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This work presents numerical methods for the simulation of Non-Newtonian fluids in the contin-
uum as well as the mesoscopic level. The former is achieved with Direct Numerical Simulation
(DNS) spectral h/p methods, while the latter employs the Dissipative Particle Dynamics (DPD)
technique. Physical results are also presented as a motivation for a clear understanding of the

underlying numerical approaches.

The macroscopic simulations employ two non-Newtonian models, namely the Reiner-Rivlin (RR)
and the viscoelastic FENE-P model.

e A spectral viscosity method defined by two parameters €, M is used to stabilize the FENE-P
conformation tensor ¢. Convergence studies are presented for different combinations of these

parameters. Two boundary conditions for the tensor c are also investigated.

e Agreement is achieved with other works for Stokes flow of a two-dimensional cylinder in
a channel. Comparison of the axial normal stress and drag coefficient on the cylinder is
presented. Further, similar results from unsteady two- and three-dimensional turbulent

flows past a flat plate in a channel are shown.

e The RR problem is formulated for nearly incompressible flows, with the introduction of a
mathematically equivalent tensor formulation. A spectral viscosity method and polynomial
over-integration are studied. Convergence studies, including a three-dimensional channel
flow with a parallel slot, investigate numerical problems arising from elemental boundaries
and sharp corners.

e The round hole pressure problem is presented for Newtonian and RR fluids in geometries with
different hole sizes. Comparison with experimental data is made for the Newtonian case. The
flaw in the experimental assumptions of undisturbed pressure opposite the hole is revealed,
while good agreement with the data is shown. The Higashitani-Pritchard kinematical theory
for RR fluids is recovered for round holes and an approximate formula for the RR Stokes hole
pressure is presented.

The mesoscopic simulations assume bead-spring representations of polymer chains and investigate
different integrating schemes of the DPD equations and different intra-polymer force combinations.

e A novel family of time-staggered integrators is presented, taking advantage of the time-scale
disparity between polymer-solvent and solvent-solvent interactions. Convergence tests for
relaxation parameters for the velocity-Verlet and Lowe’s schemes are presented.

e Wormlike chains simulating A—DNA molecules subject to constant shear are studied, and
direct comparison with Brownian Dynamics and experimental results is made. The effect of

the number of beads per chain is examined through the extension autocorrelation function.

e The Schmidt number (Sc) for each numerical scheme is investigated and the dependence on
the scheme’s parameters is shown. Re-visiting the wormlike chain problem under shear, we
recover a better agreement with the experimental data through proper adjustment of Sc.
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Chapter 1

Introduction

1.1 Non-Newtonian fluids

Most common fluids (both liquids and gases) around us can be classified as Newtonian fluids.
Gases, low-molecular weight liquids, salted and unsalted water, most motor and mineral oils, high
viscosity fuel, gasoline, kerosene are some examples. Such fluids are characterized by a linear
dependence of shear stress on shear rate. In order to visualize this dependence, we consider
the schematic unidirectional shear flow shown in Figure 1.1. In this case, the shear rate ¥ can be
expressed as the velocity gradient in the y—direction (the direction perpendicular to the shearing).

The shear stress 7, is then

av, .
sz:U::u<dy):,wY (1.1)

The slope p is constant and is often referred to as the Newtonian viscosity. It completely char-
acterizes the behavior of the fluid and is (by definition) independent of the shear rate 4 or stress
Tzy, although it may vary according to temperature and pressure. In short, a Newtonian fluid is

defined by the equation u = %

A non-Newtonian fluid is one whose flow curve (shear stress versus shear rate) is either non-

linear or does not pass through the origin. Examples of such fluids abound, with egg white,



Figure 1.1: Unidirectional shear flow.

printer ink, toothpaste, the “bouncing putty” (flows at low stretch rates but bounces at high
ones) being popular ones. Blood is a good example of a liquid that can exhibit both Newtonian
and non-Newtonian behavior, according to its surroundings. In small branches and capillaries and
at very low shear rates it behaves in a non-Newtonian fashion [8, 9, 10], while in most arteries the
viscosity can be considered constant, for all practical purposes, equal to = 4cP. Clearly, there are
numerous possibilities of a non-linear flow curve. In general, we can crudely classify such fluids

into

1. Generalized Newtonian Fluids: Governed by ¥ = f(o), they are fluids for which
the shear rate at any point/instant is determined by the shear stress at that particular

point/instant. Typical example is the power-law fluid, governed by o = k™.

2. Time-Dependent Fluids: The shear stress and the shear rate are also a function of the

duration of the shearing.

3. Viscoelastic Fluids: Fluids that store and recover shear energy, they usually contain a
high fraction of substances with high molecular weight. They exhibit characteristics of both

ideal fluids and elastic solids.

For non-Newtonian fluids, it is convenient to define the apparent viscosity as the ratio of shear
stress, o, to shear rate, ¥. Hence, the apparent viscosity papp can, in general, be expressed as
the non-constant function papp = £ = f (0,%,t). Another useful categorization of non-Newtonian

fluids deals with cases in which the viscosity decreases with shear rate (shear-thinning or pseu-



doplastic fluids), the viscosity increases with shear rate (shear-thickening or dilatant fluids), the
viscosity decreases with the duration of applied shear (thizotropic fluids), and the viscosity in-

creases with the duration of applied shear (rheopectic or negatively thizotropic fluids).

Modeling of several non-Newtonian flows consists of constructing constitutive equations for the
evolution of the polymeric part of the stress, s. Such equations may involve time derivatives,
integrals and stress/strain tensors. A constitutive equation always contains at least one time con-
stant A in the form s + A§ = [...], which gives rise to two convenient non-dimensional numbers,
the Deborah number De = %, and the Weissenberg number We = \y. Here, T can be a typical
time-scale of the flow and ¥ a typical shear rate; notation is used interchangeably, depending on
the problem. The symbol [v] in this case denotes the upper-convective derivative. Examples

of fluid models defined by such constitutive equations include the Maxwell, Oldroyd-B and the

FENE-P models [11, 12, 13].

Since a large portion of Part I of this dissertation deals with the viscoelastic FENE-P model,
it is useful to isolate three of the most important properties specific to this model: (i) It is shear-
thinning. (ii) It exhibits normal stress differences: polymers can exert additional forces in all
directions when they are being stretched. (iii) It exhibits stress relaxation: the force exerted by
the viscoelastic material under sudden and fixed stretching rises sharply and then decreases with

a characteristic relaxation time.

In addition to macroscopic non-Newtonian models, the molecular understanding of dilute so-
lutions of flexible polymers has been in the spotlight since the late 1980s. Larson [14] recently
summarized such efforts, focusing on the rheology of such solutions, the description of several
bead-spring polymer representations, computations using Brownian Dynamics simulations, and
experimental results from flows involving A—phage DNA molecules (see Figure 1.2). Such ef-

forts are essential in order to understand the atomistic behavior of complex fluids with internal



microstructure, and apply some closures to obtain constitutive equations from kinetic models

[15, 16, 17, 18, 19, 20].

"1rh
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Figure 1.2: Snapshots of individual A—phage DNA chains undergoing conformational changes
under steady shear (image taken from Smith et al. [3]).

In order to move from atomistic scale simulations (such as Molecular Dynamics) to hydrodynamics
and the continuum limit, it is useful to develop tools and methodologies that will help bridge the
time- and length-scale gap. Brownian Dynamics have dominated the meso-scale arena for years,
while the Lattice-Boltzmann method [21, 22, 23] provides an alternative approach. The Dissipative
Particle Dynamics (DPD) method [24] is a promising, relatively new meso-scale simulation method
and many consistency issues still remain open. However, there has been substantial effort by many
research groups to employ DPD as a Brownian Dynamics alternative. This dissertation focuses on
issues that have not been addressed before in the DPD framework, such as A—DNA modeling and
efficient numerical integrators for complex fluids. Mesoscopic models such as the Marko-Siggia
[25] force-extension formula motivate us to carry out computations and compare the DPD results

with existing ones in the literature, mostly from theory, Brownian Dynamics and experimental



data.

1.2 Dissertation Outline

Research presented in this work is divided into two distinct parts. Part I contains results from
continuum simulations. More specifically, Direct Numerical Simulation (DNs) is used for address-
ing problems in the numerical solution of macroscopic equations governing non-Newtonian fluids.
Part II, on the other hand, addresses physical and numerical issues arising in the atomistic level
of such simulations, using the particle-based Dissipative Particle Dynamics (DPD) approach. In

general, the problems we address focus on

> the mathematical formulation of the underlying problems

> the numerical discretization and solution method

> numerical/computational problems and ways to overcome them

> related physical results and their possible dependence on the numerics

Part I contains:

» Chapter 2: A study of the FENE-P model, its formulation and the use of the spectral
viscosity method, suitable for high order discretizations, applied to the conformation tensor.
Examples from two- and three-dimensions are presented together with convergence tests and

comparison with other studies.

» Chapter 3: A study of the second-order (Reiner-Rivlin) fluid, its formulation and the use of
the spectral viscosity and polynomial over-integration methods for numerical stabilization.
The hole pressure problem, together with Kearsley’s flow in a parallel slot are also described.
Numerical results for the hole pressure problem in Newtonian flows are presented. Direct
comparison with experimental data is presented and reasonable agreement with empirical

theories is established. The final section deals with numerical studies for the hole pressure



problem in Reiner-Rivlin flows. An approximate scaling of the Stokes hole pressure involving

the diameter of the tube relative to the channel height is obtained.

Part II contains:

» Chapter 5: A description of the DPD method, the motivation behind the simulation of
complex fluids using DPD, the governing equations and the polymeric models this work

employs.

» Chapter 6: A study of two integrating schemes for DPD, including a novel family of time-
staggered algorithms suitable for polymeric systems governed by hybrid soft and hard in-
teractions. Convergence tests are presented, together with parametric studies involving

relaxation parameters.

» Chapter 7: A collection of physical applications, including DNA chains under shear and
comparison with experimental and other computational works. Several issues, such as the
Schmidt number of the DPD fluids, are addressed and parametric effects of the employed

thermostats are examined.



Part 1

Macroscopic Simulations



Chapter 2

The FENE-P Viscoelastic Model

2.1 Numerical Simulation of the FENE-P Model

There has been substantial progress in the development of high-order methods and specifically
spectral methods for viscoelastic flows started with the work of [26]; see, for example, [12] and
references therein. However, complex-geometry flows and high Weissenberg and Reynolds number
regimes still present formidable difficulties. The loss of monotonicity of the solution of the stress
field for many viscoelastic models becomes an even greater challenge for high-order methods.
However, new ideas developed in the context of aerodynamic flows, e.g. discontinuous Galerkin
methods and new stabilization techniques, have provided a new framework for developing robust
high-order solvers for viscoelastic flows in domains of complex geometries. Another effective ap-
proach demonstrated in [27] and [28] is the use of Lagrangian and semi-Lagrangian methods that

provide high-order accuracy and enhanced stability.

Recent studies by Fan et al. with hp finite elements [29] have examined standard benchmark
problems using the streamline upwind Petrov-Galerkin (SUPG) technique combined with three
different formulations: the elastic viscous split stress (EVSS), the discrete EVSS (DEVSS) and a

third one, called MIX1, which proves to be very efficient in computational resources. Chauviére



and Owens [30] have also used the SUPG in conjunction with features of discontinuous Galerkin
methods (the SUPG-EE element-by-element method) for a variety of models. These include
macroscopic models such as the Oldroyd-B, the finitely extensible non-linear elastic - Peterlin
(FENE-P) and the Phan-Thien-Tanner (PTT) model, but also mesoscopic models such as the

FENE model [31] that do not possess closed-form constitutive equations.

The dumbbell model has been at the center of viscoelastic studies due to its physical significance.
The model suggests that dilute polymeric solutions are a mixture of the solvent and the polymer,
where the solvent can stretch and convect the polymer molecules that are assumed to behave like
elastic springs. In the limiting case of the spring being able to be stretched infinitely, the model
becomes the simpler macroscopic Oldroyd-B model (or Hookean dumbbell model), which is less
physical. A non-linearity was introduced first by Warner [32] to assign a maximum value to the
extensibility of the spring, thus resulting in the FENE model. This model cannot be considered
macroscopic, as stated above, but the modified ensemble-averaged FENE model, known as FENE-
P, can. This model has been extensively studied by van Heel et al. [33], where they proposed a
slight modification of the original model. Beris and his collaborators [34, 35] have also used the

model to demonstrate turbulent drag reduction.

In this work we will examine the standard FENE-P model as it appears in the literature and with
some small scaling variations, as those appear in the works of [11] and [1]. The discretization in
space is based on the modal version of spectral/hp elements while in time a high-order splitting
scheme is employed [36]. Monotonicity is maintained using a diffusion convolution kernel that

controls the high-order modes, the so-called spectral vanishing viscosity (SVV) method.

SVV was first introduced by Tadmor (1989) in [37] in the context of constructing monotonicity-
preserving discretizations to hyperbolic conservation laws. More recently, it has been employed

successfully in formulating alternative large-eddy simulation (LES) approaches [38]. Also, in [39],
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the Legendre spectral vanishing method was shown to effectively control the Gibbs phenomenon,
while in [40], the SVV approach was employed in two-dimensional simulation of waves in stratified
atmosphere. The SVV approach guarantees an essentially non-oscillatory behavior although some
small oscillations of bounded amplitude may be present in the solution. This theory is based on

three key components:
1. A vanishing viscosity amplitude which decreases with the mode number;
2. A viscosity-free spectrum for the lower, most energetic modes; and
3. An appropriate viscosity kernel for the high wavenumbers.

This effective regularization is determined by parameters whose range is given directly by the
non-linear theory for advection-dominated systems. More recent work has extended the method
to superviscosity formulations, first by Tadmor [41] and later by Ma [42, 43], in order to extend

the range of the viscosity-free spectrum.

In this work, we demonstrate the use and effectiveness of this technique using both analytic

solutions as well as standard benchmark problems in two- and three-dimensions.

2.2 Mathematical Formulation

2.2.1 Governing Equations for the FENE-P Model

Incompressible viscoelastic flows for dilute polymer solutions can be modeled by a set of three
equations: the equation for momentum conservation, the constitutive relationship describing the
evolution of the non-Newtonian part of the stress tensor and, finally, the divergence-free condi-
tion for the velocity components. In this work we will specifically examine the FENE-P (Finitely
Extensible Non-linear Elastic - Peterlin) model. This model is based on the assumption of a
dumbbell shape for the polymer chains, and is further described by a function due to Peterlin
that incorporates the maximum value allowed for the extension of the polymer chains. The non-

dimensional momentum conservation equation takes the form
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1
6—u+u-Vu:—Vp+—
Re

or BV u+ (1-p)V-s

+F (2.1)

where u denotes the velocity vector, s denotes the stress contribution due to the viscoelastic prop-

erties of the fluid, and S denotes the ratio of the viscosities nsz:np and is also referred to as the
coupling parameter later on. Here 7, denotes the viscosity of the solvent and 7, is the viscosity
of the polymer. Clearly, when § = 1 this reduces to the Newtonian case. The Reynolds number
in the above equation is defined as Re = pUL/(ns + n,), with U, L and p denoting characteristic
values of the velocity, length and density of the flow, respectively. The FENE-P model is based

on a non-linear relation between the stress tensor s and the conformation tensor c. The stress

tensor s is defined through ¢ by

flr)e -1

Here We denotes the Weissenberg number defined as We = Ak, where & is a typical shear rate of
the flow and A is a characteristic time constant related to the phenomenon of stress relaxation,
typical of viscoelastic fluids. We can further define the Deborah number De = %, where the unit
of time 7" should be a typical time scale of the flow. However, in this chapter we will only be using
the Weissenberg number definition. In the above equation f(r) can be identified as the Peterlin

function

2 p2
fr)= II/JQ _1:2 (2.3)
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where r?2 = trace(c) and the small correction R is usually set to zero, by redefining We and L.
However, for consistency with other definitions, e.g. [34, 11], here we will require R = +/3 (for
three-dimensions) and R = v/2 (for two-dimensions) since this proves to be convenient when we
derive the conformation tensor analytic solution in the convergence studies. In the above relation,
L is the maximum extensibility of the polymer chain. The conformation tensor has been non-
dimensionalized by % where kp is the Boltzmann constant, Ty is the absolute temperature and
H is the spring constant of the FENE-P dumbbell. The evolution equation for the conformation

tensor c is given by

Oc T 4
a—i—u-Vc—[e-(Vu)—i—(Vu) c]=—

fir)e—1
We

where T denotes transposition. The left-hand-side of (2.4) is known as the upper convected deriva-
tive. The boundary conditions for the conformation tensor will be specifically discussed in the

problems of sections 2.2.4 and 2.3.

2.2.2 Discretization

For the temporal discretization of the Navier-Stokes equations we use a time-splitting stiffly-stable
scheme. Stiffly-stable type schemes enhance stability through backwards differentiation. The
implemented scheme has three different steps and it is an extension of the high-order splitting

scheme proposed in [44]:
1. Non-linear step:

Ju—1 Ju—1

= au" "7 4+ At Z Bg|—(u"77-V)u""? + %v "4 4 4 (2.5)

q=0 q=0
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where s is the contribution from the polymer computed from:

n_ flr)e® =1
st = (2.6)

The evolution equation of the conformation tensor is discretized using the following scheme:

Je—1
e=c"+ ALY &l Vu" Tl + (Vur )T e
q=0

Fr)e]t 1

—(u"?-V)e" 1 - [ e (2.7)

For stabilization a convolution kernel that introduces the proper amount of diffusion is then

employed (see next section) as follows:
eV - (Qn * Vet — —eH = - = (2.8)

where Qn is a smooth kernel that controls which modes (wavenumbers) are affected.

. - . . 1
The implemented boundary condition for the two-dimensional case are sent |[r = 0 and

an
¢! = ¢|p. In the three-dimensional case we only implemented the latter. We have
systematically studied the effect of both of the above boundary conditions, showing that
accuracy is not affected by them. From the numerical experiments that we performed, the

Neumann boundary condition seems to enhance stability. Also, our benchmark results do

not show any appreciable differences as will be shown in sections 2.2.4 and 2.3.

In the above notation J, € {1,2,3} is the extrapolation order for the velocity field, J. =
2 is the integration order of the conformation tensor, n is the current time step, g, 8, are
coefficients associated with the stiffly-stable scheme [44] as shown in table 2.1, £, are co-
efficients associated with the Adams-Bashforth scheme, 7 denotes matrix transposition, N

denotes N** polynomial order, (x) denotes the convolution operator, and finally | denotes



| Coefficient | First Order | Second Order | Third Order ]

[ | 1 [ 3/2 | 11/6 |
(o7 1 2 3
a 0 ~1/2 —3/2
a 0 0 1/3
Bo 1 2 3
By 0 -1 -3
Ba 0 0 1

Table 2.1: Coefficients ag, 84,70 associated with the stiffly-stable scheme.

value evaluation at the boundary.

. Pressure step:

Jp—1
6p”+1 _ " /3 < n—q
5 =1 —EFZO,BqVX(VXu )
. Viscous step:
2 YoRe| .1 Re. yRe_ .4,
[V I, BN, u+ 3 Vp

to third-order in time similar to the velocity solver in the Newtonian case [44].

14

(2.9)

(2.10)

(2.11)

In the above notation J, € {1,2,3} is the extrapolation order for the pressure. The overall tem-

poral accuracy of the scheme is O(A#?) and it is dictated by J. = 2; it can be readily extended

For spatial discretization we have adopted the spectral/hp element method, see [36]. It employs
standard unstructured and hybrid grids unlike previous approaches that require special structured
grids. This new version of the spectral element method uses a hierarchical basis based on Jacobi
polynomials with mixed weights that accommodate accurate numerical quadrature and flexibility

in discretization by employing polymorphic subdomains. The degenerate case corresponds to a
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linear finite element discretization with the vertices corresponding to linear modes. Each element
consists of N modes per direction but no gridding within the element is required as all computa-
tions are done in modal space. Specifically, each element is separated into linear vertex modes,

edge modes, face modes and interior or bubble modes.

For a smooth solution, the error in a Galerkin projection of a smooth function converges exponen-
tially fast to zero by simply increasing the number of modes per element/subdomain. This allows
for selective refinement and sharp a priori error estimates in the numerical solution without the
overhead cost associated with regeneration of a three-dimensional mesh. Another distinction with
other versions of the hp finite element method that employ monomials is that very high order is
readily employed (e.g., N = 32) and that the multi-dimensional basis is a tensorial product in the
transformed domain, [36]. This, in turn, leads to good efficiency in simulations with high-order
N. The new method has been implemented in the serial and parallel versions of the computer

code named NexTar [45].

2.2.3 The Spectrally Vanishing Viscosity (SVV) Method

Tadmor (1989) [37] first introduced the concept of spectral vanishing viscosity (SVV) for hyper-

bolic conservation laws. Specifically, he considered the inviscid Burgers’ equation

S uw+ 2 (“2(;:’”) —0, (2.12)

subject to given initial and boundary conditions. The distinctive feature of solutions to this
problem is that spontaneous jump discontinuities (shock waves) may develop, and hence a class
of weak solutions can be admitted. Within this class, there are many possible solutions, and in

order to single out the physically relevant one an additional entropy condition is applied, of the

7 (550 i (50 = >

form
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In the context of viscoelastic flows, the objective is to obtain a unique stable solution of the
conformation stress equation. In the SVV method of Tadmor (1989), a small amount of mode-
dependent dissipation is added that satisfies the entropy condition, yet retains spectral accuracy.
It is based on viscosity solutions of non-linear Hamilton-Jacobi equations, which have been studied

systematically in [46]. Specifically, the viscosity solution for the Burgers’ equation has the form

0 o (u?(x,t)\ _ 8 ou
Eu(w,t) + % ( 2 ) = 6% [Qe%] ) (2'14)

where e(— 0) is a viscosity amplitude and @, is a viscosity kernel. Convergence may then be
established by compactness estimates combined with entropy dissipation arguments [37]. To
respect spectral accuracy, the SVV method makes use of viscous regularization and equation

(2.14) may be rewritten in discrete form (retaining N modes)

2
%uN(a:,t) + % [PN (%)] = e% [QN * 6;—;;]] , (2.15)

where the star (x) denotes convolution and Py is a projection operator. @y is a viscosity kernel,
which is only activated for high wavenumbers. In Fourier space, this kind of spectral viscosity
can be efficiently implemented as multiplication of the Fourier coefficients of ux with the Fourier

coefficients of the kernel Qn, i.e.,

o [QN * %L—wN] =—c Y FQit)ux(t)e*,

M<[|K|SN

where k is the wavenumber, N the number of Fourier modes, and M the wavenumber above which

the spectral vanishing viscosity is activated. Originally, Tadmor (1989) used

. 0, [k|l<M
Qr = (2.16)
1, |k|> M,
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Figure 2.1: Normalized viscosity kernels for the spectral vanishing viscosity (dash line C = 0 and solid
line C' = 5) and the Kraichnan/Chollet-Lesieur viscosity (dash-dot line).

with eM ~ 0.25 based on considering minimization of the total-variation of the numerical solu-
tion. In subsequent work, however, a smooth kernel was used, since it was found that the C'*
smoothness of Qk improves the resolution of the SVV method. For Legendre pseudo-spectral

methods, Maday et al. [47] used e & N~!, activated for modes k > M ~ 5V/N, with

A _ (k=N)?

Qr=¢€ - k> M (2.17)

In order to see the difference between the convolution operator on the right-hand-side in equation

(2.15) and the usual viscosity regularization, we follow Tadmor [48] and expand as

0 dun]  O*uxy 8 oun
where
N 1-Qu(t) |kl > M
Ry (z,t) = Z Rk(t)elkw; Ri(t) = (2.19)
k==N 1 |k| < M

The extra term appearing in addition to the first standard viscosity term makes this method
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different. It measures the distance between the spectral (vanishing) viscosity and the standard
viscosity. This term is bounded in the Ls norm similarly to the spectral projection error. In this

paper we refer to the viscosity as vanishing as the theory requires that

1

~———, 6<1
¢ NPlogN’ -

and thus € — 0 for high wavenumbers.

The basis we use is written in terms of Jacobi polynomials and is decomposed into vertex modes,
edge modes and interior modes. This is a semi-orthogonal basis (see [36] for details) but the
SVV procedure should be applied to orthogonal modes. To this end, we will transform the semi-

orthogonal basis to the orthogonal one as outlined below.

If we examine the weak form of the SVV term e% (Qeg—;‘) only, ignoring boundary terms and the

leading coefficient, we have the following basic form of the SVV operator:

ov _Ou

where v is a test function taken from the Jacobi polynomials {¢r} and v = Epdrd. In the
derivation below we will assume that all discrete summations are from 1,..., N. In the notation
above and henceforth (-,-) denotes the Lo inner product and it is assumed that the continuous

and discrete inner products are interchangeable, given sufficient quadrature order.

Now, let B be a matrix that transforms the modal coefficients @ for the basis functions {¢y}
to @ in {41} space, where {¢} is our C° basis used for the Galerkin formulation and {¢} is an
orthonormal basis that spans the same space as {¢r}. Let F be a diagonal matrix that acts as
a filtering function (the entries of which are given by equation (2.17)). In the notation above we

have & = Bu. Our goal is to filter the coefficients @ instead of filtering the coefficients 4. Hence,
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we would like to transform (via the matrix B) to the orthogonal space, filter, and then transform

back. This can be accomplished by the operation
4 = B'FBi. (2.21)
We can now write expression (2.20) in the discrete form using matrix notation as follows:
STB'FBM !Si (2.22)

where S;; = (qﬁi, %) and M;; = (¢, #;). It can be shown that B™' = M™'B”, and hence the

discrete form of the SVV operator for the Galerkin method is given by:
STM 'BTFBM !Si. (2.23)

Note that the above discrete operator is symmetric, semi-positive definite.

The above formulation was first introduced by Kirby [49] for LES. It has been suggested that
the artificial viscosity added usually in the stress equation in physical space is analogous to sub-
grid viscosity in large-eddy simulations (LES). That is, instabilities typically arise when the small
scales are under-resolved and, correspondingly, solution monotonicity is lost. To this end, it is
instructive to compare the spectral vanishing viscosity to the spectral eddy-viscosity introduced
by Kraichnan [50] as modified by Chollet-Lesieur [51, 52]. The latter has the non-dimensional
form [52]

v(k/N) = K, */*[0.441 + 15 2ezp(—3.03N/k)], Ko=2.1 (2.24)

Comparing the Fourier analog of the eddy-viscosity employed in LES [51] to the viscosity kernel
Qr(k, M, N) introduced in the SVV method, figure 2.1 shows both viscosity kernels normalized

by their maximum value at £ = N. For SVV, two different values of the cut-off wavenumber are
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considered, i.e.,

M =CVN forC=0andC =35, (2.25)

and are shown in the plot of figure 2.1. In particular, the solid line can be thought of as a stability
barrier above which monotonicity and thus stability is not guaranteed. On the other hand, the
dashed line can be thought of as an accuracy barrier below which the convergence of the method
is affected. This range has been used in most of the numerical experiments so far (see for example
[47, 40, 38]) and is consistent with the theoretical results [37]. In the plot it is shown that, in
general, the two forms of viscosity have similar distributions but that the SVV form does not
affect the first one-third or one-half of the spectrum (viscosity-free portion) and it increases faster
than the Kraichnan/Chollet-Lesieur eddy-viscosity in the higher wavenumbers range, e.g. in the

second-half of the spectrum.

In the following, we will address the effect of SVV on the convergence rate and the stability of

spectral/hp element discretization.

2.2.4 Convergence and SVV Parameters

The convergence tests used to show the effect of SVV are based on an analytic solution derived
for the conformation tensor in a channel flow. By letting R = V2 for a two-dimensional flow and
R = /3 for a three-dimensional flow in equation (2.3), we can simplify the analytic solution for
velocity fields of the form u = (U(y),0,0). Thus, we can examine the effect of the two different
parameters appearing on the SVV formulation (the cutoff mode M and the value of €) and the
L, error of the numerical results when compared to the analytic solution. As stated in [34], the
exact solution of the conformation tensor for a three-dimensional problem can be identified as the

following (symmetric) matrix:
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F(y) F2(y) \'dy F2(y) \dy
= 1 2.26
¢ O 0 (2.26)
1
F(y)
where the following definitions apply:
V2We dU
Qy) = ——— 2.2
W= (2.27)
V3Q(y)
Fly) = ———— 2.2
) 2sinh(¢/3)’ (2:28)
¢ = sinh ™ (3v/30/2) (2.29)

For the two-dimensional case we reduce the value of R from v/3 to v/2 and consequently only the

upper left 2 x 2 block appears for the exact expression.

Vil R LR BARLRA LTS B BL BL LB T

I I T Iy g

X

Figure 2.2: The 16-element mesh employed for the convergence tests in two-dimensions. The
channel has a non-dimensional length of 2 in both directions.

Based on the above analytic expression, we conclude that the exact relation for the conforma-
tion tensor subject to the above restrictions is dependent only on the velocity gradient in the

y-direction. Fabricating a non-trivial solution for the flow field for y € [—1,1] other than the

parabola U(y) = 1 —y? requires the introduction of a more complicated expression for the driving
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force F in equation (2.1). It can be shown that if

F, = \/gﬁ [Beosh(3y) + (1 — B)cosh(y)] (2.30)

the corresponding expression for the velocity has the simple but non-trivial form

Vi

Uly) = ﬁm

[cosh(3) — cosh(3y)]; y €[-1,1]. (2.31)

Figure 2.2 shows the two-dimensional mesh that was used to investigate the convergence rate of
the method. The mesh we employ consists of 4 x 4 elements and the domain is as shown, with the
length of each side equal to 2. We have set L = 10, = 0.1 which gives Re = % ~ 1'%% =10.2
and We = 8 and considered two values of the coupling parameter 8, namely 1 (no coupling, i.e.

Newtonian with 1, = 0) and 0.9 (loose coupling).

NekTar 2d FENE-P, cosh profile =1 NekTar 2d FENE-P, cosh profile =1
T T T T T T T T

L. error
inf

Figure 2.3: Convergence rate in conformation tensor in the Ly (left) and Lo, norm (right) for
B = 1.0 (Newtonian).

In figure 2.3 and 2.4 we plot the Ly and L, error in the conformation tensor (all components)
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NekTar 2d FENE-P, cosh profile,3=0.9 NekTar 2d FENE-P, cosh profile,3=0.9

T T T T T T 10 T T T T T T

modes modes

Figure 2.4: Convergence rate in conformation tensor in the Ly (left) and Lo, norm (right) for
8=0.9

NekTar 2d FENE-P, cosh profile, SVV on conformation tensor
T T T T T T T T
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Figure 2.5: Effects of SVV amplitude and cut-off wavenumber on the error of conformation tensor.
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for # =1 and 0.9 respectively; we see that the solution error converges exponentially to zero for
cases. Solutions are obtained for N € [3,8]. We see that the formal (exponential) accuracy of
the discretization is maintained. This is true irrespective of the size of the coupling parameter 3

although, the greater the value of (1 — 3) the larger the error is expected to be.

Next we examine how sensitive the numerical solution is with respect to the choice of the SVV
parameters; we fix the spectral order to N = 7, the coupling parameter 8 = 0.9, the Weissenberg
number We = 80 and Re ~ 102. These parameters result to a numerically unstable system, with-
out the use of SVV. In figure 2.5 we plot the Lo error of the conformation tensor (all components)
versus the cut-off wavenumber M for several values of the SVV amplitude €. With respect to the
latter, we see indeed that for larger values we run into a stability barrier whereas for low values
of £ the accuracy degrades; such trends are valid for different values of the SVV amplitude as
shown in figure 2.5. The stability and accuracy trends with respect to viscosity amplitude € are
also in agreement with Tadmor’s theory although here the optimal value of € cannot be predicted

precisely by the theory. The absent values correspond to divergent cases.

. . . 1
As a final remark on the selection of the two different boundary conditions g—%"Jr [r = 0 and
c" ! = ¢|r, we show in figure 2.6 that accuracy is not significantly affected by favoring one or

the other. The plot shows the difference in the Ly error between the two, normalized by the La

error of the Dirichlet boundary condition.

2.3 Benchmark Problem: Stokes Flow Past a Cylinder in a

Channel

To demonstrate the stability and accuracy of the method, we will compare our results with one of
the most commonly published set of results on a specific benchmark problem for two-dimensional

simulations. The robustness of the scheme will be demonstrated in the well-examined flow past a
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Effect of the two boundary conditions on the conformation tensor
10 T T T T T T T T
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-2
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Normalized difference in L, error

o#+DoR
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M (filter mode cutoff)

Figure 2.6: Effect of the two different boundary conditions g—fbn+1|p =0 and c""!|r = ¢|r on the

Ly error. Results shown are from the two-dimensional (analytical) case.

two-dimensional cylinder in a symmetric channel. Here, we do not make use of the symmetry, and
thus we include the entire domain, unlike past studies. The use of symmetry for Stokes flow is
indeed beneficial, but symmetry-breaking bifurcations at some Re regimes demands the use of the
full domain, as section 2.4 shows. The computational mesh employs 176 quadrilateral elements

as shown in figure 2.7.

The setup of the problem is as follows: The length of the channel is 40 non-dimensional units long
(x € [—20,20]), the channel half-width H is 2 units long (y € [-2,2]), the radius of the cylinder
R is 1 unit long (R = 1) and consequently the aspect ratio A = R/H = 1/2. Parabolic inflow of

the form
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40

Figure 2.7: The two-dimensional mesh used for the benchmark problem. The curved sides are
represented isoparametrically with a high-order expansion. Here, faces are plotted as straight
lines.

| | N=5 | N=6 | N=7 | N=8 | N=9 |
We=0.505 | At=1e—4 | At=1le—4 | At=1le—4 | At=3e—5 | At=1e—5
We=0608 | At=1e—4 | At=1le—4 | At=1e—4 | At=3e—5 | At=1le—5
We=0.712 | At=1e—4 | At=1le—4 | At=5e—5 | At=3e—5 | At=1e—5
We=0.818 | At=1e—4 | At=5e—5 | At=1le—5 | At=1e—5 | At=1e—5

Table 2.2: Time step At with SVV parameter £ = 0.001 and M = 2 for each successful case. N
denotes the spectral order per direction.

is imposed along y € [—2,2] at £ = —20, thus the mean value U = 1. The above profile is
an not an exact solution for # # 1; however due the ample length of the domain upstream we
anticipate this to have little effect for the studied values of 5. The outflow boundary condition
at x = 20 is treated with Neumann boundary condition set to zero. The boundary conditions for
the conformation tensor in the entrance of the channel are Dirichlet and are set to be the analytic
values corresponding to 8 = 1 as dictated by equation (2.26). We also define the Weissenberg
number for this flow to be We = UA/R. Choosing the SVV parameters (e, M) = (0.001,2)
throughout, the timestep At is adjusted as shown in table 2.2. The evolution equation (2.4)
for the conformation tensor is solved in physical space explicitly, using the second-order Adams-
Bashforth scheme. The additional SVV part of the equation is solved implicitly in modal space.

The computations are considered steady-state once the stopping criterion
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n+l _ .n

is met. The simulation parameters chosen for this benchmark problem are § = 0.59, L = +/20.

Consistency with [1, 53] requires, in the two-dimensional case, a small normalization factor for

the stress tensor s = a(L)%C;I, where a(L) = % =11

T, Stress tensor, polynomial order: 9
22

We=0.505
+  We=0.608
—- We=0.712
We=0.818

Figure 2.8: T, stress tensor, polynomial order N = 9.

Letting 7 = (1 — f8)s, we will focus on the azial normal stress Ty, = 7, , profiles on the rim of
the cylinder, the wake, and the stagnation points. Comparisons of these values were done with
Chauviére’s [1, 53] parameters, namely Weissenberg numbers equal to 0.505, 0.608, 0.712 and
0.818. Figure 2.8 shows the profiles of the axial normal stress T, for a given polynomial order
along the z-direction as the Weissenberg number varies. z € [—1,1] is the region between the
two stagnation points. Observing the axial normal stress at the wake and at z = 0, we see that
T,. has higher values in the wake region as Weissenberg numbers get higher, but inversely for the

highest point on the cylinder x = 0.
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Txx stress tensor, We = 0.818

> polynomial order: 5
polynomial order: 6
+ polynomial order: 7
— - polynomial order: 8
o polynomial order: 9

Figure 2.9: Effects of p-refinement: T, stress tensor, Weissenberg number We = 0.818.

Figure 2.9 shows the results of p-refinement for a given Weissenberg number. The agreement
among the five different polynomial orders is clear. Of significance is also the drag coefficient F™

on the cylinder normalized as

_F
 dmqU

*

(2.32)

where n = n, + 1, is the total viscosity, and as stated earlier U = 1. Table 2.3 demonstrates
the robustness of the SVV filtering, as none of the values are diverging to infinity, compared to
other methods for macroscopic simulations. Table 2.3 also shows the percentage of disagreement
between Chauviére [1, 53] and the SVV-calculated values. Naturally, increasing the Weissenberg
number increases the disagreement. It has to be noted that in this disagreement the effect of
the SVV is secondary. To this end, we performed a series of simulations for We = 0.505 (the
drag coefficients shown in table 2.3) without applying any SVV filtering. The results support the

above conclusion. Comparison was also made on the effect of SVV on the T, profiles. To this
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[ noSVV [N=5[N=6|N=7T[N=8[N=9|
| We=0.505 | 8992 | 8.998 | 8.999 | 9.002 | 9.006 ]

[ SVW [N=5|[N=6|N=7|[N=8[N=9]
We=0.505 | 8.998 [ 9.001 | 9.002 | 9.003 | 9.007
We = 0.608 | 8.844 | 8.848 | 8.850 | 8.852 | 8.856
We=0.712 | 8.728 | 8.733 | 8.738 | 8.739 | 8.740
We=0.818 | 8639 | 8.635 | 8.652 | 8.653 | 8.652

| Chauviere [I] [ N=5 | N=6 | N=7|N=8 [ N=9 |
We=0.505 [ 9.090 [ 9.093 [ 9.081 [ 9.077 | 9.076
We=0.608 | 8967 | 8.979 | 8.964 | 8.958 | 8.957
We=0.712 | 8.886 | 8906 | 8.891 - -
We=0.818 | 8.838 - - - -

| % difference | N=5 [ N=6 | N=7[N=8]| N=9]
We =0.505 [ 1.0138 [ 1.0136 [ 0.8655 [ 0.8122 [ 0.7553
We =0.608 | 1.3711 | 1.4579 | 1.2739 | 1.1813 | 1.1303
We=0.712 | 1.7782 [ 1.9405 | 1.7197 | - -
We=0.818 | 22520 | - - - -

Table 2.3: Drag coefficient F* for macroscopic simulations with SVV (upper middle) and drag
coeflicient F* by Chauviere [1] (lower middle). Empty boxes correspond to divergent runs. It
has to be noted here that the corresponding mesoscopic simulations done in [1] did converge. We
also present the drag coefficient for We = 0.505 without applying any SVV filtering (upper). The
percentage of difference between Chauviére’s values and the SVV values is shown here too (lower).
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end, results from the standard and modified SUPG method ([1, 53], private communications) and
the SVV were compared to verify the accuracy and stability of the method. Figure 2.10 shows a

good agreement for We = 0.608.

251
O sw
—— Chauviere
20
15+
|_§lo =
5L
KRR
-5 | | | | | | | | | | |
-2 -1 0 1 2 3 4 5 6 7 8 9

Figure 2.10: Comparison of T, profiles at We = 0.608 and polynomial order p = 8.

In figure 2.11 we plot the T}, contours for the Weissenberg number of 0.712 and N = 8 close to

the cylinder. Good agreement is established between the two results.

Figure 2.12 shows the T, profiles for higher Weissenberg numbers, ranging from We = 0.88 up
to We = 2.00. Our simulations appear to be highly stable in this range. No attempt was made to
reach higher Weissenberg numbers than We = 2.00, although no stability or accuracy degradation
was present. The qualitative trends agree in these cases as well, i.e. the axial normal stress is
higher at the wake of the cylinder for higher Weissenberg numbers but inversely for z = 0. Figure

2.13 also shows the drag coefficient variation for N = 6 with respect to the Weissenberg number.
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Txx stress tensor, N=6

Figure 2.12: T, profiles for Weissenberg numbers up to 2.0
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Figure 2.11: T, contours for We = 0.712 and polynomial order N = 8. We compare the SVV
method (upper) and Chauviére’s results [1] (lower).
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cylinder in a channel — polynomial order N=6
9.1 T T

8.9 -

8.8 ,

8.7 -

drag coefficient

g3l ! ! !
0.5 1 1.5 2

Weissenberg number

Figure 2.13: Drag coefficient for Weissenberg numbers ranging from 0.505 to 2.0

TXX stress tensor, polynomial order 6, We = 0.505

22 T T T T T T I I
— Neumann BC
O Dirichlet BC

Figure 2.14: T,, profiles for We = 0.505 and polynomial order N = 6. Here we compare the two
different boundary conditions for the conformation tensor.
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. . . . . 1
Finally, comparing again the effect of the two different boundary conditions g—g"+ Ir = 0 and
c" | = ¢|r, figure 2.14 shows no appreciable differences in the axial normal stress profiles for

We = 0.505, verifying the convergence remarks of section 2.2.4.

2.4 Flat Plate in a Channel: Two-Dimensions

1 == ===
i i B — I — i i

T
[ T
-1 %EE&E ‘ EEEE———

Figure 2.15: The 544-element mesh (upper) and the 936-element mesh (lower) used in the simu-
lations.

Next we consider internal flow past a two-dimensional rounded plate in a channel. The meshes
used are as shown in figure 2.15 and they consist of 544 and 936 elements; higher resolution re-
quirements employed the fine mesh, while the coarser one was used in most 2-dimensional cases.
The domain dimensions are z € [—2m, 27,y € [—1, 1], while the plate extends from [—m, 7] in the
z-direction and [—11—0, 11—0] in the y-direction. The leading and trailing edges are complementing
semicircles of radius 11—0, as shown in Figure 2.16. The domain is considered periodic in the z-
direction at x = —2m, 27 , while all other boundary conditions are represented by solid surfaces.

The flow is driven by a constant body force F = (F,0,0).

The main challenge of the problem is the presence of the rounded edge followed by the upper and
lower parts of the channel that re-define the Reynolds number of the domain through a half-height
of 0.45 instead of 1 (the original value of the large channel). The periodic boundary conditions

in the direction of the body force are also of interest, since all disturbances propagate in the
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Figure 2.16: Close-up of the leading edge from the 936-element mesh, showing the semicircular
edge. The rounded sides are represented by a high-order isoparametric expansion.

entrance of the domain at x = —27. However, the biggest numerical challenge for viscoelastic
fluids such as the FENE-P model in this setup is the presence of both elongational thickening and
shear thinning in different parts of the domain - namely the leading edge for the former and the
upper/lower channels for the latter (Figure 2.16). More specifically, denoting the shear rate by ¥
and the stretch rate by €, the polymer-induced stresses o, 7 exhibit different power law scalings

for finite extensibility models, namely
. |Ou .
€= ‘% — Otip ~ €

. ‘ ou 3 )%
= |— Te nn. ~
0 ay ? channel Y

If \ denotes a characteristic polymer relaxation time, we define the Weissenberg number of the

flow by We = ’\ULCL , where Ucy, is a typical value for the centerline velocity and L a typical length.

The Reynolds number of the flow is defined as Re = YeLL  Clearly, different parts of the domain

v

have different typical values, and therefore different Weissenberg numbers define and dominate
them. Figure 2.17 illustrates clearly the difficulties we face in such a geometry; the axial normal

stress at the leading edge is one order of magnitude larger than that at other parts of the domain
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and this leads to numerical instabilities. Typical values for the simulation parameters (unless
otherwise stated) are: the FENE-P maximum extensibility parameter L = 10,20, the coupling
parameter 3 € [0.97,0.99], the kinematic viscosity ¥ = 6000, the time-step At = 5 x 10~ *, the
polynomial spectral order N = 7, the relaxation time A € [0.005,0.1] and the forcing function

F, = 15v.
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Figure 2.17: Averaged profile of the axial normal stress T,, = (1 — 8)7,, along the centerline of
the domain and the surface of the plate.

In order to illustrate the fundamental differences in the value of We between two different parts
of the domain, we calculate typical values of the Weissenberg number at the leading edge (Weyp)
and the upper or lower sub-channels (Wechannet). The radius of the semicircular tip is Ryip = 0.1,
the big channel half-height H = 1, the sub-channel half-height h = 0.45 and a typical value for the
centerline velocity in the whole domain is 0.6 (the channel and sub-channels have approximately
the same centerline velocity in the xz—direction). Therefore,

)\UCL /\UCL

W ~ 003, Wechanne] = i ~ 0.006.

Wetip =
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The computed values are small, and raise the question of whether the elasticity of the flow has
indeed attained realistic values. The elasticity number EI is defined as the ratio %, and in our

simulations it takes typical values of

1  Re (2R)?p 0.22 x 6000 N
El We A {0.01,0.1} ({10°,107)

Assuming that the leading and trailing edges of the plate operate locally as circular cylinders, this
elasticity range is within the values presented in the experimental studies of Coelho and Pinho [54]
done in 2003, who investigated the elasticity effects on the transition regimes of shear-thinning

fluids past a circular cylinder.

The effect of the SVV amplitude on the solution T, profile is shown in Figure 2.18 for £ =
{0.001,0.01}, M = 2 and N = 7. Although the two e values differ by one order of magnitude,
the profile values show minimal disagreement, verifying the accuracy of the stability-preserving
spectral filtering. The effect of the FENE-P maximum extensibility was also investigated for
L =10, 20 and Figure 2.19 shows a considerable rise of T,,, with an increase in L in the elongational
thickening region (around x = —7). However, the effect is very small at the trailing edge. Lastly,
investigating the effect of the relaxation parameter A for the values 0.05,0.1, Figure 2.20 shows
two time-averaged profiles of Ty, at both edges of the smooth plate. The leading edge and wake
profiles of the axial normal stress rise with A. It is interesting to note that in the Stokes case of

the 2-dimensional cylinder, the dependence on A was different.

2.5 Flat Plate in a Channel: Three-Dimensions

As a simple example of a three-dimensional case of a fully turbulent flow, we consider the rounded
plate example extruded in the z-direction. The homogeneous z-direction is handled by the modi-
fied computer code NexT ar with Fourier expansions, as opposed to the Jacobi-based expansion

of the z- and y— directions. Figure 2.21 shows an instantaneous snapshot of the streamwise
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Figure 2.18: The effect of the SVV parameter € on time-averaged values of the axial normal stress
T, at the leading (left) and trailing (right) plate edges.
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Figure 2.19: The effect of FENE-P maximum extensibility parameter L on time-averaged values
of the axial normal stress T3, at the leading (left) and trailing (right) plate edges.
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Figure 2.20: The effect of relaxation parameter A on time-averaged values of the axial normal
stress T, at the leading (left) and trailing (right) plate edges.

velocity contours at a friction Reynolds number Re, ~ 105 in wall units, and a friction velocity
u; ~ 0.0382. Given the turbulent conditions and the numerical instabilities at x ~ —n described

in section 2.4, we have increased the coupling parameter to 8 = 0.99, i.e., almost Newtonian.

Figure 2.22 shows instantaneous slices of all six components of the stress tensor s at y = 1.01,
ie. ~ 2% of the half-channel height of the upper sub-channel. Figure 2.23 shows the mean,
root-mean-square and skewness factor of the streamwise velocity component plotted against y.

Denoting time- and z—averaging by an overbar, we define the quantities as follows:

mean: Uy, = “ (2.33)
Uy
(w—a)? /o2
uU—1Uu 2 _ 2
root-mean-square: Urms = \/ " = uu Y (2.34)
(uw—u)°  ud—3u2u+2a3
skewness factor: S(u) = (u—1) =4 Y u3+ Y (2.35)

Urms3 Urms
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Figure 2.21: Instantaneous slices of streamwise velocity contours in turbulent flow regime (Re, ~
105).
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Chapter 3

The Reiner-Rivlin Model and the

Hole Pressure Problem

3.1 Second-Order Fluids

Caswell’s [55] three-dimensional analog of the Giesekus-Tanner (G-T) theorem allows the flow
in the vicinity of a pressure tap to be analyzed with the solution of the inertialess flow of a
Riener-Rivlin fluid just as Tanner & Pipkin [56] used G-T to analyze the corresponding two-
dimensional flow with the Stokes solution. Kearsley [2] extended the Tanner & Pipkin analysis
to the rectilinear flow in a channel with a parallel slot. In the two-dimensional case the hole
pressure found by Tanner & Pipkin is independent of hole geometry and is relative to the Stokes
value, usually neglected. In three-dimensions the Tanner & Pipkin term is again independent of
hole geometry, but now is relative to the Reiner-Rivlin value which is not negligible. Hence the
complete hole pressure in three-dimensions requires the solution of the Reiner-Rivlin problem.
The latter is formulated for numerical simulation so that the hole pressure can be read off values
of the pressure field without any post-processing calculation of velocity gradients. The numerical
simulations were performed with a three-dimensional spectral element code [36] well suited to the

efficient solution of flow problems in complex geometries. The limiting values of the hole pressure

41
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have been obtained for several hole sizes. Numerical results for large holes are not in agreement
with the Higashitani-Pritchard [57] theory, and for such holes the Stokes hole pressure is large

enough to be measurable.

3.2 Stress in Materially Steady Flows

In a previous article Caswell [55] defined the materially steady stress system in terms of the
Reiner-Rivlin stress system. The name is motivated by the form of the stress for the simple fluid

of Noll in the two important classes of materially steady flows:

1. Homogeneous, irrotational, isochoric flows (stretching flows),

2. Steady shear (viscometric) flows for which it reduces to the familiar CEF equation [58].

In isochoric flow the Reiner-Rivlin stress is an isotropic function of A, twice the strain rate tensor,

and is given by

R = —1P(II,III) +n(II, II1)A + o(II,11I)A? (3.1)

Here the scalar coefficients n and « are functions of IT and II1, the second and third invariants

of A defined by

1
II= %n«AZ, ITT = 5trA” (3.2)

The isotropic scalar pressure P is an arbitrary function of which a part may be expressed in terms
of II and III and another part is to be determined by the solution of the equation of motion and
the boundary conditions which define the flow problem.

Caswell [55] defines the materially steady stress S in terms of the Reiner-Rivlin stress R of equation

3.1, including the scalar pressure P, as

S =R - D\JII,IINR)/Dt + 1T (3.3)
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where A is a scalar function of the indicated arguments, and ¥ is an additional isotropic stress
which may be required to satisfy the equation of motion . The co-rotational time rate is denoted
by %ﬁ), and is clearly distinguishable from the material derivative denoted by an over dot. In
steady viscometric flows IT] = 0 , and the coefficients 7, @ and the factor A are then functions of
IT alone. It is easily shown that equation 3.3 becomes the familiar CEF equation [58] with viscos-
ity function n(II), first normal stress coefficient 2A(I1)n(II) and second normal stress coefficient

a(IT) = XIT)p(IT) .

Caswell [55] gave dynamical arguments for requiring two of the coefficients in equation 3.3 to be
derivable from a strain-rate potential ®(1I, 1) which delivers the coefficients of the Reiner-Rivlin

stress as,

Ap =0®/0II, Ao =0%/dI1I (3.4)

where the time-function M\(II,III) is an integrating factor. A further restriction, which follows
from Theorem 3.2.1 below, is to set A to be constant and to replace ® with \¢(I1,III). The vol-
ume integral of ¢(II, I1I) is the functional to be rendered stationary in the variational formulation

[59] of the inertialess Reiner-Rivlin problem,

V.-V=0, V:-R=0, Vx(V-R)=0 (3.5)

where the coefficients of the Reiner-Rivlin stress, equation 3.1, are given by

n =0¢/0II,  a=0¢/dIII (3.6)

The following statement of Caswell’s [55] Theorem 1 summarizes the role of the Reiner-Rivlin

stress in flows governed by the materially constant stress of equation 3.3:

Theorem 3.2.1 Let V,P be velocity, pressure fields, and let S be the materially constant stress
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of equation 3.3 with constant A and with ¥ = \¢(II,1I1)/2,

DR 1
S=R-\| 7~ 5o(1,IIT) (3.7)

where R is constructed from V,P with equation 3.1. Then this stress system satisfies the inertialess

flow or equilibrium equation and its compatibility condition,

V-S=0, Vx(V-S)=0 (3.8)

provided the following two conditions are met:

1. The velocity-pressure fields V, P satisfy the Reiner-Rivlin problem of equation 3.5 with

variable coefficients n(II,II1), a(II,1II).

2. The Reiner-Rivlin coefficients n(II,III), a(II,I1II) are derivable from the derivatives of

the strain-rate potential (11, IIT) according to equations 3.6.

Tanner [60] proved a similar theorem for flows governed by the equilibrium of the CEF stress in
the two-dimensional plane where I1] = 0, a plays no role and n is a function of I alone. In the
limit of small strain rates, II, II1 — 0 the coefficients 7, a of equation 3.1 are constants, and the

strain-rate potential becomes

¢ =nIl + alll (3.9)

Theorem 3.2.1 reduces to Theorem 1a of Caswell [55] which is the three-dimensional generalization
of the Giesekus-Tanner (G-T) theorem [61, 62]. The materially steady stress system 3.7 then
becomes the augmented second order fluid,

IT 111 DA DA?

- _ _\P _ - il 2 _ il
S=-1|P-)P )\772 )\a2 +nA +aA )\nDt Aa Dr

(3.10)

This stress system is the complete second order fluid (SOF) system with three coefficients aug-

mented by the last term of third order whose coefficient is a product of two coefficients of the SOF.
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The G-T theorem is recovered either by setting a = 0 in equations 3.9 and 3.10. The Reiner-Rivlin
stress R of equation 3.1 reduces to the Newtonian stress, and the Reiner-Rivlin problem of equa-
tion 3.5 reduces to the Stokes problem. The power of G-T theorem is the prospect of obtaining
the solution of a non linear problem from that of the corresponding linear one. Theorem 1la of
[55] shows that in three-dimensions all that can be expected is a reduction of the order of spatial
differentiation, which can have important advantages when numerical solutions are sought. It is
clearly preferable to apply numerical methods to a problem defined by equation 3.5 instead of
equation 3.8. This is the basis for the calculation of the limiting value of the three-dimensional

hole pressure given below.

3.3 The Hole Pressure

A tap in the wall of a channel, Figure 3.1, gives rise to a small flow disturbance which in turn
alters the pressure relative to its undisturbed value in the neighborhood of the tap. Deep within
the hole this disturbance is known as the hole pressure, and is defined by Lodge & Vargas [4]
as the difference of the normal tractions o,, = —P; at the wall in undisturbed channel flow, and

op = —P» at the bottom of the hole respectively.

Py =0y —op (3.11)

The depth is large enough to guarantee hydrostatic conditions so that by equations 3.1 and 3.10
it follows respectively that both the R-stress and the S-stress become isotropic. The calculation

of Py is carried out in two steps:

1. The application of theorem 3.2.1 to obtain the part which is analytic and also independent

of hole size,

2. The part which can be found only by solution of the Reiner-Rivlin problem and depends on

the hole size.

The first step requires only that S — R be considered. Far upstream in the channel the flow
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Figure 3.1: Channel with pressure tap. 77 and T3 indicate locations of pressure transducers in
the stressmeter of Lodge & Vargas [4].

is exactly viscometric, and the stress is then given exactly by the materially constant stress of
equation 3.3 which reduces to the CEF [58] equation in such flows. Let the velocity be V = u(y)i
relative to Cartesian coordinates z,y along and transverse to the streamlines respectively, and

with z normal to the zy plane. The kinematical tensors of the materially constant stress system

are evaluated in terms of the strain rate ¥ = Z—Z as follows:
o | asy s eo | sy DA ceeens DA?
A=(Gi+i)y,  AT=G+E)Y, 5 =G -7 > =0 (3.12)

and the invariants T, ITT are then 42,0 respectively. The stress system equation 3.1 is then

R = —-1p+ (ji +ij)7 + (ii + jj)o, (3.13)

and from equation 3.3, S — R becomes

1

1
S—R=1(0\up, + ) — Ele'yz(jj —ii), U= 2N1"72 — Aup, (3.14)
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where p, = % , T=mnY,0 =a¥?, N = 2 \¥? is the first normal stress difference, and the
coefficients 7, a, and A are now functions of IT alone. The scalar ¥ is not known for general
flows; in the Appendix of Caswell [55] it was shown that the form given in equation 3.14 holds
in viscometric flow. Disturbed by the hole from the purely viscometric one, the flow is not
easily calculated by direct solution of the equilibrium equation for typical constitutive equations.
The materially constant stress 3.3 gives an approximate description of the stress in this nearly
viscometric flow. However, the higher order spatial derivatives in equation 3.3 are well-known to
be troublesome in numerical simulation. Hence a further simplification approximates the time
function A(I1,III) by a constant A., and thereby reduces the flow problem to the solution of
the lower-order Reiner-Rivlin problem 3.5 by means of Theorem 3.2.1. The constant . is fixed
in the far-upstream, viscometric region by equating the channel-wall, exact difference-stresses of
equation 3.14 to the values given by the constant-A approximation of equation 3.7. By use of
equations 3.12 and 3.13 the latter becomes
¢ | ¢

S—R=1)\(up, + 5+ 3) — A2 (3§ — i), (3.15)

@, is a constant which has no effect on the equilibrium equation 3.8, and the potential ¢(+2,0)
vanishes as 42 — 0. In viscometric flow Caswell [55] (see Appendix therein) showed that ¢ can
be expressed in terms of the shear stress 7 as

(1) Wr(r')

—— = Wkg(7) —/ ———dr',  Wg=r1% (3.16)
2 0 TI

Equations 3.14 and 3.15 have no off-diagonal components, and equality of their diagonal-components

is satisfied by

5 /Tw _R(T) Ni(7w)
= .= —, 1
2 0 T o, A 27w Yuw (3.17)

where the subscript w denotes wall values in the viscometric domain far from the hole. Hydrostatic

conditions at the bottom of a deep hole means the only non-zero term in equation 3.7 is the
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constant isotropic tension,

S_R=12% _ 1/ IR (3.18)
2 0 T

Lodge & Vargas [4] define the hole pressure as the wall value of the normal wall-stress in undis-
turbed plane Poiseuille flow minus the total stress deep inside the hole. From equations 3.15 and
3.17 the jj-component of the difference stress is zero on the wall, and hence the hole pressure in
excess of the Reiner-Rivlin value is, in fact, the isotropic stress in equation 3.18. In the limit of
small strain rates Theorem 3.2.1 reduces to Theorem 1a of [55], A, becomes the mean relaxation

time of linear viscoelasticity and the integral 3.18 goes to the Pipkin-Tanner [56] limit of 5t

The complete hole pressure is obtained in step 2 by solution of the Reiner-Rivlin problem in the
channel-with-hole geometry (Figure 3.1). In the formulation of the Reiner-Rivlin problem given

below the pressure is modified so that equation 3.1 is replaced by

R=—1P +7nA +a (A% - 1II) (3.19)

The effect of this pressure definition is that in plane flow the « term vanishes. In viscometric flow
the stress component normal to the shear planes is —P , and since the pressure is a primitive
variable in the numerical scheme the hole pressure given by equation 3.11 can be read off from
the solution without spatial differentiation of the velocity field. In this work solutions have been
obtained only for the small strain-rate limit where i and « are constant, and where dimensional

analysis suggests the Reiner-Rivlin hole pressure Prr should have the form

Prr = —Pus —rai, (3-20)

where the Stokes (a = 0) hole pressure Pgg and r are constant for every hole size. As defined, r is

1 1 respectively for the transverse slot (Tanner &

positive for all known cases. These are: r =0, 5, 5

Pipkin [56]), the parallel slot (Kearsley [2]), and the circle (Higashitani & Pritchard [57]). The flow
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across the transverse slot is planar, and hence r is zero since the a-term vanishes from equation
3.19. Kearsley [2] showed that with a modified pressure field the velocity field for the rectilinear
flow of a Newtonian fluid also satisfies the Reiner-Rivlin problem. The flow in the parallel slot is
an example of a rectilinear motion, and it is used in this work as a benchmark for the numerical
method. From equations 3.18 and 3.20, the total hole pressure in the limit of small strain rates

can be written as

- + N2:| — Pys, (3:21)

where N; and N» are the first and second normal stress differences respectively.

3.4 The Reiner-Rivlin Stress in Nearly Incompressible Flows

In plane flows the Cayley-Hamilton theorem takes the form

A% —[trA] A + [%(trA)Q — II] 1=0, (3.22)

where trA = 2V - V. It follows from equation 3.22 that for plane isochoric motions the flows
of the Reiner-Rivlin fluid (equation 3.19) are indistinguishable from the corresponding flows of
a Newtonian fluid with viscosity 7 . In numerical simulation incompressibility is nearly always
imposed as a constraint, and consequently the calculated flow fields are nearly, but not exactly,
isochoric. It is of interest to formulate the Reiner-Rivlin stress so that the a-term in equation
3.19 will produce dynamic effects only in three-dimensional flows regardless of compressibility.
Since incompressibility is imposed as part of the solution of the equilibrium equation 3.5 the
Reiner-Rivlin stress is formulated in terms of A modified by any multiple of V -V . In terms of

B =A—(V-V)1 it is easily shown that the left hand side of equation 3.22 becomes

B? + % [(trB)? — tr(B*)] 1. (3.23)
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By design, trB is zero in plane flow, and since the whole expression is also zero then B2 is isotropic
in plane compressible flows just as A2 is isotropic in plane incompressible flows. With the pressure
modified by % [(¢trB)? — ¢r(B?)] the Reiner-Rivlin stress (equation 3.1) is written with A replaced
by B, as

R = —1p+nB + aC, C=B*+ % [(trB)? — tr(B?)] 1. (3.24)

In principle, the solution of the dynamical equations rendered under an incompressibility con-
straint should yield essentially the same numerical result for the stress systems of equations 3.1
or 3.24. Numerical experiments on the parallel slot geometry have demonstrated that formula-

tion 3.24 results in greater accuracy and improved convergence with respect to the magnitude of a.

In the numerical implementation described below, C is calculated from known velocity fields from
its Cartesian components displayed in the Appendix. After a Galerkin projection onto element
nodes these values are used to obtain V - C and V - (V - C) which appear in the momentum
and pressure equations respectively. Analytical expressions for the direct computation of these

quantities are derivable by use of the following identities for the components of the strain rate A:

k k
ai; = VitV = €W + 2Uj7i = €W + 2’[),',]' , (3.25)

Here €;;1, is the alternator and the w* are the components of the vorticity vector w. When these
identities are employed in the definition of B, the components of C, constructed from equation
3.24, can be expressed in the form

CF = —wkw; + 2(1}21}3 + v;jv}k - vgaf) —26F (vjkvlz — U’jjv,kk), (3.26)

where 6F is the Kronecker delta. Equations A.5 of the Appendix are recovered when the compo-

nents 3.26 are written in Cartesian coordinates. The vorticity product terms are easily identifiable,



51

and it then follows that the remaining terms appear in equations A.5 as sums of 2 x 2 Jacobians.

The divergence of C can be derived from equation 3.26 and expressed in condensed notation as

V- C=—-w-Vw -2V x (VV -w), (3.27)

which is easily shown to vanish in any plane flow independent of the magnitude of V - V. From

equation 3.27 the divergence of V - C is

V-(V-C)=—-—Vw: Vw. (3.28)

Although equation 3.28 is derived from equation 3.27 by an additional spatial differentiation the
highest order of differentiation of the velocity field is the same in each, and again this result is

independent of the magnitude of (V - V).

3.5 Numerical Method

The momentum equation for the Reiner-Rivlin fluid with constant coefficients takes the dimen-

sionless form
ou

a-&-Re[u-Vu]:—Vp+V2u+a'V-C+F, (3.29)

where F denotes the body force vector, u the velocity vector and C is defined by equation 3.24.
_ o%w

The Reiner-Rivlin number o' = = is a Deborah number which measures the strength of the

. 2
non-Newtonian stress contribution, while the Reynolds number Re = 'YZ:’ measures the inertial

disturbance due to the hole of diameter b. In view of Theorem 3.2.1 the Reynolds number will be
set to zero in all the simulations presented below. The solution is obtained by marching in time
to the steady state from a known initial state, and hence the scale of the dimensionless time ¢ is

determined by the magnitude of the time step.

For the temporal discretization of the Navier-Stokes equations we use the time-splitting stiffly-
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stable scheme described in section 2.2. The version of the implemented scheme has the same

structure as the one used for the FENE-P case, with the following distinct differences:

1. The non-linear step differs from the viscoelastic case in the right-hand side, due to the pres-

ence of the Reiner-Rivlin stress. Hence the equation reads now

Ju—1 Ju—1
a= au" "+ At Z By|—(u™ - V)u" I+ ' V- (C)" I+ F Y. (3.30)
q=0 q=0

We note the difference in the polymeric stress; V - C replaces the viscoelastic V - s term of

the FENE-P stress. The pressure and viscous steps are the same as the FENE-P case.

2. The Reiner-Rivlin stress is purely a function of the velocity components and no evolution
equation for the polymeric stress exists. In absence of a conformation tensor, the SVV

(whenever used) filters the velocity components instead.

The spatial discretization is identical to the FENE-P case, see section 2.2.

3.6 Convergence Studies

3.6.1 Simulations without Stabilization

Since the Reiner-Rivlin (R-R) fluid contains high-order derivatives, we need to address the problem
of discontinuity across elemental boundaries as well as the effect of the R-R parameter ' on the
accuracy of the computed solution. To this end we perform an analytical study of a simple plane

channel flow with a given velocity distribution taking the form

(1 — 2%)cos(my)

Uy, z) = 0 : (3.31)

0

The body force sustaining such a flow profile is given by
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Figure 3.2: The 1-, 2- and 4-element meshes used for the convergence studies of the R-R fluid.
Each hexahedral element has a 10t order Jacobi polynomial approximating the solution in all 3
directions.

veos(my)(2 + 2 — w222)
F(y,z) = —ma'sin(27y) (1 + 22) . (3.32)

—27m2a/2(1 — 2?)

A notable point regarding the above combination of U(y, z), F(y, z) is that although the flow is
1-dimensional it requires a 3-dimensional body force, rendering the computation non-trivial and
hence meaningful for convergence study purposes. Another interesting aspect of the above solution
is the o/-dependence of components ¥, z of the forcing function but not of the z-component. We
examine the Lo, error of all velocity components and of the pressure versus o' in figure 3.3. We
observe a clear monotonic dependence of the error on o, but the effect of elemental boundaries has
a secondary effect on the accuracy of the computed solution. The pressure error is 2 orders higher
than the velocity error and this trend is consistent for all examined values of o'. For o' ~ 0.4,
a value larger than the ones we will be considering in the following sections, the pressure error
is O(1073). The introduction of more elements causes the simulation to diverge in the higher o/
values (the elemental boundary discontinuities do affect stability), but when solutions converge

accuracy is maintained at the same levels regardless of the number of elements.
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Figure 3.3: L., error in the velocity (upper) and pressure (lower) plotted against the Deborah
number o' for 1-, 2- and 4-element meshes.

3.6.2 Polynomial Over-Integration and SVV

Nonlinearities in the R-R equations appear both in the convective u-Vu and the stress V-C terms.
In spectral/hp methods errors occur from insufficient quadrature of collocation when primitive
variables are in physical space, in our case during the nonlinear step before the transform to
modal space. For the integration of a polynomial u(§) of degree N we require (N + 3)/2 Gauss-
Lobatto-Legendre quadrature points for exact computation of the integral. The decomposition of
u(€) is done using the basis functions ¢;(£); hence since u(§) = Eéio Ui (€) the inner product
(9:(€)¢;(£)) is of interest due to the Galerkin projection. Letting M = N + 1 be the number of
modal coefficients for the polynomial expansion of u(£), the quadratic nonlinearity of the u- Vu
term involves numerical computation of a polynomial of degree 3N, and hence the minimum

sufficient number of quadrature points is

3N+3 3(M-1)+3
2 2

Q3N = % (3.33)



95

Y U = [(1-z%)*cos(ty), 0, 0]
10 T

-©- lelement |]
—+ 2 elements |1
—+ 4 elements ||

Linf error in (u,v,w)
[
o
T
1

&
10°° I I
1 1.5 2 25
overintegration order
107 :
—~ §
=
£
S 10°F 4
)
E
-
® &
10_4 | |
1 15 2 25

overintegration order

Figure 3.4: L, error in the velocity (upper) and pressure (lower) plotted against the overintegra-
tion order for 1-, 2- and 4-element meshes.

Studies of this over-integration approach have been presented in [49] for the viscous Burger’s
equation; in this work we extend the study to the second order fluid. Figure 3.4 shows the effect
of the over-integration order (defined as the multiplicative factor of M in the right-hand side of
3.33) on the Ly, error of the velocity and pressure for the analytical solution and sample meshes
presented earlier. The quadratic nonlinearity of both the convective and R-R terms is accurately
resolved with the three-halves rule; accuracy is increased by one order of magnitude in the velocity
and pressure for all studied meshes by simply using % modes in the nonlinear computations.
The saturation of the error in the plot suggests that there is no numerical advantage in using
more; curiously, though, the accuracy in the pressure is two orders of magnitude worse than that
of the velocity components. This is true for the case of & = 0, indicative that the non-Newtonian

effect is not responsible. Possible reason might be the use of the L, norm in our study.

Applying the SVV filtering in the case of the two-element mesh, managed to increase the range

of Deborah numbers shown in Figure 3.3 to ' = 0.4. Naturally, the use of the spectral filtering
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trades accuracy for stability and the corresponding errors for (e, M) = (1.0,3) in the velocity

components and pressure are Lo, = 0.0029 and 0.3190, respectively.

3.7 Benchmark Problem: Parallel Slot

Kearsley [2] showed that the non-planar rectilinear flow with velocity components {u(y, z), 0,0},
and driven by a constant pressure gradient {P,,0,0} also satisfies the equilibrium problem for
the Reiner-Rivlin stress with constant coefficients provided the pressure is defined appropriately.
On one wall of a channel the center plane of a deep slot extends along the entire z-axis giving
the channel a constant T-shaped cross-section, Figure 3.5. The flow problem is solvable in the
y, z—plane, but for the purposes of validation of the numerical code it was solved as a three-
dimensional problem in a channel of finite length. Periodic boundary conditions were applied at
the ends to simulate a channel of infinite length. The hole pressure was obtained, and the results

are displayed in Figure 3.5.

Meshes with rounded corners and sharp corners at the slot junction were used. The rounded cor-
ners gave r-values in closest agreement with Kearsley’s [2] analytical value for deep, narrow holes.

Here the slot width was £

75+ The Jacobi polynomial order p was varied and the r-values of Figure

3.5 show that little it gained for p > 3. In fact, the plot suggests there is no convergence with
p—refinement. The sharp corners in the domain are responsible for this numerical inconsistency,
and combined h/p—refined studies are under way, since it has been observed that p—refinement

alone in domains with singularities is not sufficient.

Figure 3.6 shows the effect of over-integration and SVV filtering on the r-values for the round-
edged slot. Over-integration effects are small in the given geometry for both accuracy and stability;
SVV, however, proves to enhance stability for appropriate amplitudes €. The results we provide
use different SVV parameters for different values of o/, as shown in table 3.1. Naturally, larger o/

values require stronger filtering, a property that manifests itself in the corresponding significant
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Figure 3.5: The mesh used for the rounded T-shaped cross-section (left) and the corresponding
results jzﬂ plotted versus the R-R number o (right).

[p=2] o €[0.001,0.16] | a—017 | oa'=02 ]
| |5M (0.006,2) | (e, M) =(1.0,2) | (e, M) =(2.5,2) ]
[p=3] o €][0.001,0.12] ] a—015 |
| | (e,M) =(0.006,2) | (¢ (1.2,2) ]

Table 3.1: Different SVV parameters used for stabilization of different Deborah numbers in the
Reiner-Rivlin problem described by Kearsley [2].

increase of the SVV amplitude e for higher values of o/. We note that all cases studied with
o' > 0.16 (for p=2) and o' > 0.12 (for p = 3) diverge if SVV is not used. The sudden drop in r
with the use if SVV is not surprising, since the damping amplitude ¢ is increased by 3 orders of

magnitude to achieve stability (Table 3.1), and accuracy is clearly affected under these conditions.

3.8 The Hole Pressure for Newtonian Fluids

3.8.1 Laminar Hole Pressure for a Newtonian Fluid

The hole pressure is the disturbance to the manometric pressure resulting from the presence of a
pressure tap on the wall of a channel as depicted in Figure 3.1. It is the manometric measurement
error incurred when the hydrostatic pressure deep within the tube is taken to be the wall-pressure,

i.e., the negative of the total normal traction.
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Figure 3.6: 1;1?1} plotted versus the R-R number o' and compared with Kearsley’s [2] analytical
result for different polynomial orders using over-integration and SVV.

For non-Newtonian fluids the hole pressure is related to the two normal stress differences and
is thought to be nearly independent of the hole size. Potentially, the effect provides a method
to measure a combination of the normal stress differences, and hence is not considered to be an
error [4]. This work investigates both the Newtonian and non-Newtonian cases (for the latter,
see section 3.9.1). In most applications, the hole size relative to the channel dimension, wall
curvature, or other geometric lengths are assumed to have a negligible effect on the hole pressure.
Here, this assumption is investigated through flow calculations for two hole sizes, and it is shown
that for hole sizes used in some experimental work the size effect is substantial. The calculations

reported in this work demonstrate that pressure taps give rise to two global effects, namely:

1. The manometric error due to the flow disturbance caused by the hole, i.e., the hole pressure.

2. The pressure recovery in the channel due to the hole. This recovery of pressure is positive

at small Reynolds numbers and becomes negative as inertia is increased.
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Both of these quantities are consequences of the disturbance to the flow caused by the pertur-
bation of the channel geometry due to the tap. Hence, the pressure field of interest will usually
be the disturbance pressure. The undisturbed pressure field consists of the linear Poiseuille field
in the channel and a uniform constant pressure in the hole; the constant being the Poiseuille
value at the streamwise position of the hole axis. The undisturbed field can be considered an
initial condition in which a membrane is placed across the mouth of the hole to isolate the two
regions. At time zero, the membrane is removed and the flow evolves to a new steady state. The
disturbance pressure field is the difference between the new steady state pressure field and the
initial or undisturbed field. Since most of the discussion focuses on the disturbance pressure, it
will be referred to as simply the “pressure”, unless otherwise noted. In Stokes flow, the plane
normal to the flow direction, coincident with the axis of the hole, is a plane of fore-aft symmetry
for the streamlines, and anti-symmetry for the isobars. It follows that the hole pressure is one-half
the pressure recovery in the channel (see Figure 3.9). This provides a consistency check for the

calculations.

For the Newtonian fluid, dimensional analysis of the hole pressure problem depicted in Figure

3.1 gives

Py b
S - 34
p f(Re, 2) (3.34)
_ Y b? _ T b?
Re = y —4IW , (3.35)

where 4, and 7, = p¥, are wall values of the shear rate and the shear stress respectively for
the undisturbed channel flow. The channel width is H and hole diameter is b. The hole is deep
enough to ensure stagnant conditions for all channel flow rates of this study, and hence its depth
is not a relevant parameter. The fluid has shear viscosity p and kinematic viscosity v. The hole
pressure is defined as the difference of the normal tractions o,, at the wall (undisturbed channel

flow) and o}, at the bottom of the hole, respectively:
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Py =0y — oy, (3.36)

This definition gives a positive hole pressure for small Reynolds numbers for both Newtonian
and non-Newtonian fluids. The relevant measure of inertial effects is the hole Reynolds number
defined in equation 3.35, which vanishes as the hole size b — 0. In that limit, the motion reduces
to undisturbed, plane Poiseuille flow. The channel Reynolds number is not a relevant parameter,
since the flow is assumed to be laminar. The numerical method is the same as the one described

in section 3.5 with o' = 0 in equation 3.29.

3.8.2 Numerical Results for Three-Dimensional Holes: Newtonian Fluid

Figure 3.7 shows plots of hole pressure vs. Reynolds number for two hole sizes; b = H and
b = H/2. The former appears to be unusually large, but was chosen because of available experi-
mental data [63], which are displayed with the calculated curves in the figure (upper). Two sets
of calculated curves are shown in both plots. The solid line represents the hole pressure with o,
in equation 3.36 taken as the undisturbed, Poiseuille normal wall-traction at the center point of
the hole. The dashed curve is constructed by taking the o, to be the normal wall-traction, for the
disturbed flow, at the point of intersection of the hole axis with the wall opposite the hole. Figure
3.8 shows both hole pressure curves relative to the Stokes values (i.e. (Pg — Pgg) /o) collapsed
in one plot. From the experimental data of Tong [63], Lodge & Vargas [4] fitted a slope of 0.024

for circular holes with b = H; the straight line in Figure 3.8 has slope ~ 0.027.

Tong’s [63] experimental design assumes the pressure disturbance to be confined to the near-hole
region, and that the normal traction on the opposite wall is essentially the undisturbed Poiseuille
value; hence the location of the flush-mounted pressure transducers shown in Figure 3.1. The
misconception of this assumption is clarified by the calculated results displayed in Figures 3.9

and 3.10, which show the disturbance pressure for Stokes flow for b = H. Figure 3.9 is the pres-
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Figure 3.8: Hole pressure relative to Stokes versus Reynolds number for 1:1 and 2:1 ratios. Straight
line represents tangent at Re = 0. Experimentally, Lodge & Vargas [4] fitted a slope of 0.024.

sure profile in the streamwise center plane (z,+1,0) on the top and bottom channel walls, while
Figures 3.10 and 3.11 display contour plots of the pressure on the upper and lower channel walls
(z,+£1, z). These results show that for large holes the pressure traverses the channel gap and the
channel width with little attenuation. The peaks in the vicinity of the hole are smoothed out,
but the ramp-like increase is projected across the gap and laterally across the full width of the
channel. Figure 3.11 corresponds to Figure 3.10 for Re = 20 and shows the development of the

pressure wake as inertia increases.

Contour plots of all three velocity components u,v,w at (x,—1,2) for Stokes flow and Re = 64
(Figures 3.12, 3.13 and 3.14, respectively) show visible symmetry-breaking effects of inertia along
the z-direction. Figure 3.15 shows the central-plane pathlines in the vicinity of the hole for Stokes
flow and Re = 20. The secondary flow near the bottom of the hole is very much weaker than
the upper one, and gives rise to a negligible pressure over the hydrostatic value at the bottom. A

view from top in Figure 3.16 reveals visible inertia effects on the near-wall streamlines above the
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Figure 3.12: Contour plots of the u-velocity component at the lower wall of the 2b = H case for

Stokes flow (left) and Re = 64 (right).

3.9 The Hole Pressure for Reiner-Rivlin Fluids

3.9.1 Numerical Results for Three-Dimensional Holes:

Fluid

Reiner-Rivlin

Assuming the walls of the plane channel are at y = £1, the fully three-dimensional hole prob-

lem is addressed with a prescribed Poiseuille velocity u(y) = 1 — 4?,v = w = 0 at the channel

entrance, while the outflow channel boundary is treated with the Neumann boundary condition
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Figure 3.13: Contour plots of the v-velocity component at the lower wall of the 2b = H case for

Stokes flow (left) and Re = 64 (right).
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Figure 3.17: Centerline pressure on top wall for b/H = 1.

% = 0,P = 0. We note that in absence of the pressure tap, this is an exact solution for a plane
R-R flow. The boundaries for the cross-flow z-direction are assumed periodic, and the rest of the
boundaries are set to solid surfaces. A typical simulation for such a geometry has 2 million degrees

of freedom. The presented results were obtained with polynomial orders p = 2 and 4 per direction.

The results for three-dimensional holes are presented in terms of the disturbance pressure field

which is the extra pressure due to the disturbance created by the hole (see section 3.8.1).

Figure 3.17 shows the centerline pressure on the top wall of the channel for b/H = 1 for several
values of o' (R-R). The pressure constant is chosen so that the pressure is zero at (0, —d, 0), the
center of the bottom plate of the hole at depth d. By definition 3.11 the far upstream (x = —7)
value of the pressure is the hole pressure as indicated in Figure 3.17, and the difference between

the far downstream and far upstream (2 = 10) values is the pressure recovery Pp due to reduced
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Figure 3.18: Hole pressure as a function of the Reiner-Rivlin number.

dissipation relative to the no-hole geometry. If Py is added to each curve then the pressure will
be zero far upstream, Py at the bottom of the hole, and Pp far downstream. The advantage of
the shifting the pressure to be zero at the hole bottom is that Py and Pp can be conveniently
displayed on one plot. Since at each end of the channel the flow is asymptotic to Poiseuille flow
the plane (0,y, 2) is one of fore-aft symmetry. In Stokes flow the streamlines and the pressure
field must then have fore-aft symmetry and anti-symmetry respectively as is evident in Figure
3.17 and Figure 3.21 below and, furthermore, Pp must be equal to —2Py. These properties of

Stokes flow provide useful checks on the numerical solutions.

The hole pressures for three hole sizes are plotted according to equation 3.20 rendered dimension-
less with division by the Poiseuille wall shear stress, 7, = 7¥,. The linearity of the plots suggests
that for Reiner-Rivlin numbers less than about 0.2 the solutions obtained here fall within the do-

main of first order perturbations of Stokes flow. In both theoretical and experimental work it has
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been assumed (Lodge & Vargas [4], Tanner & Pipkin [56]) that the hole pressure in Stokes flow is
negligible compared to non-Newtonian effects. For large holes the experimental data of Tong [63]
for b/H = 1 show Pyg to be measurable. Over the range of numerical values in Figure 3.18. Pyg
scales roughly as ~ (b/H)? while r scales as ~ (b/H)~'/2. The latter is unlikely to hold for very
small b/H, and the r values given here may be approaching the Higashitani-Pritchard [57] value
of 1/6 as b/H — 0; indeed a calculation for b/H = 1/10 on a coarse mesh gave r = 0.17. A fine
mesh calculation for the same geometry proved extremely demanding in CPU resources and was
judged inappropriate. Kearsley’s value of 1/2 for the parallel slot may well be an upper bound

for r.

When the pressure curves in Figure 3.17 are shifted by Prg — Pygs the result is essentially a single
curve as shown in Figure 3.19 for b/ H = 1/2.; similar results were obtained for all values of b/ H.

This means that away from the aperture the pressure distribution for o' > 0 differs from the
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Figure 3.20: Pressure contours on the top plane; positive contours lie to the right of z = 0.

corresponding Stokes field by a constant. This implies that far from the aperture the flow is the
governed by the Stokes equation. However, it is clear from Figures 3.17 and 3.19 that, except for
very small values of b/H, the flow near the wall opposite the hole is not undisturbed Poiseuille

flow as assumed in the Higashitani-Pritchard [57] theory.

Figure 3.20 displays pressure field contours for a o' = 0.2 on the top wall (z, H/2, z) for b/H = 1.
The contour pattern shows that the hole disturbance of O(Pyg) extends all the way across the
channel is an unexpected result. Since Pyg scales as (b/H)? it suggests that in experimental
designs which employ large holes, such as the Lodge & Vargas [4] stressmeter, the placement of
transducers to measure the gradient of the total pressure will be subject to systematic error in
the arrangement shown in Figure 3.1. Furthermore, a sideways off-set of the transducer 77 does

not resolve the problem, and clearly, it should be placed upstream in the undisturbed region.

The hole-pressure is an example of how the asymmetry of an apparently small geometric dis-
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Figure 3.21: Three-dimensional pathlines at a small distance above the wall.

turbance of a viscometric domain can give rise to a significant effect due mostly to the normal
stresses. For the values of o of this work the velocity fields differ only slightly from their Newto-
nian counterparts. In Figure 3.21 streamlines originating upstream at a distance 0.025H from the
lower wall are seen to form a bowl as they pass over the aperture with o' = 0. This picture changes
very slightly when o' is increased to 0.2, and examination of the velocity field through most of the
domain yields a similar conclusion. This is consistent with Figure 3.19 which shows the pressure
field on the top wall to be Stokesian, but it does not account for the extra hole pressure which
shifts the pressure curves to produce a single one. The plane of the aperture is the one location
where the Reiner-Rivlin velocity fields are distinctly different from their Newtonian counterparts.
In Figure 3.22 the velocity components are plotted in the plane of the aperture along (0, —H/2, 2),
for b/H = 1and o/ = 0.2. The Newtonian v, w-components are essentially zero while their Reiner-
Rivlin counterparts are small but distinct from the numerical errors. When the u-components are
magnified they exhibit differences of the same magnitude as the Reiner-Rivlin v, w-components.

Thus even in the limit of small shear rates the three-dimensional hole-pressure flow in the region of
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Figure 3.22: Velocity components across the aperture. The observed oscillations in the
v—component of the R-R flow are due to the sharp corners of the junction and is a manifestation
of the noise in the non-Newtonian stress.

the aperture is considerably more complicated than the corresponding two-dimensional problem.
The Higashitani-Pritchard [57] theory is built conceptually on the assumption that the aperture

region has streamlines in the pattern of Figure 3.21.

3.9.2 Conclusion

The low shear-rate hole pressure for a non-Newtonian fluid has been shown to be determined
by the augmented second order fluid, equation 3.10, derived from the materially constant stress,
equation 3.3, in which the Reiner-Rivlin stress has constant coefficients 7, and a. In that equation
the definition of the isotropic stress allows the equilibrium equation to be satisfied by the solu-
tion of the Reiner-Rivlin problem, equation 3.5, by means of Theorem 3.2.1 proved by Caswell
[55]. This reduction in the order of spatial derivatives is numerically advantageous, and naturally
breaks the problem into two steps. In the first, the hole pressure relative to the Reiner-Rivlin
value is determined analytically to be independent of hole size and to be the same as the Tanner
& Pipkin [56] result for two-dimensional holes. In step two the Reiner-Rivlin value is determined
by solution of equation 3.5. Since the term in « in equation 3.1 plays no role in plane flow,
the Reiner-Rivlin stress has been put into a form, equation 3.24, that is unaffected by the small
discrepancies in the dilatation rate V -V from zero which occur in numerical simulation. This

avoids the creation of artificial three-dimensional forces in regions of plane flow embedded in a
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three-dimensional domain. Our modified NexT ar code was checked in two benchmark problems
with known analytical solutions. In particular, for Kearsley’s [2] parallel slot the r coeflicient in
equation 3.20 is calculated to within 1% of the analytical value of % (the p—convergence issue can

be resolved by combined h/p—refinement).

The numerical values of the Reiner-Rivlin hole pressure have been shown to follow equation 3.20,
and its constants Pygg, and r have been tabulated for % = i, %, 1. The Stokes hole pressure,
Pys, has been shown to scale roughly as (b/H)3, and from the experimental data of Tong [63]
its magnitude at b/H = 1 was found to be in the measurable range. The coefficient of the
Reiner-Rivlin number r which determines hole size dependence of the total hole pressure Py in
equation 3.21 is smaller than the Higashitani-Pritchard [57] value of 1/6, which may be the limit
for very small holes. Of value to experimental design is the observation that the pressure on
the channel wall opposite the aperture is significantly disturbed. An important assumption of the
Higashitani-Pritchard theory is that this disturbance is negligible, which is true only for very small
holes. This assumption has been influential in the design of the Lodge stressmeter where the hole
pressure was measured with pressure transducers located opposite the aperture and at the bottom
of the hole. This transducer together with one located upstream, as in Figure 3.1, was also used
to measure the pressure gradient of the undisturbed channel flow. This apparent hole pressure
will be exactly zero in Stokes flow due to its symmetry properties, but, once non-linear effects
such as non-Newtonian stresses or inertia are significant, the measurement cannot be accurately
interpreted. Furthermore, the measured pressure gradient will not be the undisturbed value. As
might be expected, large holes are intrusive, and their disturbance shown in Figure 3.20 can reach

all the way across the channel.



Chapter 4

Part I: Summary and Future

Work

In part I of this dissertation we have presented continuum simulations of two non-Newtonian
models: The simplest non-Newtonian model, namely the second-order Reiner-Rivlin fluid, and
the viscoelastic FENE-P model. The fundamental contribution of this work is the use of numer-
ical stabilization techniques, such as polynomial over-integration and spectral viscosity (SVV).
However, in the case of the Reiner-Rivlin fluid, our calculations motivate the direct comparison of
fundamental laboratory measurements with computed results, and interesting comparisons arise

for the hole pressure problem in both Newtonian and non-Newtonian regimes.

The FENE-P model is described by an additional evolution equation for the conformation tensor ¢,
while the Reiner-Rivlin fluid has no such dependence on polymeric stress variables. Consequently,

the numerical stabilization techniques employed in this work target

e The velocity components for the Reiner-Rivlin fluid, and

e The conformation tensor for the FENE-P fluid.
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The first section of part I of this dissertation addressed the FENE-P case; we presented a new
numerical method suitable for simulating high Reynolds number viscoelastic flows. Our particular
interest is on turbulent drag reduction for flows around hydrodynamic surfaces (e.g., ship hulls,
torpedos, etc.) using polymers, and some of the developments in this paper were motivated by
this application. To this end, the modified splitting scheme proposed in [44] in combination with
the modal type representation of spectral elements has been found to be both robust and accurate.
We have followed this procedure for Newtonian turbulent flows with success as well, e.g. see [64].
We intentionally targeted the three-dimensional configuration of the flat plate in order to demon-
strate that spectral element simulations are practical and that the new stabilization technique is
quite effective. Moreover, the Weissenberg number We = 2.0 reached in the two-dimensional flow
past a cylinder, together with the smoothness of the T, profiles for these Weissenberg numbers,

demonstrate the stability of the method.

The use of numerical diffusion to stabilize simulations of hyperbolic nature goes back to von
Neumann and Richtmyer, and it has been practiced routinely in aerodynamic flows, and also in
subgrid scale models in large-eddy simulations. However, in more recent work it has been formu-
lated as an adaptive feature, i.e., to be used non-uniformly in space and/or in time as needed. In
addition, high-order superviscosity kernels have been the preferred choice. In viscoelastic flows,
explicit treatment with artificial viscosity has been done typically without a particularly close
connection to resolution or the spatial non-uniformities in the stress field. Of course, formula-
tions such as SUPG address this issue implicitly, but here we refer to explicit artificial viscosity
approaches. The current formulation addresses that by targeting modal representations of the
numerical solution. This work introduced the spectral vanishing viscosity (SVV) method that
imposes monotonicity of the solution without affecting the lower most energetic modes. Only
the upper one-third of the modes is affected in a special way so that the high-order accuracy

(exponential in our case here) is maintained.
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The appeal of the new approach is that it derives its origin in non-linear hyperbolic laws — a
theoretical proof presented first by Tadmor (1989) [37]. Another useful feature from the imple-
mentation standpoint is that the convolution kernel that represents SVV is second-order and thus
it can be easily implemented in existing finite element codes. To this end, an extension of the
method in the physical (instead of modal) domain is required but some initial work has already
been done in [47]. This is the first work using SVV for viscoelastic flows and many issues need to
be resolved. First, the two parameters that characterize the SVV kernel, namely the amplitude
and cut-off wavenumber need to be studied more systematically. In the presented examples we
have seen that the values of the viscosity amplitude € depend on the flow parameters. Our crite-
rion in choosing € has been to employ the smallest value that ensures stability since this will not

decrease the accuracy.

A dynamic model that relates the amplitude of SVV and the local strain needs to be explored
and implemented appropriately. In addition, the smooth kernel Q(M,N) can be modified so
that a space-dependent (i.e., variable) cut-off wavenumber be introduced. Moreover, non-uniform
polymer concentration using diffusion models suggested by Apostolakis et al. [65] can prove ben-
eficial, considering the disproportionally high values of the zz-component of the stress at © ~ —7
in Figure 2.17. Finally, more tests are required in the context of other non-Newtonian models in

addition to the ones considered here.

The second section of part I of this dissertation addressed the hole pressure problem for Newto-
nian and Reiner-Rivlin fluids, as well as numerical stabilization for the latter. For the Newtonian
case, direct comparison with Tong’s [63] experimental data for ratios of b/H = 1 (b being the
hole diameter and H the channel width) show good agreement with the computed results. Dif-
ferent ratios (2b = H) were also examined. The results show that the pressure disturbance is not
confined to the near-hole region, as assumed in earlier studies. Moreover, our results verify the

fitted tangent slope computed by Lodge & Vargas [4] and Tong [63] in the Stokes hole pressure
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vs Re plot (Figure 3.8). An improvement in future work would be the employment of longer
computational meshes downstream. This can prove useful in the calculation of the dissipation
pressure, as it can only be measured when the downstream pressure profile has reached far-field,

steady slope conditions.

For the Reiner-Rivlin (R-R) fluid, we formulated different variants of the non-Newtonian part
of the stress, ultimately employing the C-tensor formulation of equation 3.24. The advantage
in using this formulation is that V - C does not involve numerically computing V (V - V), thus
making incompressibility indirectly satisfied without explicitly enforcing it. Moreover, this for-
mulation uses lower spatial derivatives by one order, which proved beneficial for eliminating noise

at elemental boundaries.

Convergence tests of section 3.5 provide the reader with a clear understanding of the accuracy
limits with respect to the R-R parameter . Polynomial over-integration with the three-halves
rule efficiently addresses the quadratic non-linearity of the problem (see Figure 3.4). Moreover,
the benchmark problem formulated by Kearsley [2] provides a fully three-dimensional configu-
ration having all R-R velocity components identical to the Newtonian ones with the R-R effect
present only in the pressure. The analytical comparison with the r—value in Figure 3.5 shows
close agreement (1%) with the analytical result (r = 1/2). In addition, the effect of polynomial
over-integration and spectral viscosity on the velocity components (Figure 3.6) shows advantages
in using numerical filtering if one is willing to trade accuracy for stability. The R-R Stokes hole
pressure is shown to scale roughly as ~ (b/H)?3, while r ~ (b/H)~'/2. The Higashitani-Pritchard
[57] value of 1/6 in the limiting case of b/H — 0 is recovered for a coarse mesh calculation
of b/H = 1/10 which gave » = 0.17 (fine mesh calculation for this geometry proved extremely

demanding in computing resources). Figure 3.18 summarizes the ratio dependence of r on «.
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Mesoscopic Simulations
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Chapter 5

Dissipative Particle Dynamics

5.1 Multiscale Modeling

The Molecular Dynamics (MD) method is suitable for simulating very small volumes of liquid
flow, with linear dimensions of the order of 100 nm or less and for time intervals of several tens of
nanoseconds. It can deal effectively with nano-domains and is perhaps the only accurate approach
in simulating flows involving very high shear where the continuum or the Newtonian hypotheses
may not be valid. For dimensions less than approximately ten molecules the continuum hypothesis
breaks down for liquids [66], and MD should be employed to simulate the atomistic behavior of
such a system. For larger systems, however, multiscale approaches that rely on the efficiency of

continuum-based discretizations have to be employed.

MESO-SCALES
MICRO-SCALES DPD: MACRO-SCALES

momentum-—conserving
Brownian Dynamics,

MD: CFD:
retains atomistic each particle is continuum
details a collection of molecules modeling

Lattice Boltzmann,
Brownian Dynamics

Figure 5.1: The task of the DPD simulation method.
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To this end, the coupling of MD to Navier-Stokes equations can extend the range of applicability
of both approaches and provide a unifying description of liquid flows from nano-scales to larger
scales. Such efforts have been underway by many research groups; however, the proposed algo-
rithms are rather complicated and no fully satisfactory schemes have been developed yet. An
alternative, potentially very powerful and simple approach, is a new method developed in the mid
1990s primarily in Europe: the dissipative particle dynamics (DPD) method. It has features of both
the MD and the lattice Boltzmann method (LBM) [67], and can be thought of as a coarse-grained
version of MD, but it employs dissipative and stochastic forces to account for the eliminated
degrees of freedom. The initial model was proposed by Hoogerbrugge and Koelman [24] as a sim-
ulation method to avoid the artifacts associated with traditional LBM simulations while capturing

spatio-temporal hydrodynamic scales much larger than those achievable with MD, see Figure 5.1.

The dissipative particle dynamics (DPD) model consists of particles that correspond to coarse-
grained entities, thus representing molecular clusters rather than individual atoms. The particles
move off-lattice interacting with each other through a set of prescribed (conservative and stochas-
tic) and velocity-dependent forces [24, 68]. Specifically, there are three types of forces acting on
each dissipative particle: (a) a purely repulsive conservative force, (b) a dissipative force that
reduces velocity differences between the particles, and (c) a stochastic force directed along the
line connecting the center of the particles. The last two forces effectively implement a thermostat
so that thermal equilibrium is achieved. Correspondingly, the amplitude of these forces is dictated
by the fluctuation-dissipation theorem [68] that ensures that in thermodynamic equilibrium the
system will have a canonical distribution. All three forces are modulated by a weight function
which specifies the range of interaction or cut-off radius r. between the particles and renders the

interaction local.

A conceptual picture then of DPD is that of soft microspheres randomly moving around but

following a preferred direction dictated by the conservative forces. DPD can be interpreted as
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a Lagrangian discretization of the equations of fluctuating hydrodynamics as the particles si-
multaneously follow the classical hydrodynamic flow while exhibiting thermal fluctuations. The

consistency of the fluctuations is governed by the principles of statistical mechanics.

5.2 Complex Fluids at the Mesoscales

Several complex fluid systems in industrial and biological applications (DNA chains, polymer gels,
lubrication problems) are characterized by inherent time and length scales that range from the
atomistic level to a millimeter and beyond, often spanning several orders of magnitude. Tradi-
tional MD techniques attack the problem at the microscopic level, while continuum models often
fail to capture smaller interactions because they resort to averaging techniques or pre-defined
association rules. Dilute polymer solutions are a typical example, since individual polymer chains
form a group of molecules large by atomic standards but still governed by forces similar to inter-
molecular ones. Therefore, they form large repeated units exhibiting slow dynamics with possible

non-linear interactions (Figure 5.2).

The DPD method is very attractive for the computer simulation of polymer solutions, since by
employing bead-spring representations of the polymer chains we can formulate and compare a
variety of realistic conservative inter-monomer forces. The method has been used in several
studies to simulate the behavior of complex fluids such as bead-spring chain models [69, 70, 71] or
polymer drops [72] while many studies have also introduced or compared different time-stepping
techniques for the DPD equations [7, 71, 73, 74, 75, 76]. This work focuses on using the basic DPD
framework in order to formulate, implement and compare different types of bead-spring models
for polymer chains in dilute solutions in periodic and confined geometries. In order to appreciate
the potential and computational complexity of DPD we outline time-staggered integrating schemes
that efficiently address the issue of different timescale resolution requirements for the monomer-
monomer and solvent interactions. Using these integrators in micro-domains our goal is to examine

realistic force combinations and map the DPD-computed quantities onto standard macroscopic
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Figure 5.2: Polymer chains (tethered spheres) suspended in a solvent of DPD particles (smaller
dots).
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experimental and/or theoretical results.

5.3 Previous DPD Works on Polymeric Fluids

The first extended application of DPD for polymers was done by Schlijper, Hoogerbrugge and
Manke [69] in 1995. The authors used stiff and Hookean linear springs of chain sizes M € [2,30]
in box sizes of length L € [2.17,12.5], while the range of the number of particles N was 33 to
5889. The integration scheme was an Euler-type one and the work mapped static exponents to
the Rouse model (v = 0.52) and computed the conformational time auto-correlation function.
Kong et al. [77] in a later work also used stiff springs while at the same time the effect of solvent
quality was investigated by use of different repulsion rules for unlike species and the static scaling
exponent ¥ = 0.6 was recovered. The simulation details were M € [5,50], L = 5R, (as high as
20.5r.) and M < 25,000, where R, is the radius of gyration of the chain and r, the cut-off distance
(explained later). The same authors [78] employed stiff springs but examined the shear-thinning
behavior of the ppPD fluids under steady shear. They computed first normal stress coefficients,
while using the same philosophy for the repulsion rules [77]. Groot and Warren’s 1997 paper
[71] was a seminal one in the validation of DPD as a mesoscopic technique. While it provided an
excellent analysis for the correct mapping of the DPD parameters to real water solvents, it also
employed a modified velocity-Verlet scheme, using a time-step At = 0.04 in system sizes ranging
from 8 x 5 x 5 to 8 x 8 x 20 and number densities p € [3,5]. The Flory-Huggins y-parameter was
obtained for polymer lengths N € [2,30] subject to Hookean springs, while surface tension effects
and some discussion on non-equilibrium simulations were presented. In a 1999 work [79], Groot
et al. used DPD to simulate block co-polymer separation, employing the same Verlet scheme as
in [71], with A¢ = 0.06, in box sizes of 20 x 20 x 20 and 30 x 30 x 30 and polymer numbers in
the range [2400, 20250]. Direct comparison with Brownian Dynamics (BD) was presented showing
that hydrodynamic interactions are essential. A later work by Bosch [80] presented the exten-
sion of DPD for viscoelastic flow and showed the equivalence of the method to the macroscopic

Navier-Stokes equation with added polymeric stress. It also shows a direct correspondence with
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known macroscopic models. In 2000, Spenley [81] used linear Hookean springs with chain sizes
M € [2,100] to recover excluded volume scalings for the polymer. The self-diffusion coefficient
was shown to be in good agreement with the theoretical value. The time-step was At = 0.05, the

scheme used was velocity-Verlet in boxes of size L € [10,15] and density p = 3.

The DPD equations are stochastic ordinary differential equations, therefore special integrating rules
should be developed and evaluated. Vattulainen et al. [82] examined the accuracy of several time-
marching schemes as in [76] with the same fluid model systems in a box of L = 16, At € [0.01,0.13]
and p € [0.1,0.7] while the value of the fluctuation parameter o was varied in the ranges 1 to 200.
In a very comprehensive work, Nikunen et al. [76] performed a series of accuracy tests for different
integration schemes, the velocity-Verlet, the self-consistent velocity-Verlet, Lowe’s and Shardlow’s
splitting scheme, concluding the time-step independence of Lowe’s scheme for accurate kT val-
ues. Fluids with and without conservative forcing were considered while polymer chains of N = 20
subject to Hookean springs and Lennard-Jones were present in a Newtonian solvent. The simula-
tion details were L = 10, p = 4 while At ranged from 0.005 to 0.4. Fan et al. [70] used FENE forces
to simulate suspensions with the velocity-Verlet scheme and At = 0.06,0 = 3,p = 3, N = 11880.
The work features Poiseuille flow with frozen particles simulating the wall region. Simple DPD
particles show Newtonian behavior, while the macromolecular results (using 135, 1350 and 2700
dumbbells) produce dilute suspension power-law curves. In a similar work Chen et al. [72] used
FENE forces to simulate drops and shear-thinning is observed. Bead-spring chains are used, each
with M = 16, making up 90% of the total N = 157838 particles in a box of size 40 x 20 x 20
. The velocity-Verlet scheme with At = 0.06 was used. Lowe, Bakker and Dreischor [83] used
Hookean springs and the Lowe-Andersen scheme in 2004 to compute the center-of-mass velocity
autocorrelation function for polymer chains of M = 2,4, 8,16, 32 beads in a solvent of N = 10000
particles. An exponent of —3/2 was recovered for the decay, showing consistency with results from
hydrodynamic interactions between beads in the same chain. A comparative work by Horsch et al.

[84] used MD, BD and DPD as a comparison for block co-polymers. The immiscibility for polymer
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beads was attained with different repulsion rules between different species (for the “soft” cases) and
Lennard-Jones, Weeks-Chandler-Andersen for the “hard” cases. The spring laws were FENE and
Hookean springs. The polymer lengths were M = 5,8,10, 15 in systems of N = 8000, 13000, 20000
particles, box sizes 18 x 18.2 x 28.7 (MD units) and At = 0.01,0.04 (MD units). A 2005 work by
Chen et al. [85] compared the Lowe-Andersen thermostat with other integrating schemes (like
the velocity-Verlet, Shardlow’s scheme) for block co-polymers. Quantities like the order-disorder
transition proved to be sensitive to the scheme. The timestep At < 0.1 and the system consisted

of 3000 particles in a box of L = 10.

5.4 Timescale Disparity and Time-Integrators

In DPD, the solvent particles represent clusters of actual atoms that interact pairwise via simple
soft potentials. The polymer beads are also represented by particles subject to standard DPD
forces but in addition they exchange momentum with their neighbors according to an elastic
spring force and through other repulsive forces corresponding to hard potentials [71]. In their
original work, Schlijper et al. [69] reported a speed-up factor of 60 compared to the MD simula-
tions reported in [86]. Since that work, however, several papers have appeared in the literature
that present effective time integrators for DPD for single-phase systems as well as for solvent-
polymer systems [71, 87, 88, 7, 74, 75]. A systematic evaluation of these time-integrators (with
the exception of the new scheme in [75]) was presented in [76] where a hybrid model for polymers
was also investigated. In DPD simulations the results are timestep-dependent for large values of
the timestep but some models, such as Lowe’s scheme [7] (also the scheme in [75]), perform much
better than others. A specific result of interest to the current work reported in [76] is that for
the hybrid solvent-polymer system involving soft-hard potentials the maximum timestep for good
accuracy is a factor of 20 smaller than the timestep for simulating the solvent-only. For exam-
ple, employing Lowe’s approach, the maximum timestep for the hybrid system was At =~ 0.02

whereas for the solvent-only it was At; ~ 0.4. Accuracy here is measured by deviations of the
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observed kinetic temperature (kgT) from the imposed equilibrium temperature of the system.
Moreover, an interesting result reported in [76] is that deviations in the polymer chain temper-
ature dominate the deviations in the temperature of the entire solvent-polymer system even for

the dilute system they examined with more than 99.5% of the DPD particles being solvent particles.

These findings suggest that the hybrid model can be further enhanced if the multirate dynam-
ics of the polymer and solvent are treated separately, i.e., using different timesteps dt and At,
respectively, to integrate the DPD governing equations. To this end, in this work we develop a
staggered scheme, similar to the subcycling technique used in classical computational fluid dy-
namics time-integration methods (e.g., semi-Lagrangian method in advection-diffusion systems,
see [89]). In particular, for the DPD equations we will integrate the solvent (soft potential) with a
large timestep At while we will perform several substeps with timestep ¢ for the polymer (hard
potential). In order to evaluate this approach, we consider two representative time-integrators:
the DPD velocity-Verlet algorithm (vV) [76] which integrates the standard DPD equations, and

also Lowe’s algorithm which provides an alternative approach [7].

The standard time-integrators employed in MD simulations are not applicable to this system due
to the random and dissipative forces, in addition to the conservative forces, present in the equa-
tions of motion. In particular, the dissipative forces depend on the velocity and this makes the
equations of motion nonlinear. This, in turn, implies that a sub-iteration should be employed
in order to produce a consistent time-integration scheme, see [87], otherwise numerical artifacts
are produced. This problem is especially pronounced in the absence of conservative forces, e.g.
in simulating the so-called dissipative gas. Here, we model the solvent as liguid throughout the
work, so we will make use of a modified vV algorithm proposed by Groot and Warren that does
not include a sub-iteration. Instead, it introduces a relaxation parameter, A, which is used to

minimize integration errors in the DPD system.
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Motivated by the success of this approach, we introduce in the present work a family of new
relaxation parameters in various sub-steps involving predicting-correcting action in the time-
integration of the polymer-solvent system. We then perform systematic numerical simulations of
the system shown in Figure 5.2 at equilibrium conditions in order to determine the best values of
the relaxation parameters. After completion of such accuracy tests, we apply the new staggered
algorithms in order to quantify the scaling of the radius of gyration of flexible polymer chains
described by different polymer models and hard potentials. We also investigate the accuracy and
robustness of the new time-integrators in simulating the response of A—phage DNA molecules

under shear, and we compare our findings with available experimental results.

5.5 The DPD Equations

We consider a system of N particles, each having mass m;, whose momenta and position vectors

are governed by Newton’s equations of motions. In particular, for a typical particle ¢

where % is denoted by overdot, v; is the particle velocity, r; its position vector and F; the net
force. Throughout this work we choose m; = 1. The interparticle force F;; exerted on particle ¢
by particle j is composed of conservative (F;), dissipative (F{;) and random (F};) components.

Hence the total force on particle 4 is given by

F; = F{ +F}+F]. (5.3)
i

The above sum acts over all particles within a cutoff radius r. above which the forces are considered
negligible. This interaction radius is set to r, = 1 and defines the length scale of the system. We

use the notation r;; = r; —r;, v;; = v; — v;, r;; = |r;;| and the unit vector e;; = :j . We further
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define each of the forces to take the following form:

Fij = F(rij)e;; (5.4)
F{j = —w(ri;)(vij - eij)eq; (5.5)
Fij = ow'(rij)&ijei; (5.6)

where ¢;; are symmetric Gaussian random variables with zero mean and unit variance and o, y are
not independent, as shown below. Newton’s equations of motions govern each particle’s motion

through

dI‘i = V,'(St (57)
Fe¢ Fa Fr
dv; = Tt F n‘z” PVt (5.8)

where the factor v/t appears because the random forces are interpreted as Wiener processes.

The conservative force F; is similar to that in the MD formulation. It can be any force derivable
from a predefined potential and can be tailored to each individual simulation problem. Possible
choices include electrostatic forces, spring-type (Hookean, FENE), van der Waals, hard repulsions
(Lennard-Jones) or soft repulsions (potential pre-averaged forces in the spirit of [90]). Hence,
F;; is not constrained or defined by the DPD equations. This force as well as the other two act
within a sphere of radius r., which defines the length scale of the system; it corresponds to a
soft repulsive-only interaction potential. By averaging the Lennard-Jones potentials or the corre-
sponding molecular field over the rapidly fluctuating motions of atoms over short time intervals,
an effective average potential is obtained of the form shown in Figure 5.3. A linear approximation
of this is as follows [71]:
ai;(1—"3) ifry <.

FO)(ry;) = (5.9)
0 if Tij > Te
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Unlike the hard Lennard-Jones potential which is unbounded at r» = 0, the soft potential employed
in DPD has a finite value a;; at r = 0. To find the value of a;; we follow the process laid out by
Groot and Warren [71] and Groot and Rabone [91], i.e. we match the dimensionless compressibility

of the DPD system with that of the MD system, namely

—1
K DPD =

1 [6PDPD] _ 1 [6PMD] [apMD
T

1
= = Npk 5.10
ksTorp | 9pDPD ksTup [OppPD 8PMD] T v (5.10)

(9p)mp
(9p)pPD
Boltzmann constant and T the temperature of the system. We note that “DPD” refers to simulation

where p is the number density, N,, = is the coarse-graining parameter , kp is the
and that in MD we have N,, = 1. Then, from an empirical equation of state for DPD fluids, Groot

& Warren [71] obtain a;; = a through

apDpPD

—1
~1+0.2 .
K "|DPD + 55TorD

By matching the diffusion constant (Dppp) in the DPD simulation with that of water (Dyater)
we find the DPD time scale as

2
_ Ny Dpppre

T O(]\fr'si’n/3

D water

This time scale and the soft potential explain why the DPD method is several orders of magnitude
faster than straightforward MD. With respect to the latter, the soft potential removes the “caging
effect” of an atom so that the diffusivity of atoms is increased by a factor of 1000, depending on
the thermostat. We note that Lowe’s [7] approach, which employs an Andersen thermostat, does
not decrease the Peclet number. The effect of the time scale is to decrease the corresponding CPU
time in proportion to the coarse-graining parameter N,,; hence the total speed-up with respect to
MD is 1000 x N,,, X an/ % for a given system volume. Thus, for NV, = 5 and 10 the speed-up factor

is 73,000 and 464,000, respectively.

The dissipative and random forces, on the other hand, are characterized by strengths w?(r;;)
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and w"(r;;) coupled by the Fluctuation-Dissipation relations [68]

1—24)2 jfpry <

9 ( » ij S Te

wiry) = [w"(ry)] = i (5.11)
0 if Tij > Te

o? = 2vkpT. (5.12)

The above relation is necessary for thermodynamic equilibrium. The dissipative forces represent
friction between the particles and account for energy loss; they depend on the relative velocities
and relative position vectors within a pair of particles. However, the random (stochastic) ones
are velocity independent; they compensate for lost degrees of freedom due to coarse-graining and

heat up the system.

5.6 Models for Polymers

Unlike the MD equations, the DPD equations are stochastic and nonlinear since the dissipative
force depends on the velocity. In particular, for complex fluids the presence of both soft and
hard potentials suggests the use of time-staggered algorithms for integrating the DPD equations
of motion. This allows the efficient study of polymeric physical quantities, such as the radius of
gyration of the polymeric chain. The conservative forces present in the usual DPD equations can
be tailored in such a way so as to describe a variety of interactions - e.g. Lennard-Jones (LJ),
Hookean dumbells, Finitely Extensible Non-Linear Elastic (FENE) springs and van der Waals
forces - as long as they are derivable from a given potential V' (r;;). Figure 5.3 illustrates the need
for two different temporal resolutions: the LJ potential (for bead-bead pairs) is a hard repulsion
that requires a time-step much smaller than the soft interaction forces of a typical DPD particle

pair (which can be thought of as an averaged soft potential).

Figure 5.2 shows polymeric chains moving freely in a DPD solvent of NV particles. These chains
consist of beads (DPD particles) subject to the standard DPD forces: soft repulsive (conservative),

dissipative and random. In addition to these forces, they are subject to intra-polymer forces,
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Figure 5.3: Lennard-Jones potential and the soft-repulsive potential which results after averaging.

arising from different combinations of the following types:

¢ Lennard-Jones repulsion The repulsion for each pair of bead particles is given by the
shifted LJ potential
L L 1
ULy =4e[(—)"? = (—)° + -]

T’z] Tz']' 4

truncated to act only for pairs with r;; < r.. We set ¢ = kgT, L = 271/6 and r. =
L x2°1/6 = 1. We note that the LJ potential used here is defined at the mesoscopic level to

improve polymeric self-avoidance; softer repulsion rules is an alternative approach, see [92].

e Hookean spring: Within a chain of M beads each bead is subject to a pairwise harmonic

potential

K. 5 9 .
UnooKE = §|n- —7-1|%, where i=2,3,4,...M

and & is the spring constant.
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e Fraenkel (stiff) spring: Within a chain of M beads each bead is subject to a pairwise
Hookean spring. The spring is considered to be stiff since it has a finite equilibrium length
req. Stretched to a length greater than req the spring exerts an attractive force, while pushed

to one smaller than req it exerts a repulsive one. Its potential follows the formula
Kis o 2 .
UsTiFr = §(|7’z —Fio1| — Teq)”, where i =2,3,4,...,.M

and k is the spring constant.

e FENE spring: Within a chain of M beads each bead is subject to a pairwise nonlinear
spring force. The Finitely Extensible Non-linear Elastic (FENE) spring has a maximum
extensibility rmax beyond which the force becomes infinite, and hence any length greater
than r,, is considered unphysical and is not allowed. The potential is described by

Iﬁ—ﬁ_llz]

UreNE = —ngnaxlog [1 - ; where i=23,4,...,.M

2
Tmax

and & the spring constant.

e Marko-Siggia worm-like chain: Polymer models of biological importance (DNA, proteins)
have been known to be governed by stiff interactions. The worm-like chain [93, 94, 95] can
be thought of as a continuous curve in three-dimensional space. Of importance is the
persistence length \p, which is a measure of the chain’s stiffness and is the average length
over which the orientation of a curve segment does not change (“persists”). We will focus on
the bead-spring representation of the model, which approximates a portion of the worm-like

chain with a force law given by the Marko-Siggia [25] expression

kT 1 1
ey B2 - -
X [4(1 “RP 17 R,
where R = I7i = 7ia = 1=2,3,4,... M

Lspring Lspring
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and Lgpring is the maximum allowed length for each chain (spring) segment. The expression
is accurate for large values of the ratio L%’;“g and exact as 7 — 0 or 7 = Lgpring. However,
in 1999 it was shown [96] that the Marko-Siggia expression can be better approximated
by adding a seventh-order polynomial that leads to an accuracy better than 0.01%. The

improved expression takes the form

i<7

c) 1 1 Dt
F()—)\—p[m—z+R+;azR],

where the constants «a; are fixed as follows:

as | -0.5164228 || a5 | -38.87607

as | -2.737418 ag | 39.49944

ay | 16.07497 a7 | -14.17718

The inter-bead force in each case is F?» = —VU. Note that the bonded interactions (spring forces)
are pairwise but act only between consecutive beads in a chain (i.e., bead number 7 exerts spring
forces on beads ¢ — 1,4 + 1) only, whereas the non-bonded interactions, like the repulsive LJ force,
act in a pairwise fashion that depends on the instantaneous relative position of the beads. This

fundamental difference requires neighbor-search routines for the latter.

The Marko-Siggia spring law is an averaged quantity, locally approximating flexible rods. The
derivation of the formula accounts for coarse-graining microscopic elements of a long chain (such
as bead-rod), by use of statistical mechanics. However, in order to use the Marko-Siggia law in
molecules with more than two beads (dumbbells), some authors [97] account for the different stiff-
ness of the beaded counterparts by altering the persistence length A, of the sub-chains. Detailed
analysis of such arguments [98] has shown that it is possible to minimize the errors arising by the
introduction of beads and sub-chains. Throughout this work we will adopt the analysis presented
in [98] for stained A-phage DNA molecules assumed to have L = 21.1um (fully extended length)
and A\, = 0.053um (persistence length). The correction we will apply will linearly approximate

the ratio of effective to true persistence length, for three different regions of the extension: low
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force, half-extended spring and high-force regimes. More specifically, we define the ratio

Ap [EFFECTIVE]

AT = Ap [TRUE]

so that when A\* =1 no correction is applied. The tables in [98] suggest a high, medium and zero
correction for the low-force, half-extension and high-force regions respectively. We go one step

further to introduce a linear fit to the suggested correction values for N-bead chains:

M (1.0—-2)x0.02x (N—1)+1, if N<20

M (L0-2)x0025x (N—1)+1, if N> 20,

where 0 < Z < 1 is the instantaneous fractional extension of the whole molecule in the stretching
direction. The above expressions approximate fairly accurately the values given in [98] and are

implemented in all instances of N > 2 for the Marko-Siggia spring force in this work.



Chapter 6

Numerical Algorithms

6.1 Time-Staggered Schemes for Integrating Hybrid Poly-

meric DPD Models

The two basic DPD integrating schemes we will consider in this work are: A modified version of
the classical velocity-Verlet [99] symplectic algorithm (vV) - as outlined by Groot and Warren
[71] - and Lowe’s algorithm [7, 76]. The vV scheme is characterized by explicit calculation of all
forces F¢,F¢, F" (conservative, dissipative and random) and is known to be timestep dependent,
but at the same time straightforward and relatively accurate. Lowe’s method, on the other hand,
is a scheme based on the Andersen thermostat [100] with the particle velocities corrected every
timestep using the Maxwell velocity distribution. In the absence of conservative forces, which are
integrated in the vV manner, the scheme is shown to be independent of the chosen timestep At
[76]. The core operation in Lowe’s method involves re-equilibration of the particle momenta at

one step with an updated inter-particle relative velocity drawn from a Gaussian distribution.

95
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6.1.1 Time-Staggered Velocity-Verlet Scheme

We consider a modified version of the classical vV DPD integrator (first proposed by Groot and
Warren [71]). The vV scheme is characterized by explicit calculation of all forces F¢, F¢, F" (con-
servative, dissipative and random) and is known to be time-step dependent, but is straightforward
and relatively accurate. It relies on a basic predictor-corrector approach, which uses provisional
values of the velocities for the force calculations, which are corrected at the end of each timestep.
It is important to keep in mind that the DPD dissipative forces depend on the relative velocities
of the particles, hence this prediction is crucial. Below we outline the modified vV scheme with
parameter X\. The theoretical value is A = 0.5 but Groot and Warren [71] have shown empirically
that for a certain range of At the optimal value is closer to A = 0.65 when kgT = 1. In this
work all results presented use the latter, since our timestep is in the optimal range of O(1072).

Denoting the total forces by F; = > i [F,-J-C + Fz-jd + %] and the extra polymeric forces by

F} = >°,4; Fi;”, the basic (classical thermostat) vV scheme is outlined in Table 6.1. The sub-

2

scripts p,s correspond to polymer and solvent quantities, respectively.

To extend this algorithm for the simulation of complex fluids with soft/hard potentials, a large
timestep, At, is employed for solvent particles and a smaller one, 6t, for polymer particles belong-
ing to a chain. To this end, we use provisional values not only for the velocity of the solvent and
the polymer, but also for the position of the polymer. The CPU-expensive step of collective force
computation is done only once. The velocity and the position of the polymer are corrected in the
subsequent loop, in which we integrate the polymer particles K = % times in a separate subcy-
cle (using 4t for the timestep). The varying polymeric force F? is updated within the subcycle,
following the change in r),, the position of the polymer particles. Hence, during the subcycle we
update the intra-polymer forces, but not the inter-particle (total) ones. This would require cPU
time for each subcycle equivalent to a standard one. Although we cannot expect exact agreement
of the new scheme with the classical one, we can anticipate small differences if the ratio % is not

too large and if the (outdated) forces are applied in the correct manner during the §t cycle. The
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A: relaxation parameter
2

> r. 1, 4 (Atu,, + GU°F, ! SOLVENT

2 7 1 2 2
> rp —rp +(AYu, + %(Fi +F?) : POLYMER
> U, — us, + AADF, : SOLVENT
> Uy, —— up,; + MALY(F, +F?) : POLYMER

= rs | U .

> Vg 1:‘1. rp | By ) : SOLVENT, POLYMER

- P .
> Vug Fi(rp) ~ : POLYMER
> u,, +— u,, + &L |F, +Fi] : SOLVENT
> ouy, —ou,, + 2L (Fi + Ff) + (f‘i + ff)] : POLYMER
> F, +— f‘i : SOLVENT, POLYMER
> F?<+— F? : POLYMER

[ > Analyzer |

Table 6.1: Overview of the traditional velocity-Verlet approach for a polymer system.

algorithm is summarized in Table 6.2. The proposed scheme depends on the relaxation parame-
ters p,a, B and A. In the next section, we will investigate numerically the optimal values for these

parameters.

6.1.2 Time-Staggered Lowe’s Scheme

Introduced in 1999, Lowe’s method [7] is characterized by the explicit calculation of F¢ and the
subsequent re-equilibration of all the particle velocities through a Maxwell distribution. This is
done using the relative velocities of the particles. The method conserves momentum and intro-
duces an extra parameter I' so that in the limiting case of I' x At & 1 thermalization/dissipation
occurs every time-step. Peters [75] recently introduced a modification of Lowe’s scheme by keep-
ing the centroid velocity of a particle-pair unchanged before and after the re-equilibration. This
results in an attractive scheme, still independent of the chosen time-step (as opposed to the Verlet
approach) that also discretizes the original DPD equations. Here we outline the basic Lowe scheme

in Table 6.3.

The fundamental difference between Lowe’s and the vV scheme is that dissipative and random

forces are not explictly calculated in the former. This feature poses constraints on the construc-
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K= 4£t, I, a, B, \: relaxation parameters
2
> r., «—r. +(Au,, + %Fi : SOLVENT
2
> Tp —rp + (A, + %(Fi + F?) : POLYMER
> ﬁ,i — prp, + (1 — )Ty, : POLYMER
> U, «—— us; + AAYF, : SOLVENT
> Up; —— up, + AA(F, +FT) : POLYMER
> ﬁpi — aup, +(1— a)ly, : POLYMER
F r. U,
> Vi) i\ &, | &, : SOLVENT, POLYMER
> f‘i +«—— BF, + 1- ,B)f‘z. : POLYMER
@n? R »
- rp, «—Tp, + (6t)upi + 55 (F, + FI)
o Vi) Fi(rp)
| Foa= EEE, 4 EF
- i K = : POLYMER
S| Fuew= S=QFUF, + MHF,
[
=
» up;  up; + & [(Fota + F?) + (Faew + FY, )|
- F? «— F%,
> u,; — u,; + AL [Fi +F, : SOLVENT
> F, «— f‘i : SOLVENT
[ > Analyzer |

Table 6.2: Overview of the time-staggered velocity-Verlet approach for a polymer system.

tion of the inner §t subcycle. Therefore, we update the conservative solvent forces F¢ once per
cycle and the conservative polymeric forces F? in every subcycle, following the vV approach. The

thermalization is done once at the end of the At cycle as shown in Table 6.4.

6.2 Accuracy Tests

6.2.1 Metrics and Simulation Parameters

The accuracy of the methods can be measured by monitoring either the temperature of the
thermostat or other physical quantities, specific to the polymer system, e.g. the polymeric radius

of gyration, Ry, or chain temperature, (kgT') (as was proposed in [76]), defined respectively as
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I': thermalization parameter
(at)? pe .
> r., «—r. +(AYu., + 5 —F; : SOLVENT
(at)? [ e p] E
> o —r1p + (At)upi + 5 |F; + F; : POLYMER
fy r
> Vi F] ( ,.; ) : SOLVENT, POLYMER
> Vg f‘f("p) : POLYMER
> u, — u,; + &L F¢ +f‘:] : SOLVENT
> u, —up, + 5L (F: + Ff) + (f‘f + f‘f)] : POLYMER
» V N, distinct pairs 4, j such that Ty <Te : SOLVENT, POLYMER
e Generate a Gaussian §;; with 4 =0, o?=1
o . _ 2kg T
e Form ug e = Eij —
e Generate a uniform distribution z/JNp
o Iy, <TxAt<IL:
24, =e,. (u}. —u,.)- e,
J ig\Tij ij ij
u, «—u; + Aij
u; —u; — Aij
> F: — f‘f : SOLVENT, POLYMER
> FP— i:‘*f : POLYMER
[ > Analyzer |

Table 6.3: Overview of the traditional Lowe’s approach for a polymer system.

1 & m
<Rg2> = <M Zzzl(Rz — Rcm)2>, (kBT)chain = 3—M<Z:ZI uzQ)

for an M-bead chain. Here, R; denotes the position of bead i, and R.y the center of mass.

The presented schemes depend on u,a, 8, and I'. Setting A = 0.65 seems to be an appropriate

choice [71] for timesteps dt ~ 0.01, while using the arbitrary value of I' = 4.5 will only affect the
At

convergence rate of Lowe’s method and not the accuracy. Letting K = %7, we adopt the choices

outlined in table 6.5 for Fy1q and Fe, of tables 6.2,6.4 in the kt* subcycle.

Clearly, the choice of Fo1g, Fnew determines how the subcycle treats the second velocity update.
In the non-weighted case, we correct the predictions using static values of the old and newly
computed total forces. However, the weighted approach accounts for a linear gradient of them,

rendering the “old” and “new” total forces old and new locally in time within each subcycle dt.



K= %, i, B: relaxation parameters, I': thermalization parameter
at)? pe :
> r., 1. +(At)u,, + 5 —F; : SOLVENT
= (ay)? .
> By om0y, + 50 [Fe+¥7] . POLYMER
> Tp, «— prp, + (1 — p)Tp, : POLYMER
-~ r
> Vg Ff( §S ) : SOLVENT, POLYMER
P
xe ~
> Fi — BF; + (1 - B)F;‘ : POLYMER
(DN
B rp, «—rp, + (6t)upi + W(Fi + Ff)
' Vi) Fii(rs)
| Fha="ptF 4 EF
- K — (k41 * = : POLYMER
S| Fhew= TETUFS 4 HELFG
I
=
5 up; —up, + Y [( gld‘i‘Ff)"‘(Fﬁew"‘Fpi)]
- F? «— F?,
» V N, distinct pairs 4, j such that Ty < Te : SOLVENT, POLYMER
e Generate a Gaussian Eij with gy =0,02 =1
_ 2kp T
¢ Form u:j e =&, e
o Generate a uniform distribution 1/)Np
o Iy, <TxAt<I:
24, =e; . (u’. —u;.) e,
i ij\ g ij ij
u, «—u; + Aij
u, +—u, —A_ .
J J 1)
> F: — f: : SOLVENT, POLYMER
> Ff — f‘f : POLYMER
[ > Analyzer

Table 6.4: Overview of the time-staggered Lowe’s approach for a polymer system.

| | Foq | Frew
Non-weighted staggering | F, f‘i
Weighted staggering Kokp 4 kp, | KO p 4 kIR

Table 6.5: Choices for old and new forces acting on polymer beads.

100



101

We consider a 4000-DPD particle fluid in equilibrium in a periodic simulation box of dimensions
L, = Ly = L, = 10, thus fixing the number density p = 4, with 80 of these DPD particles belonging
to 4 different chains, 20-beads each, subject to additional FENE and LJ forcing. The different
parameters of the simulation take the following values: The thermal energy level kgT = 1, the
mass of each particle m = 1, the cutoff distance r. = 1, Lowe’s thermalization parameter I' = 4.5,
the conservative force amplitude a;; = W for both vV and Lowe’s schemes, the random force
amplitude ¢ = 3 (this fixes the dissipative force amplitude to v = 4.5), the FENE parameters
Fmax = 3T,k = 7 and the LJ parameters e = kgT,L = 2716 p, = L x 271/6 = 1. We note
that the resulting system of polymer forces is relatively stiff, with a time-step dt ~ 0.02 being
close to the upper limit for stability of the simulation (if we use a non-staggered integrator).
However, using the proposed schemes, we will examine the maximum absolute error for the chain
and total kgT in two regimes: A safe one (At € [1073,1072],6¢t = 10~3) and a more ambitious

one (At € [1072,1071],6t = 1072).

6.2.2 The Baseline Case of u=0,a0a=0,8=0

We compare the accuracy of the vV and Lowe’s schemes in figure 6.1 for the safe range, while figure
6.2 shows the maximum temperature error for large At. The former can be used as a guideline for
the effect of the time-staggering as the error does not exceed 7 x 10~2 even for ratios of K = 10.
The latter shows realistic error values for practical applications of the proposed schemes, reaching
values two orders of magnitude larger. These are precisely the errors we will attempt to minimize
in the following sections. Another quantity we will monitor is the mean radius of gyration (R,)
for both schemes. Using the weighted approach, in table 6.6 we show the effect of the time-step
ratio on (R,) in the ambitious range for 5-bead chains. The disagreement between the K = 1

values and the staggered never exceeds 2% for the studied range.
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Figure 6.1: Baseline case: Maximum absolute error in total (upper) and chain (lower) kgT versus
% for the vV and Lowe’s methods for the safe range of At. The results also compare the

non-weighted schemes with the weighted ones.
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Figure 6.2: Baseline case: Maximum absolute error in total (upper) and chain (lower) kgT versus
% for the vV and Lowe’s methods for the ambitious range of At. The results also compare the

non-weighted schemes with the weighted ones.
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(Aot [T [2 [4  [6 [s5 [0 |
Verlet | 1.0434 | 1.0410 | 1.0352 | 1.0311 | 1.0345 | 1.0521
Lowe | 1.0449 | 1.0459 | 1.0389 | 1.0435 | 1.0479 | 1.0531

Table 6.6: (R,) dependence on % for 5 beads (baseline case with §t = 1072).

6.2.3 Investigating Other Choices for y,a and

The relaxation parameters A, 4, @« and § of the schemes provide some flexibility in manipulating
the prediction of 1, %,,, ﬁp and f‘ respectively. Groot and Warren [71] have already shown that
for a range of timesteps (At < 0.06) the optimal value for X is close to 0.65, when using the
straightforward Verlet scheme. We will stick to this value for all the accuracy tests presented
here. Moreover, for simplicity the following tests will use the non-weighted time-staggering. Since
the timestep dependence in Lowe’s method comes from the conservative forces, we anticipate any

optimal value findings to be directly applicable to the time-staggered Lowe scheme.

We attempt varying u, « and 8 in the range [—1, 1]. By using values in the open interval (0,1) we
essentially take a weighted average of the quantity between the prediction at the (n + 1)* step
and the old value at the n*" step. In the limiting cases, 0 uses only the prediction while 1 uses only
the n'" step value. As an additional test, we also investigate negative values, thus numerically
favoring the prediction up to a coefficient of 2. This disfavors the nt”? step value, by introducing

a negative coefficient. Wider ranges are intuitively unphysical and will not be considered.

Figure 6.3 shows the absolute error in kT for the chains and the whole system (polymer and
solvent particles) for the system described earlier, i.e. a 4000-DPD fluid with four 20-bead chains
governed by FENE and LJ forces. The error is plotted against the parameter range [—1, 1]. We note
that the variation is done with one parameter at a time, that is, while varying one parameter, the
two other parameters are fixed to 0. The ratio % is fixed to 5, with At = 0.005, ¢t = 0.001, ren-

dering the timestep value safe (recall that stability for the chosen parameters requires dt < 0.03).
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ratio At/dt = 5, 6t = 0.001, A=0.65
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Figure 6.3: Maximum absolute error in total (upper) and chain (lower) kg7 versus individual

relaxation parameter variation. Optimal parameters prove to be y ~ 0,a ~ 0.6, ~ 0.4 when
perturbed from 0, one parameter at a time.

Accuracy in the negative parameter range proves to be worse than the positive one. Moreover,
the sensitivity of the system on the variation of p is extremely pronounced. As far as the optimal

values are concerned, the three separate curves indicate that reasonable choices would be either

(w,0,8) = (0,06,0) or

(m,a,8) = (0,0,0.4),

and these will be separately investigated in the following sections. The total temperature shows
an error range of [0,2] x 1073 for all positive values. Hence, error in the polymer chains alone

will be the optimal parameter choice guideline.

Another way of investigating optimal parameter choices would be simultaneous variation of u, «, 8
in the same range. Figure 6.4 shows that simultaneous variation is a bad choice. Also, setting

(1, a,8) = (0,0.6,0.4) simultaneously, still proved to produce an error larger than the baseline
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Figure 6.4: Simultaneous relaxation parameter variation: a bad approach. (The quantities plotted
are the same as in the previous figure).

(u, a, B) = (0,0,0) case.

Equipped with the above indications, we perform the definitive investigative test in the safe
range of At € [1073,1072],6t = 103 for the vV scheme, comparing results for the triplets

(n, @, B) = (0,0.6,0), (0,0,0.4).

Summarizing the results for this section, figure 6.5 shows a mild advantage of 5 = 0.4 for timestep

ratios % € [2,7] but a@ = 0.6 performs better for ratios € [8,10]. Moreover, 3 = 0.4 depicts a
more erratic behavior in the observed range; a 1:1 ratio is favored by a = 0.6. Both perturbations
from 0 perform in general better than the baseline case. However, the parameter a does not

appear in Lowe’s method, which entails that Lowe’s method can only benefit from g = 0.4. Given

all of the above, we conclude that the optimal choice is

(1,0, 8) = (0,0.6,0), weighted staggering: Verlet

(1, a, B) = (0,0,0.4), weighted staggering: Lowe

and the convergence under these parameters will be investigated in the following section for the
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vV and Lowe’s staggered methods.
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Figure 6.5: Maximum absolute error in total and chain kgT versus K for the optimal parameters
compared to the baseline case of @ = f = u = 0. Results from the vV scheme are shown.

6.2.4 Optimal Cases with Weighted Staggering: Safe and Ambitious

Ranges

Revisiting the safe and ambitious timestep ranges, figure 6.6 summarizes accuracy results for both
methods with weighted time-staggering for the chain and total kinetic temperature in the safe
range. It serves as a guideline on the effect of the time-staggering alone. Both methods prove to
perform well even for ratios K = % = %. The vV scheme shows a more erratic dependence on

K on individual polymer chains, but proves to be more accurate in this dt regime than Lowe’s

method as a whole (i.e., for kpTiotal)-

The accuracy tests in the ambitious range with the optimal parameters show a clear advantage
of the proposed schemes compared to the baseline case. Even for K = 4, vV and Lowe’s methods
produce an error of {1.9,4.1} x 1073 respectively, while the baseline case values are {50.3,1.8} x

1073, Clear advantage therefore is achieved in the vV case for K € [1,6] while Lowe’s method
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shows almost the same accuracy for both the baseline and the optimal cases. Moreover, the

dependence on K is now monotonic, an attractive improvement from the baseline case.
X 10*3 5t=0.001, p=0: 4 chains, 20 beads each
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Figure 6.6: Comparison of the vV (a = 0.6) and Lowe’s (8 = 0.4) schemes using the optimal
relaxation parameters and weighted time-staggering for the safe range.

6.3 Computational Complexity

CPU-time savings is the basic motivation for using a time-staggered scheme with two different time-
steps. Figure 6.8 summarizes results for four different chains in a 4000 DPD-particle simulation,
each having 20, 50 and 100 beads. Efficiency depends (among other factors) on how the intra-
polymer pairwise interactions are handled. Since all the forces are pairwise, it is customary not
to explicitly compute all the pairs in the domain, but to introduce neighbor (or cell) lists or boxes
and search only in them [101]. This dramatically reduces the computational cost, which would be
quadratic in N (the total number of DPD particles). Although we use a brute-force method for
searching through all the pairs in a chain, an O(M?2) operation for M beads, further improvement
can be achieved by using a linked-list method for the polymer chain, as is done for the solvent.

This would be beneficial only for large chains. If we consider a staggered simulation of {At, §t}
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Figure 6.7: Comparison of the vV (a = 0.6) and Lowe’s (8 = 0.4) schemes using the optimal
relaxation parameters and weighted time-staggering for the ambitious range.

time-steps, the speed-up of the method is defined as the ratio

[total cPU-time for a d¢ simulation]

speed-up =

total CPU-time to advance to the same solution

time for a hybrid staggered {A¢, dt} simulation

The chosen polymer force largely influences the speed-up, since LJ interactions require calculations
of all possible pair combinations, while spring forces alone do not. Figure 6.8 shows small differ-
ences in the speed-up between the two methods. The speed-up is almost linear in dilute solutions
with polymers formed by shorter chains. Larger chains show reduced (sub-linear) speed-up. In
our example of brute-force pair searching for 100-bead chains, we still achieve a speed-up of 8 for
% = 10. We expect the schemes to show reduced efficiency only for the special case of non-dilute
solutions of large polymer chains. In that case results could be further improved by introducing

an extra neighbor list for bead-bead force calculations. If non-bonded interactions are present,

the latter might not even be necessary.
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4000 DPD particles, FENE+LJ forces

11 T T T T T T T
—8B— vv: 4 chains of 20 beads each
—©~ vv: 4 chains of 50 beads each
10 — vv: 4 chains of 100 beads each 7
@' lowe: 4 chains of 20 beads each
ol O lowe: 4 chains of 50 beads each i
@ lowe: 4 chains of 100 beads each
8 — —
7 — —
o
P o 2
ko]
3
o 51 -
%)
4 — —
3 I —
2 - —
l - —
0 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 11

ratio AT/ot

Figure 6.8: Speed-up results versus % for the vV and Lowe’s methods for a 4000 DPD-particle
fluid. The polymer beads interact with each other through a FENE force and a pairwise LJ hard
repulsion.



Chapter 7

Applications to Complex Fluids

7.1 Scaling Laws in Polymers

7.1.1 The Static Exponent v

Since our DPD models represent, in effect, dilute polymer solutions, the dynamics of a single
flexible polymer chain is of great importance for validation and physical understanding of the
DPD methods. An early work by Schlijper et al. [69] has used stiff (Fraenkel) and weak (Hooke)
springs, without hard LJ potentials, to map polymer-chain scaling exponents to the DPD results.
Our work introduces more complex (non-linear) forces combined with hard repulsions for various
spring laws. This serves the double objective of validating the DPD simulation method as well as
introducing novel combinations of interactions (such as the Fraenkel spring coupled with bead-

bead repulsions).

It has been known that ideal chains are characterized by a linear relation between force and
elongation, and exhibit the phenomenon of phantom collisions, i.e. polymeric bonds are not re-
stricted from passing through each other. On the other hand, real chains in good solvents behave

like self-avoiding walks on a lattice and do not exhibit phantom collisions. In simulations this can
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be achieved by introducing a repulsive force between beads i, j of the form
FEV — 9 EV
i __;6_1*1-(] (ri — ;)

for excluded volume, given by the gradient of a potential U EV(rij). We define the mean-square

end-to-end distance of a chain of M beads as

() =((Z 1 (L)

where 1; is the vector joining the i** and (i + 1)** bead, and the mean-square radius of gyration

as
M

(B?) = (37 3 (Bi = Rew)?),
i=1
where R; is the position vector of each bead, R, the position vector of the center of mass of the
chain and (-) denotes time averaging. Pierre de Gennes [102] considered two critical exponents
for a single chain: -y, relating to chain entropy, and v, relating to chain size. An ideal chain
has a scaling law of v = 0.5, while a real chain with excluded volume follows the Flory formula
v= % = 0.6, for three dimensions. The Flory formula can be considered ezact for all practical
purposes. DPD simulations of linear chains [69] have shown a close mapping to the 0.5 exponent,
which in turn relates to the continuum Zimm model of harmonic springs [13], while some works,

[77], have recovered v = 0.6 by manipulating solvent characteristics. In other words, R, for ideal

chains scales as

R, oc (M —1)%%,

while measurements of scattered light intensity versus angle verify [102] the chain size power law
to be

Ry o (M —1)%8.
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7.1.2 Non-Staggered Schemes
Polymer Scaling

Our simulations aim to accurately describe real chains. We have performed a series of equilibrium

simulations using combinations of the different polymeric forces outlined in section 5.6. We inves-

tigated the effect of linear and non-linear spring forces, and the effect of a pairwise LJ repulsion.
1 _

The chain sizes vary from 5 to 100 beads,with rmax = 2r¢,3r., & = N = T, Teq = T, Lsp = 2.

Integration time is 10,000 units with time-step At = 0.01.

Figure 7.1 summarizes results for different spring laws with and without bead-bead repulsions.
The corresponding static exponent values (v) of the radius of gyration are computed for each
case, using 5-, 10-, 20-, 50- and 100-bead chains. The LJ repulsion seems to be mostly responsible
for capturing self-avoidance while the underlying spring force (Hookean or FENE) appears to have
a secondary effect on the scaling exponent, when coupled with hard repulsions. However, FENE
forces alone scale close to the Flory exponent, rendering the model realistic without any additional
repulsions. The FENE parameter r,x was also varied, with the values 2r. and 3r. giving very
similar scaling laws (figure 7.1). The parameters for the Marko-Siggia spring were consistent with
1

the rest of the models. However, different parameters, taken from DNA molecules, produced v = 3

- indicative that the DNA-wormlike model in equilibrium operates mostly in the linear regime.

Comparison with the Random Flight Chain Model

The simplest possible polymer model consists of a backbone of bonds, consisting of fully flexible
joints. Although this is an over-simplified concept, with the bonds lacking volume and mass, it
usually serves as a good reference for more complicated association rules. The discrete version
of this random flight model is based on the idea that each bead can only move on a regular
three-dimensional lattice and there is no inherent restriction on the number of times it can visit

a particular point on the lattice. This simplistic model features polymer back-folding and other
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Figure 7.1: Scaling of the radius of gyration of a single polymer chain governed by linear, WLC
and FENE forces and the effect of hard LJ potentials.
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unphysical repercussions not exhibiting excluded volume effects.

Although random flight chains are three dimensional entities, each direction essentially behaves
as a one-dimensional random walk. For a chain of M beads, it can be shown [103] that in the limit
M — oo the distribution function P(S) of the end-to-end distance vector S asymptotically obeys
the Gaussian distribution. In that limit, it can also be shown that the mean-square end-to-end

distance and the mean-square radius of gyration are related by

Figure 7.2 shows how the value of this ratio compares with a random flight chain for all the

bead-spring models studied above.
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Figure 7.2: Ratio <<}: 2>> for various chain sizes (5, 10, 20, 50 and 100 beads). The simulation

parameters are the same as in figure 7.1.
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7.1.3 Staggered Schemes

To appreciate the practical potential of both the vV and Lowe time-staggered schemes in equi-
librium we compute the static scaling law for K = % = {1,6,10,20} in the ambitious range
At = {0.01,0.06,0.1,0.2}, 6t = 0.01 for one of the models of figure 7.1, namely FENE and LJ with
Tmax = 3Tc. We note that the degenerate case of K = 1 does not fully reduce to the classical,
non-staggered schemes and therefore we cannot expect exact agreement of the staggered K = 1
results with the results of section 7.1.2. The close agreement of v depicted in figure 7.3 for this
sample stiff polymeric system demonstrates the advantages in using such an algorithm: We obtain
an almost linear speed-up (depending on the number of polymer chains present) in CPU-time, with

negligible accuracy degradation in a time-step regime up to At = 0.06, i.e., twice the maximum

possible (At = 0.02) if we had used a traditional integrator.

For the vV scheme K = 20 is not an attainable value, since the scheme is inherently dependent
on the chosen timestep and At = 0.2 is already large, even for non-polymer, non-staggered sys-
tems. Hence the maximum ratio we examine is K = 10. For this value the observed solvent
temperature is 23% higher than the set value, thus over-heating the polymer chain, rendering the
radius of gyration larger. However, the static exponent still scales reasonably compared to the
most accurate values of K = {1,6}. Lowe’s scheme, on the other hand, shows smaller sensitivity
to At; K = 10 produces a kT error ~ 1%, but reaching K = 20 is enough to show a signifi-

cant deviation of 31% from the set temperature; similar effects on the polymer chain are observed.

Simulations in the absence of conservative forces were also performed in order to demonstrate
their effect on the overall performance of the proposed schemes. Setting a;; = 0 results in an
ideal gas DPD fluid which Nikunen et al. [76] classified as a more challenging numerical problem.
Figure 7.4 demonstrates a close agreement of the static scaling exponent for K = 1, 10; the shifted
difference between the curves being only the effect of At = 0.1 which drives the temperature up

with an error of 8%.
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Figure 7.3: The effect of time-staggering on the scaling exponent v of the radius of gyration of
a single polymer chain governed by FENE and hard LJ potentials for the vV (upper) and Lowe’s
(lower) scheme.
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Static exponent scaling (v), velocity—Verlet method, a”.:O, 4t=0.01
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Figure 7.4: The performance of the staggered vV scheme in ideal gas conditions (a;; = 0). The
parameters are otherwise the same as in Figure 7.3 (top).

7.2 Shear Response of Wormlike Chains

The results presented in this section aim to simulate the response of A-phage DNA molecules under
steady shear, and compare the DPD results with corresponding results from Brownian Dynamics
(BD) and experimental data. The wormlike chain (WLC) described in section 5.6 is used for all
DNA simulations and Underhill and Doyle’s [98] persistence length (\,) correction always applies
to our results for M > 2. Bouchiat’s [96] correction for the dumbbell case produced statistically
similar results to the original Marko-Siggia (M-S) model. Since the A, correction studies in [98]

were done with the M-s formula, we do not use Bouchiat’s version.

DNA molecules under steady shear have been extensively studied in experimental [3] and com-
putational [5, 92] works. In 1999, Smith et al. [3] performed a benchmark study of A-DNA
molecules in uniform shear flow of shear rates ¥ < 4.0s~! employing a ~ 50um channel in sol-

vents with viscosities u = 60, 220cP. These stained bacteriophage molecules have a contour length
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L ~ 21pm and longest relaxation times of 6.3s (in the 60cP solution) and 19s (in the 220¢P so-
lution). A typical molecule contains roughly 400 persistence lengths and hence can be considered
flexible. Using DPD we investigated the dynamics of a single wLc. The moving boundaries at
y = 0,y = L, are modeled using Lees-Edwards boundary conditions [104]: particles leaving the
domain at y = 0, L, are advanced /retarded by an increment of Ar = U,t, —U,t respectively in the
x—direction, where t is the time elapsed from an appropriate origin of times and U, denotes twice
the shear velocity of each boundary. Moreover, the velocity of the particle is increased /decreased
by Uy, —Uy,, accounting for both the imposed boundary condition and the velocity discontinuity
between the two walls. This correction is essential, since the dissipative forces depend on the
relative pairwise velocities. The rest of the boundaries are treated periodically for all the solvent
DPD particles. To avoid unphysical periodicity artifacts, polymer beads only undergo an elastic
collision in the y-direction: (u,v,w)Bgap — (4, —v,w)BEAD and r, — r, — (At)upgap. Different
chain sizes were accommodated by storing the polymer coordinates without mapping them back
in the original domain. This allowed the intra-polymer forces to be calculated properly, while
the collective solvent-solvent and polymer-solvent interactions were calculated with the mapped
(periodic) images. The effect of the simulation box size L, x L, x L, for the presented results
was investigated and proved to be negligible. For the results shown, a periodic box of dimensions
10 x 20 x 5 was used in a fluid of 4000 DPD particles. The conservative force amplitude was fixed

to a;; = 75kgT/p, as in [71].

In order to properly simulate A-phage DNA molecules under steady shear, we define the dimen-
sionless Weissenberg number of the flow as We = 47, for a shear rate 4. Here, 7 is the polymer’s
longest relaxation time, which is computed by fitting an exponential analytical curve to the aver-
age mean-square extension; this is not necessarily the end-to-end value. In particular, we define
the maximum projected average molecular extension (x) of a polymer chain under shear in the
z-direction as the maximum absolute difference of the z-coordinates of all the beads averaged in

time, i.e., (z) := (Jmin(r;) — max(r,)|) for all r belonging to a chain. The exponential fitting
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approach provides a relaxation time nearly the same (within 10%) as that obtained by fitting
the late-time tail of the mean-square radius of gyration <R92>. Figure 7.5 shows the fitted re-
sults. The calculated mean-square extension of an initially 30%-extended chain was fitted with
(z2) = (z%), + z:%e"/" to obtain the chain relaxation time 7. Here, z;2 is the initial stretch and
(z?), is the equilibrium value. Equating the area under both curves fixed the free parameter of

the fit.
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Figure 7.5: Decay of the average mean-square extension <:1:2> and the corresponding exponential
fit for a wormlike chain of 5 beads in a Newtonian solvent using Lowe’s non-staggered method
(' =4.5).

7.2.1 Non-Staggered Schemes

Figure 7.6 shows the calculated maximum projected average molecular extension (z) and the ex-
perimental data [3] versus We, with varying bead numbers and corresponding relaxation times.
The asymptotic value for 20 beads (= 0.51) is in agreement with the corresponding one (0.47)
from BD calculations [5]. Remarkably, the results for the average extension are not so sensitive

to coarse-graining, i.e. the number of beads used for constant L, in the tested range. The self-
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Figure 7.6: Mean WLC fractional extension versus We compared to BD [5] and DNA experiments
[3] data. The results presented use the non-staggered vV (o = 3) and Lowe schemes (I' = 4.5).

consistency of the parameters was verified from the equilibrium mean-square end-to-end distance
of a 2-bead dumbbell, computed as (S?) ~ 8.56, in close agreement with the theoretical value of
8.92 given by [95] (S?) = 2LgpA, (1 - L’\—’;(l - e‘LSP/AP)). While most results presented in this
work employ the widely used velocity-Verlet scheme for time integration, in figure 7.6 we have
also included results for 2 beads using Lowe’s method. Figure 7.7 compares the calculated nor-
malized autocorrelation function (Az(t)Az(t +T)), Az (t) = z(t) — (z(t)) for 2-, 5- and 20-bead
chains, with experimental data [3]. The products for each pair were collected from single-chain

simulations in time bins with :[[]]32113]] X a7 sample points, 7[DPD] being the longest relaxation time

in DPD units for each case, 7[EXP] typically fixed to 6.3 and At the simulation timestep, as done
in [3]. The figure demonstrates the sensitivity of the autocorrelation to coarse-graining of the M-s
force-extension formula. Significant degradation in the agreement with experiments appears for
more than 5 beads. This shows the limits of the coarse-graining of a mesoscopic relation such
as M-S. The M-S formula gives the average end force of a chain consisting of a large number
of micro-elements (bead-rods freely rotating at fixed bond angles). The coarse-grained counter-

parts of the M-S chains rotate about their beads with any bond angle.We have compensated for
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this freedom by altering A, in the M-S formula for the sub-chains in the spirit of [98]. Clearly,
a 2-bead dumbbell cannot describe the instantaneous configurations of DNA observed by [3]. If
their capture is the objective of simulation, then the model needs to consist of a large number
of micro-elements such as the 220 freely-rotating, bead-rod chains of [5]. With fixed bond angle
these become the micro-elements of the wLC, widely considered to be an appropriate model for

DNA. To date their simulation has not been attempted.
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Figure 7.7: Autocorrelation of molecular extension x versus 47", compared with experimental DNA
[3] data, for various We using the non-staggered vV scheme.

7.2.2 Staggered Schemes

Non-equilibrium configurations present an additional challenge on the performance of the inte-
grating schemes. In order to demonstrate the accuracy of the proposed algorithms, we examine
the effect of two different time-steps on physical quantities such as the mean maximum projected

molecular extension under steady shear. Having established a satisfactory performance of Lowe’s
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method with K = 6,10 in equilibrium, Figure 7.8 demonstrates the performance of the method
for the same time-step ratios under shear for a 5-bead WLC, and compares the results with BD
[5] and experimental data [3]. The time-staggered scheme produces a slightly larger molecular
extension (r) for K = 6 with a maximum disagreement not more than 10~2, an extremely at-
tractive result for all practical purposes, given the (almost linear) CPU savings. However, K = 10

shows some degradation of the monitored averaged quantity, with a 7% disagreement at the high

VISCOSITY

Weissenberg number regimes. The effect of the different Schmidt number (Sc = prFrgetviTY) 18

almost certainly excluded as a possible reason since Sc ~ I'> and does not depend on At; indeed,
a systematic calculation gives Sc = 35,28 for K = 1, 10, respectively, under these conditions. The
limitations of the proposed schemes under shear are clear; non-equilibrium configurations impose
extra constraints on the value of K while the errors become apparent at high shear rates. We will
revisit the topic but we digress in the next section to discuss diffusion and the effect of Schmidt

number (Sc) in the DPD simulations.
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Figure 7.8: Effect of K = 1,6, 10 under shear. Maximum projected average extension of a 5-bead
DNA molecule modeled by the M-S formula versus We. Here dt = 0.01, T = 4.5.
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7.3 Dynamics: Diffusion and Viscosity

The characterization of the simulated fluid in DPD is of major importance for the understanding
of the strengths and weaknesses of the method. In this section we examine fundamental quanti-
ties, such as kinematic viscosity v = % and diffusion coefficient Dt and their dependence on the

specific parameters of each DPD integrating scheme.

The peculiar velocity 1; of particle 7 is defined as u; = u; —(x), where u(x) is the stream velocity
at position x. For a system of N particles of mass m; each (in our simulations all particles are
assumed to have unit mass), we define the af-component of the stress tensor through the Irving-

Kirkwood formula [105]

Saﬁz L L I. Zmzu,auzgﬂLZZr”a ”5 (7_1)

i=1 j>i
where Fj;g is the B-component of the net force acting on particle ¢ due to particle j, and r;jq is
the a-component of their relative position vector. It is interesting to note here that equation 7.1 is
directly applicable in its current form to the velocity-Verlet method but not Lowe’s scheme, which
lacks explicit calculation of dissipative/random forces. To this end, we propose a modification of
equation 7.1 to incorporate the velocity re-equilibration A, in Lowe’s scheme interpreted as an

additional force term:

Saﬁ - L L L, Zm ulauzﬁ +ZZTU‘1 ijB +szﬂ'z]a ”B , (72)

=1 j>1i i=1 j>i
where At is the timestep for the solvent (in the staggered scheme this would correspond to the
maximum of {At,dt}). The dynamic viscosity p of the fluid is determined under shear through

the total shear stress S,y (z is the direction of the shear and y the wall-normal direction) through

S:cy ._%
L 7



124

and therefore the kinematic viscosity is v = % = ”injf,”Lz Here, 4 is not to be confused with the

dissipative force coeflicient ~.

In this work we will, however, use a different approach for calculating the viscosity. Backer et
al. [106] suggested the periodic Poiseuille flow method, which consists of simply superimposing
a constant force g, —g, in the z-direction for all particles ¢ with r;, > Lz—-", r;, < % respectively.
Then, for a periodic simulation box of length L, in the y—direction, number density p, velocity

profile U(y) in the z-direction and dynamic viscosity u the following formula holds:

Ly

Ly —Ly
pgz(T)Z _ i/y 2
Yy

Ul(y)dy

124 Ly Jy=o

Regarding the Poiseuille profile method, it is interesting to note that:

1. It eliminates possible artificial side-effects from imposition of other types of boundary con-
ditions, since it results in a fully periodic flow with all the advantages spatial periodicity

has to offer combined with a Poiseuille profile.
2. Both opposite Poiseuille profiles can be used to obtain better ensemble averages.

3. Backer et al. [106] have demonstrated that it is more accurate than other already existing

methods.

4. Our studies for both vV and Lowe’s methods indicate a negligible disagreement of O(10~4)
between the computed viscosity values via the shear stress and Poiseuille flow methods,

rendering both methods equivalent for all practical purposes.

Figure 7.9 shows such a profile with the corresponding averaged one, together with the parabolic
least-squares fit. The area under the right curve can be calculated either by directly integrating
the fitted quadratic or by standard integration rules. All results presented here use analytic inte-

gration of the fitted quadratic.
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Figure 7.9: Sample dual parabolic (left) and reflected and fitted (right) profiles.

The velocity autocorrelation function (VAF) can reveal information for the underlying nature of a
dynamical process. We construct it as follows: Given an appropriate origin of time, we denote the
value of all three components of the velocity vector as u|;—g = {u|t—0, v|t—0, w|t=0 }. The velocity

components at an arbitrary instant 0 < ¢t = T are recorded, and the scalar quantity

| X
Culi=r = N le|t:0 U=t

i=1

is the VAF; for short, we write Cy, (t) = (u;(0)-u;(t)). The VAF provides valuable information about
the system’s underlying frequencies, and when it decays to zero as t — oo, it can be integrated

to calculate the diffusion coefficient Dr:

This type of definition of a transport coefficient (such as D7) through an integral of a correlation
function is a Green-Kubo relation [107]. Dr may also be calculated through the mean-square
displacement of each DPD particle. In practice, the initial value u|;—¢ is reset during a simulation
numerous times in order to collect meaningful ensemble averages that can be easily integrated.

If the timestep is relatively small (6t =~ 0.01) the integral can be accurately calculated using a

0.09
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standard trapezoidal or midpoint rule.

The fundamental differences between the vV and Lowe’s scheme manifest themselves in the val-
ues of the diffusion coefficient D7, the viscosity v and eventually the Schmidt number Sc¢ = DLT
characterizing the simulated fluid. Groot and Warren [71] showed that the vV method for a
number density p = 3 and a dissipation amplitude v = 6.75 produced Schmidt number values

close to those predicted by the theory, but extremely small compared to real fluids (three orders

of magnitude smaller). We investigate this issue next.

7.3.1 The Schmidt Number for the Velocity-Verlet Scheme (6t = 0.01)

In order to investigate the effect of the dissipative and random coefficients v, o on the fluid, we
compute D7, v and Sc for a wide range of values. Figure 7.10 shows the computed diffusion
coeflicient, viscosity and Schmidt numbers for a 4000-particle fluid, in a 10 x 10 x 10 sized box
with a time-step 6t = 0.01 and a conservative force coefficient a;; = 75kgT/p. For the viscosity
calculations we apply a constant force of magnitude g, = 1 as previously described to obtain a
periodic Poiseuille profile. Groot and Warren [71] correctly argue that the vV scheme produces
unrealistic values for Sc. The calculated value of S¢ = 1.00 + 0.03 for o = 3.67, p = 3 provided in
[71] is in reasonable agreement with the one shown here (Sc¢ ~ 1.3 for o = 3.5, p = 4). The main
point here is that the Schmidt number is O(1) for the vV method.

Marsh’s [6, 108, 106] theoretical estimate on the kinematic viscosity v(o) for an ideal gas consists
of a dissipative term that transfers momentum through particle collisions (~ ¢?) and a kinetic
contribution that transfers momentum through particle motion and displacement (~ ¢~2), namely

_ 45(kgT)* = wpo®rd

_ . 73
U0) = Sro?rip T T5T5kRT (7-3)

Figure 7.11 shows a reasonable agreement of the ideal gas prediction with the computed results.

We compare the analytical expression (7.3) with the DPD values for conditions corresponding to
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Figure 7.10: Diffusion coefficient D7 (upper left), kinematic viscosity v (upper right), and Schmidt
number Sc (lower) plotted against ¢ for vV. The Schmidt number is O(1). Here kgT = 1.

ideal gas (a;; = 0) and water (a;; = 75kgT/p). Next, we examine similar quantities for Lowe’s

scheme.

7.3.2 The Schmidt Number for Lowe’s Scheme (6t = 0.001,0.01)

For Lowe’s scheme we investigate the same system and its dependence on the parameter I'. To
this end, we perform one series of simulations with §¢ = 0.001 and one with §¢ = 0.01. However,
T is varied so that I x 6t € [1,1000] x 0.001 = [0.001,1] and T" x 4t € [1,100] x 0.01 = [0.01,1],
respectively. Although both vV and Lowe’s schemes show a clear, monotonic dependence of Dy
on the respective parameters o and I, Dr(o) of vV is linear and larger in value compared to

Dr(T) of Lowe’s scheme, which shows an asymptotic and non-linear trend, see Figures 7.12, 7.14.

For an ideal dissipative gas, Lowe’s thermostat is governed by two distinct timescales, as shown in
[7]; a typical time ¢; it takes a particle to travel a distance r. with a given velocity, and a typical
time to it takes the velocity correlations to decay. Assuming the latter to be dependent only on

T', we have



128

13 .

T
“e DPD

| % DPDa,=0,9,=0.1
| —— Marsh prediction

Kinematic viscosity v
o
~
ol
T

0.2 I I I I I
0

Figure 7.11: Kinematic viscosity v plotted against ¢ for ideal gas and water repulsion parameters;
the solid line corresponds to the theoretical ideal gas expression [6].

Lowe (5t=0.01)

25
0.25

a > 20
z >
.5 0.2 .g
& 3 15
g 015 2
o ke)
= a
S 01 g10
72} Q
2 2
G 0.05 <5

0 0

0 20 40 60 80 100 0 20 40 60 80 100
r r

2000 T
—- DPD
-
Q1500 B
S
3
Qo
E 1000+ —
]
£
S 500 i
2]
0 A | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
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Hence, under the assumption that the velocity correlations decay in time is 7p ~ %, Lowe’s scaling

for the kinematic viscosity v = 7wp['r3 /75m can be used to show that the Schmidt number

_ viscosity v wplrg/T5m 1 T?

- DIFFUSIVITY Dy kgTtp/m A2 kT’
Lowe, in his original paper [7] derives the above scaling, and our results in both figures 7.12, 7.14
verify this trend to be true for I" values satisfying 0 < T' x §t < 0.5. We anticipate the disagree-
ment for large I" values to improve if indeed an ideal gas (a;; = 0) is simulated; in our simulations
a;j = 75kpT/p. Indeed, an ideal gas calculation of the above quantities was carried out and the
quadratic dependence of the Schmidt number on I' when a;; = 0 is more pronounced - the results
are shown in Figure 7.13. Lowe’s method shows great potential in addressing the issue of realistic
Sc values, since for the examined range of parameters the maximum Sc reaches values of O(10°),
i.e. five orders of magnitude larger than those of vV. Figures 7.12 and 7.14 show the dependence

of the computed D7, v and Sc on T

In the vV algorithm, the value of Schmidt number is around one for the studied parameters
[71]. It is also worth mentioning that the Schmidt number for vV is estimated [108, 71] to follow
Sc ~ % + %. This expression makes it clear that the corresponding achievable values are
not in the same order of magnitude as Lowe’s scheme for comparable CPU requirements. We note,
however, that in time-staggered algorithms the value of the parameter I' should be kept the same
as in the standard time-integrators in order to achieve the same value of Schmidt number in both
cases. This is due to the fact that the diffusion coefficient scales as % and it is approximately

independent of the size of the timestep despite the fact that the product I' x At controls the

thermalization process in Lowe’s method. Figure 7.15 shows that the relaxation time for a 5-bead
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Figure 7.13: Diffusion coefficient Dy (upper left), kinematic viscosity v (upper right), and Schmidt
number Sc (lower) plotted against I" for Lowe’s scheme with a;; = 0 and ¢ = 0.01. The Schmidt
number is O(10°). Here kT = 1.
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WLC scales roughly as ~ I' for Lowe’s method. Intuition supports this, since viscosity scales

linearly with I' as well.

450

400

350

300

250

200

150

longest relaxation time 1

100

50

0

-50 I I I I I I | | |
0 5 10 15 20 25 30 35 40 45 50

Figure 7.15: Longest relaxation time 7 for the wormlike chain (5 beads) plotted against T' for
kT =0.2.

7.4 Wormlike Chain and Lowe’s Scheme: I' = 4.5,22 and

45.0

The Schmidt number results presented in Figure 7.12 motivate the re-calculation of the mean
fractional extension of a wormlike chain molecule under shear. More specifically, since the param-
eter I' controls the Schmidt number, and all the calculations in section 7.2 were done with I' = 4.5
(Sc ~ 35), we repeat one case (the 5-bead chain) for T' = 22 and 45. These values correspond
to the more realistic Sc ~ 690 and 2574, respectively, at kgT = 0.2. Figure 7.16 shows a much
better agreement of the averaged values with the experimental data, verifying the consistency
of the viscosity and diffusion calculations that the powerful alternative Lowe’s scheme provides
through the adjustment of I'. Moreover, of interest is the monotonic dependence of the curves on

Se.
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Figure 7.16: Time-averaged mean fractional extension of a 5-beaded wormlike chain under shear
versus We for I' = 4.5 (Sc =~ 35), I’ = 22 (Sc ~ 690) and I = 45 (Sc = 2574). Here kT = 0.2.
An empirical approximate formula would be Sc ~ 1.4 x I'?, in agreement with Lowe’s arguments

[7].
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7.5 Effect of Schmidt Number on Polymeric Quantities

In this section we investigate the effect of Sc on the size of polymeric chains (measured through
(Rﬁ)) in equilibrium and steady shear, as well as their longest relaxation time 7. To this end, we

refer to equation 7.3.2 to verify Sc ~ kl);—QT Table 7.1 summarizes v, Dr, Sc values for different
combinations of T', kgT. We include column IV as a baseline vV case for comparison. We use
polymeric chains subject to FENE springs, with maximum extensibility ryax = 57, Spring constant
k = 30kpT and number of beads per chain M = 5. The relaxation times for cases Sc = O(1)
(columns IV, V) are crude approximations, since the corresponding relaxation curves do not follow

exponential ones at such low values of Sc. Several conclusions can be drawn from the entries of

Table 7.1:

e Columns LII verify Lowe’s prediction of equation 7.3.2, since the Schmidt numbers agree.

- r’o_ 12 _ 102
More specifically, Sc ~ t— = 551 = 1

e Columns IV,V correspond to two distinct cases (vV, Lowe) having Sc ~ 1. It is, therefore,
possible to tune Lowe’s parameter I so that the vV fluid is properly simulated. Most values

(v, D1, Se,T,(R2)) show reasonable agreement.

e All columns suggest that the effect of Sc on a FENE chain in equilibrium is minimal, as far as
the static properties are concerned; here (RZ). In other words, a flexible chain in a solvent
of DPD particles assumes more or less the same size in equilibrium, regardless of the fluid

surrounding it.

e Columns LIT suggest that agreement in Schmidt number of the solvent does not imply

agreement in the longest relaxation time 7.

e Columns ILIIT,IV,V suggest that the size of the chain under steady shear is directly affected
by the Schmidt number of the solvent at constant temperature; the disagreement between
columns LTI for the shear (R?) values might be due to the difference in the root-mean-square

velocity of the solvent particles (Vv2 = \/%) and the shear velocity (constant for all



COLUMN I II III v A%
Lowe Lowe Lowe vV Lowe
r=1, I =10, I' =50, o =3, T =045,

kgT =001 | kgT =1 | kgT =1 | kgT =1 | kgT =1

v 0.1700 1.7240 9.5370 0.2784 0.2866

Dr 0.0046 0.0497 0.0149 0.2915 0.3100

Se ~37 ~35 ~642 ~0.96 ~0.93

FENE: (Rf]) 0.2244 0.2245 0.2250 0.2241 0.2241

FENE: T 11.1 0.770 4.75 ~0.262 ~0.318

FENE: (R?)

under shear 0.9486 0.2488 0.3809 0.2264 0.2270

with ¥ = %

| We 5.550 0.385 2.375 0.131 0.159

Table 7.1: Dependence of different static and dynamic quantities on Lowe’s parameter I', vV
parameter o and temperature kT (k = 30kgT, Tmax = 57¢).

columns), since the former is a function of kgT'. Indeed, a rough calculation of the absolute

values of the velocity components gives m = 0.08 for kT = 0.01 and m ~ 0.8 for kT = 1.



Chapter 8

Part II: Summary and Future

Work

In part IT of this dissertation we have introduced the basic Dissipative Particle Dynamics frame-
work as an emerging method for mesoscopic simulations of fluids with complex microstructure.
We outlined the need for a mesoscopic technique that addresses the different length- and time-
scales of the solvent particles and the particles belonging to a polymer chain (beads), and we

formulated the fundamental equations governing DPD simulations.

The main, novel contribution of this work to the numerical aspect of time-integration of the DPD
equations is the new family of time-staggered schemes that can be readily employed as a small ad-
ditional modification in existing DPD simulation codes. Irrespective of the specific intra-polymer
conservative interactions (e.g., spring forces, excluded volume repulsions such as Lennard-Jones),
the employment of two distinct timesteps {At, ¢t} for solvent and polymer particles respectively,
in certain systems involving stiff forces, greatly improves CPU-time efficiency. The widely-used
velocity-Verlet method [71], together with Lowe’s [7] alternative scheme, are the two integrators
this work addresses. A new family of time-staggered schemes for both the velocity-Verlet and

Lowe’s methods are introduced, together with a set of relaxation parameters p,a and 8. Sys-
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tematic analysis of the desired system and polymeric chain temperature kT under FENE and
Lennard-Jones forcing shows that one can adjust these parameters to optimal ones; in our case
these correspond to (u,a, ) = (0,0.6,0) for velocity-Verlet and (u,a, 8) = (0,0,0.4) for Lowe’s
scheme. Another aspect of the advantage of the polymeric sub-cycling is the weighted-staggering,
which, in effect, favors each sub-step accordingly taking into account the ratio of the current
sub-step to the total number of sub-steps. The speed-up of the method depends on the number
of beads per chain, the number of total chains and the way the pairwise search for non-bonded
interactions is handled (neighbor list or brute-force pair searching). Under dilute solution condi-

tions with relatively short- and medium-sized chains the speed-up is almost linear.

Physical applications of the polymer solutions DPD is able to describe include the scaling of
the static exponent v for various spring laws, and the effect of excluded volume interactions. The
Marko-Siggia [25] wormlike chain is heavily used in this work as a mesoscopic, averaged model,
able to describe the force-extension behavior of A-phage DNA molecules. Assuming persistence and
contour length values taken from real, stained molecules, we show good agreement of the mean
fractional extension (z) of the WLC under shear for both the velocity-Verlet and Lowe’s schemes.
Furthermore, the aspect of diffusivity and viscosity (and eventually the Schmidt number, Sc, for
each fluid) is addressed. For the range of parameters o,I' examined, the velocity-Verlet method
is able to reach Sc values of O(1), while Lowe’s scheme reaches values of ((10%) by simply ad-
justing the thermalization parameter I'; the Schmidt number for the velocity-Verlet method is
not as sensitive on the choice of o. Revisiting the comparison of (z) of the wLC under shear with
experimental data from [3] we recover a much better agreement when we increase the Sc values
to realistic ones for Lowe’s scheme. Since Sc¢ ~ I'?, there seems to be no theoretical limit to the

range of attainable Sc values for Lowe’s scheme - an attractive aspect worth considering.

The great potential and advantage of DPD as a mesoscopic simulation method for complex fluids

certainly lies in aspects that other methods, such as Brownian Dynamics, fail to address; complex
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geometry flows being one of them. As a relatively new technique, several DPD issues still remain

open: high-order integrators, validation with experimental results and correct implementation of

boundary conditions for complex geometries (some attempts have already appeared in [70, 109]).

This work has performed direct comparison with some experimental and Brownian Dynamics

results with good agreement. Issues of immediate research interest would also include:

Computational efficiency compared with Brownian Dynamics
Formal derivation of the integration order for the available DPD time-marching schemes

A dual, coupled comparison of DPD with Molecular Dynamics and continuum hydrodynamics

to verify the validity of the method at both limits

(3P)MD

Coarse-graining issues and how the parameter N,,, =
(9p)ppD

can adjusted to achieve these

limits

Experimentation with conservative forces for the solvent other than the popular choice of
Aij (1 - 7:5 )

The implementation and comparison of existing, widely-used integrators with emerging ones,

such as the extended Lowe’s scheme suggested by Peters [75] and the recently proposed

Nosé-Hoover-Lowe-Andersen thermostat [110]

The simulation of macromolecules subject to extensional flow.



Appendix A

The Components of the

Reiner-Rivlin Stress

In Cartesian coordinates {z,y, z} the velocity field has components {u, v, w}, and with subscripts

to denote the spatial derivatives the components of B can be arrayed as,

Uy — Vy — Wy Uy + Vg Uy + Wy
B= * Vy — Uy — Wy Uy + Wy (A-l)
* * Wy — Uy — Uy

The components of B2 are then

B(Zm) = (up— Uy — w2)2 + (Uy + Uz)2 + (uz + wr)Z;

Bl = (us+ws)(vs +wy) = 20s(uy + v0),

Bl = (uy+ve)(vs +wy) — 20y (us + wy), (A.2)
B(ny) = (uy+ vz)? + (vy —ugp — w,)” + (v + wy)27

B(zyz) = (uy +vg)(uz +wz) — 2ugz (v +wy),

138



139

B, = (us+ws)?+ (v +wy)? + (ws —ug —vy)%.

It can be shown that

1 2 27 i 2 2 6(“77” 6(“}”) 8(”711])
5 [trB® — (trB)’] = (V- V)" +w® —4 a(z.2) + 2. ) + 2.2 | (A.3)
where w is the magnitude of the vorticity vector
W = {W(a), W) Wiy } = {Wy — Uz, Uz — We, Uy — Uy} (A1)
From equation 3.24 the components of C can now be written as
O(v,w)
— 2 ’
Caay = ~wlo T30 2y
(w,0) | 0w, u)
Cav = —wowm) + 2505 2505
(v,w) | ,0(u,v)
Gl = —00% + 256 5y 250,2)" (49)
O(u, w)
Cmy = ~wiy +4 Oz, 2)’
O(v,u) O(w,u)
Cwn = ~wuwe + 2505250,
O(u,v
— 2 >
Ciny = Wi H50 )

If the three-dimensional field contains embedded, two-dimensional regions such as a plane of

symmetry, where w = 0, and all derivatives 882) = 0, then inspection of equations A.5 confirms

that all components of C are identically zero, except

(A.6)

With the cross-plane gradient —8(%(:’))

being zero, C(,,y has no dynamic effect. This result is
independent of the magnitude of (V - V). Equations A.5 are the same as they would be in the

A-formulation with exact incompressibility.
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