in [1, 2]; the book [3] sums up investigations in this field (see
also [4]). We present several problems solved in the framework of fractional thermoelasticity and
reflecting the typical features of the solutions.
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Numerical solutions of fractional advection diffusion equations

Abstract

This study looks at a governing equation of Lévy motion. This governing equation can be seen as
a generalization of the classical, deterministic advection diffusion equation. It can be represented
by fractional derivatives, which are integrodifferential operators, characterizing a spatially nonlocal
process. We describe how to determine a numerical solution for advection dominated problems in
the presence of the anomalous diffusion. Some numerical experiments will be presented to show the
performance of the method and to observe the anomalous diffusion.
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Fractional equations with variable diffusion coefficient: transport in
nonhomogeneous media

Abstract

The fractional equation with a variable diffusion coefficient is discussed. It comprises the derivatives
over both time and position. The equation results from a random walk in a nonhomogeneous
medium and from a Langevin formalism in the framework of a subordination method. Techniques
of solving the fractional equation for both Gaussian and general stable case are presented. The
density distributions for a few simple cases - a free particle, an harmonic and anharmonic oscillator
- serve as an illustration. All kinds of the anomalous diffusion are indicated. The influence of the
nonhomogeneity effects on the pattern of a relaxation to stationary states and the relaxation time
is discussed.

? ? ?
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Chaotic Hamiltonian systems and their statistical properties

Abstract

Nonlinear chaotic Hamiltonian system theory shows that even simple models can exhibit very
complex dynamics [1, 2]. Considering trajectories of such Hamiltonian systems in phase space, we
encounter very complicated and not completely known topology of that space. The lecture presents
a family of models, which are modification of the Chirikov standard map [3, 6].

For certain range of parameters in the phase space of this model, there are area of regular mo-
tions.called accelerator modes [3, 4]. In the center of that mode trajectory has a constant position
variable while momentum increases monotonically with time. Rest of trajectories from accelerated
modes follow this central trajectory. However, even in the case when no orbits had initial phase
space coordinates lying within stable accelerator-mode area, the anomalous diffusion of angular mo-
mentum was observed. It is due to the intermittent transition of the system from the chaotic orbits
to the unstable accelerator orbits i.e. trajectories lying close to the accelerator modes. These trajec-
tories will follow the stable accelerator orbits for some period of time and this effect is sometimes
called ”the stickiness” of modes [5].

The lecture also presents a way of building fractional stochastic process, that macroscopic
probability density is governed by parametrized fractional partial differential equation. This density
preserves some features of angular momentum density for analyzed family of chaotic Hamiltonian
systems where accelerated modes emerge [6].

This work has been done in colaboration with Piotr Pep lowski from Nicolaus Copernicus Uni-
versity.
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