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1 Introduction

The Singular Value Decomposition (SVD) is a powerful matrix decomposition that can pro-
vide insights into key properties of, and create good (and, in fact, the best) approximations
of, any real or complex matrix. One can immediately imagine the usefulness of such a de-
composition when performing numerical operations on a very large matrix, as it can greatly
increase the efficiency of calculations; and indeed, the SVD is an essential tool for data
analysis, and is of great importance in many areas of science.

The SVD was discovered and developed independently by a number of mathematicians.
Eugenio Beltrami and Camille Jordan were the first to do so, in 1873 and 1874, respectively;
they were followed by James Joseph Sylvester, Erhard Schmidt, and Hermann Weyl, among
others[11]. The first proof for rectangular and complex matrices was given by Carl Eckart
and Gale J. Young in 1936[1], and methods for computing the SVD of a matrix continued
to be refined throughout the mid-20th century, revolutionizing the field of numerical linear
algebra.

The SVD has a wide and fascinating range of applications. Political scientists have
used the SVD to categorize and predict the partisan voting behavior of congresspeople[8][7].
Crystallographers have used the SVD to measure crystal grain sizes[4][2]. Physicists have
used the SVD to develop theory regarding quantum information and entanglement[10][9][6].
Researchers in all fields, presented with ever-increasingly abundant and complex data, have
used higher-order versions of the SVD to deal with information stored in higher-dimensional
objects such as tensors[3].

In this project, I aim to learn about the many-faceted SVD and its properties by investi-
gating a range of related topics. First, I aim to study its existence and uniqueness theorems,
and the Eckart-Young theorem of best k-rank approximation[1]. After gaining a solid theo-
retical groundwork, I aim to familiarize myself with how it is implemented in software, and
finally, investigate some of its many applications.

2 Background

In this section, I will define the SVD, describe its significance as a generalization of the
eigendecomposition, show how to compute it, and then discuss the Eckart-Young theorem.

The “full” Singular Value Decomposition, for any matrix A ∈ Rm×n, is defined as follows:

A = UΣV T ,



where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, whose columns consist of the
left and right singular vectors of A, respectively, and Σ ∈ Rm×n is a diagonal matrix with
r = rank(A) leading positive diagonal entries, in non-decreasing order. The diagonal entries
of Σ consist of σi, where i = 1, .., p and p = min(m,n), and these σi are called the singular
values of A. The SVD also exists for all A ∈ Rm×n (and for all A ∈ Cm×n, in which case U
and V are unitary). Another way to write the SVD is as follows:

A =
r∑
i=1

σiuiv
T
i ,

where σi is the ith singular value, and ui and vi are the ith columns of U and V , respectively.
This sum, which in effect adds new “layers” of the form σiuiv

T
i on top of one another r

times to form A, provides valuable insight into how an important application of the SVD,
approximating matrices, works. I will briefly revisit this at the end of this section.

To explain the significance of the SVD, let us first recall that the regular eigendecompo-
sition of a matrix A ∈ Rn×n is given by the following:

A = QΛQ−1,

where Q ∈ Rn×n is a square matrix whose columns consist of the eigenvectors of A, and Λ is a
diagonal matrix whose diagonal entries consist of the eigenvalues of A. This decomposition is
useful in a variety of contexts; imagine how it would help compute An for large n. However,
it has some fatal limitations: to name a few, A must be square, and it must have real
eigenvalues.

So, how can we generalize such a decomposition to work for any matrix? The answer
is the SVD! We accomplish this by using two sets of singular vectors instead of one set of
eigenvectors. These are the right orthogonal vectors v1, .., vn, which give a basis of the row
space of A and go into V ∈ Rn×n, and the left orthogonal vectors u1, .., um, which give a
basis of the column space of A and go into U ∈ Rm×m. Strang[12] provides an illustration of
their relationship, which is different from that between regular eigenvalues and eigenvectors
(recall that r = rank(A)):

[Av1 = σ1u1, · · · , Avr = σrur] [Avr+1 = 0, · · · , Avn = 0]

or, in represented in matrix form:

A
[
v1 · · · vr · · · vn

]
=
[
u1 · · · ur · · · um

]  σ1
...

σr

0

0 0


Note that only the first r equations are of interest; vi and ui past r fall into the nullspace

of A and AT , respectively, and the diagonal entries of Σ past σr are all 0. Thus, so are the
associated equations. One can create a “reduced” form of the SVD by only considering the
first r vectors for V and U and the first r singular values of Σ, which eliminates its zeros
and turns it into a square matrix.
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So, how do we go about actually computing the SVD? We want to find the sets of singular
vectors and values to build U , Σ, and V . One way to do retrieve these is to examine ATA
and AAT under the assumption that A = UΣV T exists:

ATA = (V ΣTUT )(UΣV T ) = V ΣTΣV T

AAT = (UΣV T )(V ΣTUT ) = UΣΣTUT

Both cases have produced symmetric matrices which can also be factorized with QΛQT ,
whose eigenvalues are in ΣTΣ or ΣΣT , and whose eigenvectors are in V or U . To summarize,
their relationship is as follows:

• V contains orthonormal eigenvectors of ATA.

• U contains orthonormal eigenvectors of AAT .

• σ2
i to σ2

r are the nonzero eigenvalues of both ATA and AAT .

To ensure that the signs of both sides of our equations Avk = σkuk are aligned, we define
uk to be created out of vk, which we first find as orthonormal eigenvectors of ATA. We then
build:

ATAvk = σ2
kvk

to retrieve σk, and then, from our Avk = σkuk relationship:

uk =
Avk
σk

, for k = 1, . . . , r

which gives us all of the values we need.
Finally, let us take a look at a spectacular result given by the Eckart-Young theorem.

First, let us recall our earlier definition of the SVD as a sum of “skeleton” matrices: Ak is
similar, except that it goes up to an arbitrary k instead of r (and will thus be rank k). It is
defined as follows:

Ak =
k∑
i=1

σiuiv
T
i

The Eckart-Young theorem then states the following[1]:

If B has rank k then ||A− Ak|| ≤ ||A−B||.

So, given any other matrix B also of rank k (or lower), its difference to A will be at least
as big as the difference between Ak and A; in other words, no k-rank matrix is closer to A
than Ak. So, when we want to create an approximation of A, we don’t have to worry about
whether or not there exists a better one; the SVD gives us the best!
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3 Proposed Methodology

As I mentioned in the introduction, I aim to first develop my theoretical understanding of
the SVD, and then move on to investigate some of its many applications. Overviews of the
SVD and descriptions of its basic properties are given by Strang’s Introduction to Linear
Algebra (p. 363-367)[12], and further discussions (including an overview of the Eckart-Young
theorem and proof) are given by his Linear Algebra and Learning From Data (p. 71-73)[13].

I plan to create the foundation of my theoretical understanding by reading and studying
these texts. However, I intend to incorporate online resources into my learning, as well as
materials focused exclusively on the SVD itself, such as Martin and Porter’s survey paper,
”The Extraordinary SVD”[5]. In the latter half of the project, I aim to focus on investigating
applications such as those in image compression, crystallography, and fluid dynamics.
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