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Abstract of “Algorithms for Continuum and Atomistic Modeling of Blood Platelet
Phenomena,” by Igor V. Pivkin, Ph.D., Brown University, May 2006

Mural thrombi develop under a blood flow and are predominantly composed of platelets.

Thrombus growth rates are affected by the velocity of the blood flow but do not sim-

ply increase with it. They exhibit a rise and subsequent fall with blood flow velocity.

While this indicates an interaction of biochemical and physical processes, previous

studies only concentrate on understanding the biochemical processes. Here we show

the results of simulations of thrombus formation in 3-D flows by accounting for the

movements of individual platelets.

In the first part of this thesis, we study platelet aggregation in small blood vessels

using the Force Coupling Method (FCM). We demonstrate that the concept of platelet

activation delay time can be integrated into a computer model which incorporates a

small number of physical parameters. The results of the simulations demonstrate the

dependence of thrombus growth rate on blood velocity as found experimentally.

In the second part of the thesis, we turn to the Dissipative Particle Dynamics

(DPD) method. We identify some of the difficulties of modeling the no-slip condition

at a solid-fluid interface, and subsequently propose a new method to impose boundary

conditions based on an equivalent force between wall- and DPD-particles. We then

develop an adaptive model for wall-particle interactions that allows one to target

desired density profiles close to the solid walls. We propose a process of choosing

the DPD parameters and determining the DPD length and time scales for different

levels of coarse-graining. We analyze some of the fundamental modeling ideas of

DPD and identify three factors that limit the application of the DPD method at high

coarse-graining levels: inter-particle force magnitude, compressibility, and geometric

confinement. We conclude by applying the DPD method to the problem of platelet

aggregation to test its ability to reproduce characteristic features of the aggregation

process that were previously obtained by means of FCM computations.
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Chapter 1

Introduction

Blood is composed of a liquid component, plasma, and cellular components. The

cellular components are red blood cells (erythrocytes), white blood cells (leukocytes),

and platelets (thrombocytes). Platelets are often considered as the smallest blood

cells in the peripheral circulation. Human platelets are 2 to 4 microns in diameter

with a normal concentration in blood of around 150000 to 350000 cells per cubic mil-

limeter and a volume concentration of less than 1% [26]. The size and concentration

of platelets vary significantly between different animals. Hamsters are of practical

interest for experimentation, primarily because of their cheek pouch; when eviscer-

ated and stretched out it offers facilities for visualizing microcirculation. The platelet

size of (golden) hamster is 0.5 − 2 µm in diameter, with the concentration of about

430000 platelets per mm3 [5]. The mice platelet concentration is very high compared

to the human, as the total count frequently exceeds 1000000/mm3, while cells are

about 1µm in diameter [59].

Platelets normally present in circulating blood are in the passive state. They have

no tendency to adhere to each other or vessel walls. When passive platelets interact

with an injured walls or certain chemicals they become activated. The activation

process consists of a sequence of physical and biological events [26]. The surface

membrane acquires the ability to bind fibrinogen and the platelets become “sticky”

and capable of adhering to vessel walls and other platelets. Platelets undergo a shape

change to a deformable globular form with extrusion of long thin spikes called pseu-

1
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dopodia. Chemicals, which can trigger activation of other platelets, are discharged

from the platelet granules into surrounding fluid. A time interval required for a pas-

sive platelet to go through the activation process and develop its ability to adhere is

called an activation delay time [57].

Platelet aggregation is important for closing the minute ruptures in small blood

vessels that occur hundreds of times daily, but may also lead to arterial occlusion in

the setting of atherosclerosis and trigger disease such as myocardial infarction [26].

A significant factor in controlling the rate of platelet aggregation is an interaction of

the fluid flow with growing platelet thrombi. Experiments showed that the rate of

growth of platelet aggregate depends markedly on blood flow velocity [5, 52]. This

is an effect of the activation delay time; at higher flow rates, more of the activated

platelets escape capture into the primary thrombus. At the same time, the flow

is adapting to the local obstruction presented by the thrombus and makes its way

around it. Due to the complex, constantly changing flow patterns and small scales

involved in the process, experimental studies of platelet aggregation require careful

setup. Therefore, numerical simulations taking into account the interaction between

the flow and the structure formed by the thrombus may become a valuable tool in

studying blood platelet phenomenon.

The standard approach to solving the equations of fluid dynamics is to compute

fluid quantities on a fixed structured or unstructured mesh. For the problems in-

volving spatial changes of fluid domain, mesh adaptivity is an essential ingredient of

simulations. The adaptive algorithms often require significant programming efforts

and can extend the computational time.

One alternative to these methods is the Force Coupling Method (FCM) [40, 44]

in which the volume occupied by the platelets or other objects is assumed to be part

of the fluid domain. The no-slip boundary condition on each cell is approximated by

specifying the force in the flow at the position of the cell. Similar to standard methods,

the FCM requires a computational mesh. The high efficiency of the method comes

from the fact that no mesh adaptivity is required during the simulations.

Another alternative is to remove the mesh completely and represent the fluid



3

and solid objects as a collection of interacting points, each representing a group of

atoms or molecules. This is an idea behind the Dissipative Particle Dynamics (DPD)

method [15, 31]. The DPD is an inherently adaptive method and potentially very

effective in simulating mesoscale hydrodynamics.

In chapter 2 the Force Coupling Method is introduced and several benchmark

problems are considered. The method is applied to the problem of platelet aggregation

in small blood vessels in chapter 3. Chapter 4 describes the basics of the Dissipative

Particle Dynamics method. In chapter 5 we discuss the implementation of the no-slip

boundary conditions in DPD. The particle based boundary conditions are proposed

and evaluated. The DPD scales and units are defined in chapter 6, which is followed

by the discussion of the limitations of the DPD method (chapter 7). In chapter 8 we

return to the problem of boundary conditions. We develop a method for controlling

density fluctuations in the vicinity of the solid objects while preserving the no-slip

conditions at the interface. The modeling aspect of flows with spherical particles are

discussed in chapter 9. This is followed by the simulations of platelet aggregation using

DPD (chapter 10). We conclude in chapter 11 by summarizing what was accomplished

in this work.



Chapter 2

Force Coupling Method (FCM)

2.1 Mathematical Formulation

In the Force Coupling Method [40, 44] the volume occupied by the particles is assumed

to be part of the fluid domain. The no-slip boundary condition on each particle is

approximated by specifying the force in the flow at the position of the particle. The

force is added as a source term in the equation of motion,

ρ
D~u

Dt
= −∇p + µ∇2~u + ~F (2.1)

∇~u = 0, (2.2)

~F =
N∑

n=1

~F n4(~x− ~Y n), (2.3)

where the coupled force associated with the n-th particle at the first level of approx-

imation (force monopole) is distributed around its center-point ~Yn as

4(~x− ~Y n) = (2πσ2)−3/2e−
(~x−~Y n)2

2σ2 , σ =
A√
π

, (2.4)

A being the particle radius, with the force vector

~F n = ~Fext − 4

3
πA3(ρp − ρ)

d~V n

dt
+ ~Fcontact. (2.5)

4
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The first term in equation (2.5) is an external force acting on the particles. The

second term allows for the difference between the density of particles in comparison

to an equivalent volume of the suspending fluid. The third term represents the force

exerted between the n-th particle and other particles or solid surfaces.

The individual particle velocity is obtained from a local, volume-averaged fluid

velocity as

~V n =
d~Y n

dt
=

∫
~u4(~x− ~Y n)d~x. (2.6)

2.2 Benchmark problems

In this section four problems of sedimentation of spherical particles between two

walls in Stokes flow are considered. These problems were studied extensively by

Dance [13] and are used here as a benchmark tests. In all problems the radius of the

spherical particles is A = 1. The flow domain is a rectangular channel with dimensions

0 ≤ x ≤ 30, −5 ≤ y ≤ 5, and −15 ≤ z ≤ 15. Periodic boundary conditions are used

in x and z directions, while the no-slip conditions are applied on the boundaries of

the domain in y direction. The fluid density, ρ, and viscosity, µ, are set to 1. In all

problems, an external force Fext = 6πAµ = 18.84955592 is applied to the particles.

For an isolated spherical particle settling in an unbounded domain due to external

force Fext = 6πAµ, the Stokes terminal velocity is Vs = 1. The values of velocity

components reported in this section are normalized by Vs = 1. The governing flow

equations are solved using spectral/hp element solver NEKTAR [35]. The domain was

discretized using commercially available mesh generator Gridgen from Pointwise [77].

To ensure convergence of computational results the simulations were repeated on three

different non-uniform meshes with 1920, 6720 and 11520 spectral hexahedra elements

with polynomial expansion order of up to 5. All meshes were refined in the regions

where spherical particles were placed. The results presented below are obtained using

11520 element mesh with the third order polynomial expansion in each element.
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Figure 2.1: Single particle settling in the middle of two walls. (a) Variation of particle
settling velocity as a function of time. (b,c,d) Pressure, streamwise and normal fluid
velocity profiles extracted along the lines across the channel. Results of current study
(solid lines) are plotted against results obtained by Dance [13] (symbols).

2.2.1 Single Particle Settling in the Middle of Two Walls

A single spherical particle is placed with its center at x = 15, y = 0 and z = 0. The

external force Fext = 6πAµ is applied to the particle in x direction. In figure 2.1(a) we

plot the variation of particle velocity as a function of time. The computed terminal

velocity of the particle is equal to V1 = 0.821500. This is in excellent agreement

with the value of 0.8214949019 reported in [13]. Next, the pressure and fluid velocity

profiles are extracted along three lines inside the computational domain. The lines

are located in z = 0 plane and are parallel to the y axis. The x coordinates of the

lines are x = 13, x = 14 and x = 15. In figure 2.1(b)-(d) the extracted profiles are

compared with those obtained by Dance [13]. The computational results are in good
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agreement.
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Figure 2.2: Two particles settling in the middle of two walls. Steamwise and normal
velocity profiles along selected lines inside the channel. Solid lines are from current
study, symbols are from [13].

2.2.2 Two Particles Settling in the Middle of Two Walls

Two spherical particles are placed inside the domain at x = 13, y = 0, z = 0 and

x = 17, y = 0, z = 0. The external force Fext = 6πAµ in x direction is applied to

each particle. The computed terminal velocity of the particles is V1 = 1.039113, while

Dance obtained 1.039110858. Again, the velocity profiles are in good agreement, see

figure 2.2.
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2.2.3 Single Particle Settling Parallel to Two Walls

A single particle is placed inside the domain at x = 15, y = −3 and z = 0. The

external force Fext = 6πAµ is applied to the particle in x direction. The particle ter-

minal velocity is found to be V1 = 0.714908; Dance reported the value of 0.714826952.

Figure 2.3 shows the comparison of streamwise and normal velocity profiles inside the

domain with those obtained in [13].
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Figure 2.4: Single particle settling normal to two walls. The streamwise and nor-
mal fluid velocity profiles (solid lines) are compared to results reported by Dance
(symbols).

2.2.4 Single Particle Settling Normal to Two Walls

A single particle is placed at x = 15, y = −3 and z = 0. The external force

Fext = 6πAµ is applied to the particle in y direction. The computed particle terminal

velocity V1 = 0.492043 is in good agreement with the value of 0.4906803882 reported

in [13]. The streamwise and normal velocity profiles are shown in figure 2.4. The

profiles agree well with results obtained by Dance.

2.3 Summary

In this chapter we considered the Force Coupling Method for Stokes flows. Four

benchmark problems were studied. The simulations results were compared with re-
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sults obtained by Dance [13]. In the following chapter we will consider an application

of the FCM to the simulation of the platelet aggregation in small blood vessels.



Chapter 3

Simulation of Platelet Aggregation

in a Small Blood Vessels using

FCM

3.1 Introduction

Acute thrombogenesis in a flowing bloodstream can occur on damaged tissues in

the normal circulation [5]. It has been observed also in blood flow over vascular

prostheses [28] and in artificial internal organs, such as prosthetic heart valves [1].

The thrombi are composed predominantly of platelets, and they can develop even in

the presence of systemic anticoagulants such as heparin [30] unless very high doses

are given, for example, in extracorporeal circulation with a membrane oxygenator.

Blood flow velocity effects were investigated systematically in vivo by Begent &

Born [5], who obtained quantitative data on thrombus growth rates for a range of

blood flow rates. This study remains the clearest time-resolved in vivo study of

the effect of blood flow rates on thrombus formation. Richardson [57] subsequently

proposed that Begent & Born’s observations were consistent with a shear-flow aggre-

gation process [65, 68] in which an activation delay time of the platelets is allowed

for, a delay time between each platelet’s close encounter with the thrombus and its

10
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development of ability to adhere to the thrombus, and which was estimated then to be

the order of 0.1 - 0.2s. A predicted consequence of this was that the height-to-length

ratio for thrombi would be lower in blood flows, where a significant fraction of the

activated platelets escaped the primary thrombus before their activation delay time

had elapsed; this was demonstrated later by Born & Richardson [9].

More recently, Petrishchev & Mikhailova [52] applied laser injury to mesenteric

venular walls of rats and found in vivo that the mean growth rate of thrombi starting

at the injury site rose with blood flow rate up to about 1mm/s, and then fell off some-

what as the flow rate was increased in steps up to about 4.2mm/s. Later van Gestel

et al [72] returned to the mechanical injury model (puncture with a glass pipette)

applied to rabbit mesenteric arterioles (20 − 40µm diameter), but with fluorescence

imaging for time-resolved platelet cytosolic free calcium response; they observed that

thrombosis occurred in two contiguous parts, a tightly-packed plug in the puncture

site and a trailing, looser-packed thrombus (which they called embolus, due to its fre-

quent detachment.) Their time-resolved quantification of individual platelet response

showed more than 80% of platelets adhering to either compact thrombus or looser

embolus exhibited a rapid increase in cytosolic free calcium concentration that started

within 0.5s. Their figure 3 illustrates a very rapid climb in cytosolic free calcium in a

majority of platelets adhering to the (future) embolus component, and they suggested

that this profile was typical of platelets exposed to relatively weak agonists like ADP

or thromboxane A2. While they did not make the specific comparison, the electron

micrograph of the so-called embolic portion of a thrombus in their figure 4 is very

similar to the ADP-induced thrombus in figure 3 of Begent & Born. This leads to

recognition that the thrombi measured by Begent & Born were of homogenous form,

lacking indeed the densely-packed plug found at a vessel puncture, and overall a more

attractive type of thrombus to model.

At the time of Begent & Born’s studies there were two handicaps to carrying

the implications further, one biological and the other computational. The biological

handicap was the lack of specific knowledge of cell membrane channels and receptors,

and therefore of cell mechanics by which an activation delay time could be mediated
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(and varied). The computational handicap was that computing capability then avail-

able was inadequate to consider the movements of, say, 50, 000 individual platelets in

a blood flow where thrombus growth is initiated at one location on a wall. This latter

handicap now has diminished, and this chapter describes what is found in running

simulations of the Begent & Born flow situations, and what can be predicted about

thrombus formation in pulsatile flows. The latter is a circumstance important to

clinical conditions such as thrombo-embolic stroke and myocardial infarction involv-

ing thrombus formation on fissured atherosclerotic plaques in carotid and coronary

arteries.

3.2 Numerical Simulations

Simulations representing three-dimensional blood flow were performed for a 50µm

diameter straight tube, with 500µm length at several different steady blood flow

rates. Platelets are considered uniformly distributed in the inflow, with the latter

having a parabolic velocity profile at entry. The mean velocity distribution alters

downstream, over time, as a thrombus forms on the wall and acts as an obstacle to

the flow; there is an interaction between the flow and the structure formed by the

thrombus. The time-dependent computations continuously update the geometry of

the thrombus with regard both to size and shape. This procedure was followed for

blood flow rates both below and above the rate, which is expected to provide the

maximum relative rate of growth. This provided simulation results, which can be

compared with the experimental data of Begent & Born [5].

Simulations were extended to investigate the effect of pulsatility of blood flow. The

inflow was prescribed to have a steady component and a simple harmonic component,

the amplitude of the fluctuating component being ε times the steady component, with

values of ε ranging from 0.1 to 0.7. The frequency ω of the fluctuating component

was 1Hz. The product of the activation delay time τ and the frequency ω is a

dimensionless parameter. Both might be modified pharmacologically and largely

independently, so behaviour of thrombus growth at other values of the product are
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prospectively interesting, to determine if there are zones of behaviour worth targeting,

and whether there are reasons for possible differences in thrombus growth between

small animal (higher ω) and large animal (lower ω) observations, while τ differs less

between the relevant species.

3.3 Biological Model

In the experiments of Begent & Born, thrombus formation was initiated and sustained

by iontophoretic delivery of ADP from the tip of a fine hollow needle placed in the

connective tissue layer outside the blood vessel and in which the blood vessel is

supported. With this mode of supply, one can expect that there is a period of time in

which the concentration of ADP builds up parallel to the axis of the blood vessel, and

therefore the axial location at which the ADP concentration due to the iontophoresis

is large enough to initiate activation of platelets advances upstream for a while. The

footprint of ADP concentration around the outside of the vessels Begent & Born

used was likely to have an elliptic form progressively “wrapping around” the side

of the vessel close to the iontophoresis needle tip, and changing in its axial- and

circumferential-direction spans for some time. In the experiments, the size of this

footprint likely increased progressively with time.

In the simulation approach, it has been important to explore a selection of rules

applied for every platelet regarding the inter-platelet and platelet-wall interactions.

Thrombi, except those plugging a vessel wall puncture, have a degree of loose-packing

compared with, say, sedimentary behaviour of solid grains packing with solid-surface

contact. Fibrinogen and fibrin strands have a part of this, and were recognized early

as essential co-factors in aggregation; platelet “stickiness” develops when the platelet

membrane acquires the ability to bind fibrinogen [78].

Falati et al [17] used confocal and wide field microscopy to image thrombus for-

mation with platelets, fibrin and tissue factor in real time, using mice cremaster ar-

terioles. Vessel wall injury was induced by a pulsed nitrogen dye laser (non-puncture

injury). Platelets were visible in attachment by 4 seconds after injury. Polanowska-
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Grabowska and Gear [53] had previously shown that platelets can adhere very rapidly

to collagen exposed on a surface. Falati et al [17] found co-localization of the platelets

and the fibrin in the thrombus, although the fibrin had a lag time of incorporation

of about 15 seconds. Tissue factor was localized on the upstream edge of the throm-

bus and along the vessel-wall interface. Falati et al [17] did not provide an electron

micrograph of any thrombi. Falati et al [18] later provided additional information on

tissue factor accumulation in developing thrombi. Plasma fibronectin is also known

to have a role in thrombus growth and stability [48].

Activation of platelets initiated by ADP can occur at a finite distance of separation

from a growing thrombus for platelets approaching it, because of diffusion of ADP

from the thrombus (or, in the Begent & Born experiment, also from the extravascular

iontophoretic source.) These aspects of platelet interaction invoke use of two length

scales. Another issue for incorporation in an interaction model is that of a repulsive

force function in the event of close-approach. Energy landscapes have been described

for single molecular bonds [16], which can be studied under ingeniously designed and

carefully controlled laboratory conditions that assure single bonds only are involved.

Thrombi develop in vivo with multiple bonds, and so a more generalized form of

energy landscape is applied for the calculations reported here. The links used in the

model here incorporate the effects of many individual bonds.

One extra choice available is that for the adhesive footprint of the thrombus on

the wall to which it attaches: given a seeded location (where a few platelets are

adherent, a computational-model replacement of the use of iontophoretic application

of ADP to initiate thrombosis), should any activated platelet be allowed to attach

anywhere it comes sufficiently close to the wall surface downstream? Or should a

geometrically-defined patch on the wall limit the extent where that may happen?

Our simulations reported here cover these two. Other adhesion site rules could apply,

such as that adherable sites may occur randomly distributed spatially over a surface,

with mutual distances typical of the sites found as platelet-prepared sites by in vitro

experiments for blood flow over non-biological substrates that have been coated with

specific proteins, such as collagen, fibrinogen or fibronectin [6]. Such a range of choice
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of footprint rules for the computation may be needed to represent adequately typical

different causes of thrombus formation, such as highly-localized vascular injury, or

fissures at atherosclerotic plaque caps, or flow over manufactured surfaces as in needles

or over artificial-organ components. Even within one footprint type, there can be an

effect of the relative locations of the small number of seed platelets present at the

beginning, and this too has been explored somewhat.

3.4 Mathematical Model

For our simulation, we assumed platelets in concentration of 300, 000 per mm3, 3µm

equivalent diameter, a vessel diameter of 50µm, parabolic velocity profile at the inlet

and mean blood flow velocities of 100−800µm/s, overlapping the major range of Be-

gent & Born’s experimental conditions. Applying the Force Coupling Method [44] the

system is described by equations (2.1)-(2.6), where the non-linear term in momentum

equation is neglected (Stokes flow).

The contact force term ~Fcontact in equation (2.5) includes, for any platelet, a repul-

sive portion when the platelet is approaching and has come within a specific distance

of another platelet or wall surface. If both the n-th platelet and another (or the

location on the wall) it encounters are in the active state the link is created be-

tween them. No more than one link can be created between each pair of activated

platelets (or the activated platelet and the wall). For activated platelets with links in

addition to the repulsive force, there is also an attractive force, shown at the larger

distances of separation; this is zero at smaller, finite distances to permit loose packing

of mutually adhering platelets. The looseness of packing is significant for a thrombus

because it provides a space through which the suspending fluid can seep. It also

recognizes the linking role of fibrinogen without attempting to model it in detail. We

note that Guy and Fogelson [25] have made computational estimations regarding the

role of fibrinogen, based on the collision of two spherical particles with fibrinogen

available in the suspending fluid, one particle being already activated, and consider

bond completion and bond rupture; because of the many platelets considered in our
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model, a simpler form of relation which does not assess aspects of fibrinogen con-

centration is used here. In our model (see figure 3.1), each platelet carries with it

an activation-distance corona. Before a platelet is triggered it is tested at each step

in time to determine whether an activated platelet has its centre within twice the

activation-distance corona of its own centre; if so, the platelet is coded as having

its activation triggered, and within a time span (freshly) randomly chosen between

two time interval limits it becomes activated. (These are larger than the time-step

used in the flow computations.) The finite extent of the activating corona beyond the

perimeter of the platelet allows in this model for diffusion of activators such as ADP

without attempting a more exact determination of the convective field involved. If an

activated platelet has not adhered within a finite recovery time it returns to its initial

passive state. Throughout these conditional aspects the model is intended to make

practical allowances for physico-physiological aspects in ways that avoid requirement

of concurrent solutions for e.g. time-dependent ADP transport to be generated as

these would considerably increase the already long computation times. Much detailed

biochemistry is condensed, and only the associated major changes in physical forces

are modelled here. The model is chosen to allow computations to march forward in

time, without iteration. Each time a computation is performed with constant values

of parameters and the same flow rate, there is some variation from the results of oth-

erwise similar runs when the random-number generator for determining individual

platelet activation delay times is freshly seeded. Thus, replication runs are made to

explore the corresponding variability of thrombus growth.

The governing flow equations are solved using the spectral/hp element solver NEK-

TAR [35] marching forward in time steps, the position vectors for all the platelets

being updated (and all associated near-neighbour conditions being checked) for each

time step. The Force Coupling Method seems more reliable when the average particle

density is modest, and so the suspension of red cells is treated as a continuum. The

few other cells typical of whole blood such as the leukocytes are omitted from the

model as being too low in number-density to have a significant dynamic effect.

At the beginning of the computation, the fluid in the vessel is empty of platelets
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Figure 3.1: In our model, platelets can be in three different biological states: passive,
triggered and activated. In passive state, platelets are not adhesive; this is a normal
state of the platelets in blood. If a passive platelet interacts with an injured wall
or an activated platelet it becomes triggered and after an activation delay time it
becomes activated and adhesive. The activation delay time is chosen uniformly at
random from a specified range. If after a finite recovery time an activated platelet
does not adhere to anything it returns back to a passive state.

but the entering flow has them approximately uniformly distributed in it. However, by

the time there are platelets sufficiently close to the seed platelets on the vessel wall to

be activated, there is full priming of the flow at smaller radii with platelet-laden blood.

To initiate thrombus growth at a known location, typically three activated platelets

were placed close together on the vessel wall at the initiation of flow. (In pulsatile

flows of large amplitude, these were observed to oscillate somewhat back and forth in

the flow direction, a natural consequence of the model and sometimes seen in actual

flows.) Approaching platelets, which come close enough to these become triggered;

while a few triggered platelets escape downstream, many become activated while still

close enough to adhere, and through continuous repetition of this process the platelets

aggregate as a mural thrombus. Representing the platelet radius as A, values that

need to be chosen to run computations are the activation-distance corona RAA, with

RA ≥ 1; the outer limit of the repulsion radius RRA, with RR ≥ 1; and the minimum

distance of the longer-range attraction RLA, with RL ≥ RR. From that point, the

attraction force increases with increasing distance linearly to a maximum at RMA

(RM > RL), following which it diminishes to zero at RBA (RB > RM), and remains

zero for all greater distances. Other parameters, which need to be prescribed, include

the repulsive force relation, the long-range attraction relation (the maximum tensile

load carried per cell-cell bond is likely to affect embolization), and the activation
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delay time. The latter is assumed randomly uniformly distributed over the range

ta1 to ta2, with ta2 ≥ ta1, selected for each platelet once, but differently in otherwise

replicate runs.

In our computations the repulsive force acting on the platelet approaching the

wall was

~F n
1 = α1

RRA− d

RRA
H (RRA− d)~n, (3.1)

H(x) is the Heaviside function, d is a distance from the centre of the platelet to the

wall, and ~n is a unit normal to the wall pointing into the domain. When platelets

overlapped, a repulsive force was added,

~F n
2 = −α2

2RRA− dmn

2RRA
H (2RRA− dmn)

~dmn

dmn

, (3.2)

where ~dmn = ~Y m − ~Y n is a vector connecting the centres of platelets m and n, and

dmn =
∣∣∣
∣∣∣~dmn

∣∣∣
∣∣∣. The constants α1 and α2 were set to 8× 10−9N . The attraction force

between the activated platelet and the location ~xw at the wall was

~F n
3 = α3

dw −RLA

RLA
H (dw −RLA)

~dw

dw

, (3.3)

where ~dw = ~xw − ~Y n and dw =
∣∣∣
∣∣∣~dw

∣∣∣
∣∣∣. For a pair of an activated platelets we had

~F n
4 =





0 if dmn ≤ RLA,

α4
dmn−RLA

RLA

~dmn

dmn
if RLA ≤ dmn ≤ RMA,

α4
RM−RL

RL

RBA−dmn

RBA−RMA

~dmn

dmn
if RMA ≤ dmn ≤ RBA,

0 if dmn > RBA.

(3.4)

The constants α3 and α4 were equal to 4 × 10−9N . The values of RR, RL, RM and

RB were set to 1, 1.5, 2.5 and 3.5, respectively. The extent of the activation-distance

corona was defined by RA = 1.5. The range of activation delay time was specified by

ta1 = 0.1s and ta2 = 0.3s. The platelet recovery time was set to 5s.
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Figure 3.2: (a) Thrombus growing on a blood vessel wall; blue - inactivated platelets,
green - triggered platelets, converting after a characteristic time delay to activated -
red. (b) Late stage in a similar computation, where adhesion of activated platelets is
allowed at all locations downstream.

3.5 Results

Steady Inflow Results: (1) The simulation predicts thrombi growth with shapes and

patterns similar to those observed experimentally. Figure 3.2(a) shows a sequence

of frames from a simulation of such a thrombus growth. There is an early, brief (up

to about 3 seconds) phase of rapid growth, which would not have been detected in

Begent & Born’s experiments because of the difficulty of seeing distinctly a mural

grouping of so few platelets, followed by a slower yet exponential rate of growth.

(2) Thrombi initiated under the same flow conditions may have a varied small-

growth time, but have major growth at an exponential rate which has no set relation

to variation in the small-growth time; and embolization of part of a thrombus can

readily resolved in the computation even for thrombi as small as 10 platelets.

The number of platelets accumulated in a thrombus for replicate computing runs

at one flow velocity is shown in figure 3.3(a). The lines correlating each run in the

exponential-growth phase have closely similar slopes, and the time taken to that phase
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from the initiation of flow varies somewhat. This result is similar to that reported by

Begent & Born, except that they had no way for observing the variation of the short

initial phase because the number of platelets adhering to the wall then was too small,

being below the resolving power of their microscope, nor did they run a number of

replicate runs at each flow rate to determine statistics of the variability of the growth-

rate factor as a function of blood flow rate. The slope of the exponential growth for

the model was calculated as a mean and standard variation from the replicate runs.

(3) The model used provides for flow-structure interaction, as illustrated in fig-

ure 3.3(b). This figure displays, in 3-D at one instant in time, some flow lines com-

puted at locations lying closely over a thrombus in an early stage of its growth. The

streamlines - of which a small number are displayed - have clearly adapted to the

local obstruction to flow presented by the thrombus, and make their way around it.

This continues as more and more platelets aggregate into the thrombus.

(4) Thrombi initiated at other flow rates also have their major phase of growth

exponential in time, and the growth-rate coefficient has a maximum as a function of

flow rate. We note that the growth-rate coefficient, which can be deduced from using

a natural-logarithm scale for the vertical axis in the right-hand graph in figure 7 of

Ref. [5], does not fall within the range of those listed in figure 5 of the same paper

but is somewhat below the lowest value in that figure 5, and we surmise there is a

scaling-factor error in the vertical axis of the latter but we lack the original data to

be able to determine that definitively.

Investigation of thrombus growth was repeated for a number of different flow rates

in the vessel. Qualitatively similar results were obtained. Values of the slope of the

exponential growth are shown as a function of the vessel flow rate in figure 3.4(a).

Broadly similar to Begent & Born, it was found the exponential growth rate initially

rose with flow rate, but there was a peak and for higher blood flow rates the growth

rate fell. This is an effect of the activation delay time; at higher flow rates, more of

the activated platelets escape capture into the primary thrombus. Some runs were

computed at a flow rate above 500µm/s with zero activation time to check this and

to verify that lower growth rates were not simply due to accumulation of effects of
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Figure 3.3: (a) Accumulation of platelets in a thrombus, conditions of figure 3.2(b,c)
with flow rate of 100µm/s. Solid lines used to correlate exponential growth
phase; slopes plotted on figure 3.4(a). (b) Flow structure interaction illustrated by
flow(stream) lines close to developing thrombus, flow going from left front to right
rear, perspective view. For clarity most inactivated platelets omitted.
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Figure 3.4: (a) Exponential thrombus growth rate coefficients as a function of flow
rate in small vessel 50µm diameter; mean values shown as circles, individual values
from replicate computer simulations shown with asterisks, the trend of the mean
growth rate coefficients as a function of flow rate matching qualitatively the rend
from Begent & Born. (b), For four flow rates, the effect of sinusoidal flow pulsations
(mean of replicate computer simulations) shown for various relative amplitudes ε
of pulsation compared with steady-flow means (◦) and standard deviations (vertical
bars). M is for ε = 0.1, B is for ε = 0.3, O is for ε = 0.5, C is for ε = 0.7.
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repeated embolization of portions of the growing thrombus. If the wall downstream

is readily adhesive to activated platelets, one typically sees a secondary thrombus

develop there (see figure 3.2(b)). Indeed, after some growth, secondary thrombi can

grow with a higher capture effectiveness there than at the leading thrombus.

(5) Porosity of thrombus is significant to good capture efficiency of approaching

platelets.

The sensitivity of the results to the assumed values for various parameters was

investigated. When the minimum distance of the longer-range attraction was halved

(making a more compact thrombus), the thrombus growth rate was stunted, with

more platelets being deflected in the flow over the thrombus than being caught by

it. (This possibility was anticipated in figure 1 in Ref. [9], and is borne out by the

simulations.) It appears that the opportunity for enough plasma to filter through the

thrombus is significant in maintaining a high platelet capture efficiency.

However, when the minimum distance of the longer-ranged attractive force is

increased far enough, e.g. for a 50% increase of that distance at a flow rate of

300µm/s, the steady flow may (according to some computational results) push the

thrombus into more of a “carpet” form lying close to the wall at early growth times,

because the equivalent mutual tether length is too long to require the linked platelets

to form a pile; and the carpet may not require many platelets that have become added

to it to adhere also to the wall to hold the thrombus until embolization.

(6) The number and mutual positioning of “seed” platelets have an effect on the

small-time growth period.

While it might seem optimum in some sense to use just one adherent platelet as

the initial seed, this extends considerably the computing time required to reach a

thrombus of N platelets, N À 1, because with basically exponential growth it takes

as the same order of time interval to go from 1 to 2 platelets as it does to go from 100

to 200 in a thrombus, so starting with more than one fixed “seed” platelet to initiate

a thrombus saves considerable computing time. However, there is then an effect from

the spacing and configuration of the seed set of platelets. If one seed platelet was

close enough to streamlines that had passed over a proximal seed platelet the early
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capture rate seemed higher.

(7) The limitation of thrombus surface-attachment opportunity in the downstream

direction, when applied as a boundary condition in our computations - with a fixed

location of the downstream boundary - leads to thrombi which can overhang the distal

end of the attachment zone, but the part of the thrombus that overhangs distally

has compliant behaviour and can be flattened in contact with the wall or can peel

up. When in the up-position, the growth rate of the thrombus slows considerably.

However, after some time in the up-position it can make a relatively rapid transition

to the down-position again and the thrombus resumes a growth rate typical of a

thrombus without a raised tailpiece.

(8) For a given blood flow rate, there is a range of net thrombus growth rates that

likely contribute to the variability of observed “bleeding times” – these times running

until leakage at a standard cut (skin) or through a puncture (tube) effectively stops.

For flow rates above 400µm/min, running a dozen or so computations with replicate

initial conditions gave an even larger variation in time taken to reach the larger

thrombi sizes, likely to be needed to achieve thrombotic occlusion of a distal vessel

puncture, over the range of two-to-one or more found at lower flow rates. Figure 3.5

illustrates these times for thrombi of 70 platelets.

The effect of pulsatility was investigated by imposing a sinusoidal variation of

velocity to the inflow,

~uinflow = ~umean(1 + ε sin(ωt)), (3.5)

with ε being the amplitude of pulsatility relative to the mean flow. The period of

oscillation was 1 second. A shorter period was not considered, to keep the pulsatility

period distinct from the activation delay time. Thrombus formation was computed for

a range of values of mean flow, and with ε = 0.1, 0.3, 0.5 and 0.7. Again, exponential

growth was observed, and for this flow geometry the mean values of the exponentional

coefficients (five replications for each set of conditions) lies within the 95% error range

of the results for purely steady flow except for ε = 0.1, for which the growth rates were
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Figure 3.5: Ranges of bleeding time (as assessed by time to form a thrombus of 70
platelets) as a function of the blood flow velocity in the tube. At all velocities the
range is at least a factor of 2.

higher. Upon examining the time-resolved thrombus size in detail, it was seen that

with large-enough ε it appears possible that a small embolus can be peeled away from

the thrombus cyclically in a way not found with steady flow or with ε = 0.1, and thus

the cumulations with time at the higher ε have a noticeable saw-tooth appearance,

with the temporarily higher thrombus growth rate partly offset in the mean due to

the loss of the emboli.

Thus, to first order in a straight flow geometry and with conditions precluding

recirculation, the effect of sinusoidal pulsations at a typical human heart rate is to

cause thrombi to develop at a rate closely related to that for steady flow at the

corresponding mean flow conditions, and highest relative to that at ε = 0.1.

3.6 Discussion

It must be noted that the thrombus-formation modelling described here was for an

initially uniform flow passage with parallel streamlines. Here we demonstrate that
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the concept of platelet activation delay time can be integrated into a computer model

of mural thrombus formation, which accounts for motions of all platelets individually

involved, and which incorporates a small number of physical parameters and func-

tions to represent physico-chemical factors such as cell adhesion molecule behaviour,

fibrinogen, and so forth for the scale represented in the model. It may be discovered

in vivo that the activation delay time is affected by the vascular location in which

thrombi grow, and by the ability of the endothelium to produce NO and other agents.

There may be some effect of vascular location on the energy landscape relevant to ad-

hesion and aggregation that typically occurs there; the observation of Poole et al [54]

that in a large vessel, such as the aorta, platelets tend to form monolayers on damaged

areas of the wall without aggregating into mural thrombi may reflect that the typical

inter-platelet linkage distance is greater there so that a flat form of thrombus occurs.

Obviously there are difficulties in obtaining measurements of inter-platelet distances

in thrombi, especially in vivo, but some effort on this to distinguish possible variations

depending on vascular location and blood velocity would be worthwhile for improving

details of the model for application in such circumstances. The later phenomenon of

clot retraction implies the prior existence of non-zero distances between the platelets

that comprise it, and which possess contractile components in the cytoskeleton, and

no attempt is made here to model that.

Reviews have frequently updated listing of pro- and anti-thrombotic factors, with

details of their actions and interactions, such as by Jackson et al [33] and Oude

Egbrink et al [50]. Although effects of blood flow rate on platelet adhesion and

aggregation, and on thrombus growth, have been known for decades, in many experi-

mental studies the flow conditions are not recorded or controlled for, nor are electron

micrographs of thrombi routinely reported. Such incompleteness of experimental in-

formation makes it difficult to improve representational details applied in computer

modeling. It has been noted that in use of light-dye methods for thrombus initiation

the vessel-wall injury varies with the intensity of the light applied, 120J/cm2 lead-

ing to macromolecular leakage and platelet activation but a dose six times as strong

caused endothelial and smooth muscle cell swelling and ruptures, gap formation and
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leukocyte accumulation [46]; reports of light intensity used, and of the extent of pri-

mary vascular injury, are often missing. There are, of course, some representational

details used in the model that may be robust, in the sense that modifications of values

of some parameters may make modifications of outcome that are too small to distin-

guish by presently-available methodology in experiments (the standard deviations in

the thrombus growth rates as a function of blood velocity measured by Petrishchev

& Mikhailova are comparable with variations that arise in our computational model,

but also imply that such experiments may be limited for comparing with small re-

finements of the model.) For example, in modeling the interplatelet attractive forces

it seems sufficient for the present to use one fixed force-distance relation for a fixed

finite time, although in practice it must vary over time (likely connected in part to the

variations of platelet cytosolic free calcium with time [72]) and be associated with a

mix of engaged cell-surface receptors and composition of linking molecules. In model-

ing platelet-platelet repulsive forces, modifications to the platelet membrane stiffness

(as by alpha-tocopherol) may require a corresponding adjustment, but potentially

also to the attractive force because alpha-tocoperol also down-regulates GPIIb pro-

moter activity [10]. If a negative feedback regulation associated with platelet-borne

MMP-9 [64] is confirmed to play a role, it could be necessary to include its effect

in the activation aspects of the model used here. If there are sub-populations with

different reactivies, as implied by van Gestel et al [72], this too can be incorporated

by adaptation of the model.

In a study to assess thromboembolism associated with pulsatile flow, Sukavanesh-

var et al [66] observed in an ex vivo model that flow pulsatility induced increases in

both thrombosis and embolism.

The model may lead to improvements in assessing the impact of various platelet-

active drugs, observed and measured in specific flow conditions, in altering thrombus

formation in a variety of other flow conditions. Hopefully, our model will spur new

experiments to determine some of the parameters of thrombi previously overlooked,

and lead to models more sophisticated in representation of biochemical and physical

processes that matter most.



Chapter 4

Dissipative Particle Dynamics

(DPD)

4.1 Introduction

Despite the teraflop speeds of current parallel computer systems, molecular modeling

of liquid-state systems based on atomistic simulations is still computationally pro-

hibitive for mesoscopic spatial domains and integration times. To this end, many

interesting new methods have been proposed in the last few years focusing on coarse-

graining approaches that yield low-dimensional systems amenable to fast computa-

tions in simulation studies of simple and even complex, e.g. biomolecular, liquid

systems. Typical coarse-graining approaches include the elimination of fast degrees

of freedom, clustering of individual atoms into larger single-interaction particles, and

spatio-temporal averaging of effective interaction potentials [32]. Other recent coarse-

graining approaches based on stochastic closures or approximate inertial manifold

ideas that could potentially be used for liquid-state systems can be found in [36] and

[67], respectively.

Dissipative particle dynamics (DPD) [31] is a coarse-graining method that employs

both simplified potentials – that can be thought of as averaged effective potentials

[20] – as well as grouping of atoms into a single particle, i.e., the DPD particle. The

method describes interacting clusters of molecules moving together in a Lagrangian

28
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fashion subject to soft repulsive-only potentials. Specifically, for simple fluids there

are three types of forces acting on each dissipative particle:

• A purely repulsive conservative force,

• A dissipative force that reduces velocity differences between the particles, and

• A stochastic force directed along the line connecting the center of the particles.

The computational advantage of DPD compared to MD for mesoscopic systems

stems from the use of soft potentials as well as the clustering of Nm atoms into a

large DPD particle. Experience with DPD simulations and scaling arguments, see

[23], shows that the combined computational speed-up, say for water simulation, is

about 1000 × N
5/3
m , which for Nm = 5 and 10 gives the large factors of 73, 000 and

464, 000, respectively. Clearly, such accelerated simulations allow for laptop-based

mesoscopic simulations of complex biomolecular systems where water is the main

component.

4.2 Mathematical Formulation

Let us consider a system consisted of N particles having equal mass (for simplicity in

the presentation) M , positions ~ri, and velocities ~vi. The aforementioned three types

of forces exerted on a particle i by particle j are given by

~FC
ij = FC(rij)r̂ij, (4.1)

~FD
ij = −γwD(rij)(r̂ij · ~vij)r̂ij, (4.2)

~FR
ij = σRwR(rij)θij r̂ij, (4.3)

where ~rij = ~ri − ~rj, rij = |~rij|, r̂ij = ~rij/rij and ~vij = ~vi − ~vj. The variables γ and σR

determine the strength of the dissipative and random forces, respectively. Also, ξij

are symmetric Gaussian random variables with zero mean and unit variance, and are
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independent for different pairs of particles and at different times; ξij = ξji is enforced

in order to satisfy momentum conservation. Finally, ωD and ωR are weight functions.

All forces are acting within a sphere of interaction radius Rc, which is the length

scale of the system. The conservative force is given by a soft potential (see [24]):

~FC
ij =





a(1− rij/Rc)r̂ij, rij < Rc

0 rij ≥ Rc

, (4.4)

aij =
√

aiaj, where ai and aj are conservative force coefficients for particle i and

particle j. The requirement of canonical distribution sets two conditions on the

weight functions and the amplitudes of the dissipative and random forces, see [15].

Specifically, we have that

ωD(rij) =
[
ωR(rij)

]2
, (4.5)

and

σ2 = 2γkBT, (4.6)

where T is the system temperature and kB the Boltzmann constant. The weight

function takes the form

ωR(rij) =





1− rij/Rc for rij ≤ Rc,

0 for rij > Rc.

The time evolution of DPD particles is described by Newton’s law

d~ri = ~vidt, (4.7)

d~vi =
1

M

(
~FC

i dt + ~FD
i dt + ~FR

i

√
dt

)
. (4.8)

Here ~FC
i =

∑
i 6=j

~FC
ij is the total conservative force acting on particle i; ~FD

i and ~FR
i

are defined similarly.



Chapter 5

Particle Boundary Conditions in

DPD

Dissipative particle dynamics (DPD) is a potentially very effective approach in sim-

ulating mesoscale hydrodynamics. However, because of the soft potentials employed,

the simple no-slip boundary conditions are difficult to impose. In this chapter, we first

identify some of these difficulties and subsequently we propose a new method, based

on an equivalent force between wall- and DPD-particles, to impose boundary condi-

tions. We demonstrate the validity of this approach for steady problems (Poiseuille

flow, lid-driven cavity) as well as for the unsteady oscillating flow over a flat plate.

5.1 Introduction

One of the main issues for DPD simulations in confined geometries is the imposition

of boundary conditions, specifically at solid boundaries. To this end, the boundary

conditions that have been used in DPD are based on general ideas implemented both

in lattice Boltzmann method (LBM) and molecular dynamics (MD) formulations.

However, unlike the MD method, the soft repulsion between DPD particles cannot

prevent fluid particles from penetrating solid boundaries, and thus extra effort is

required to impose accurately the no-slip (or partial slip) wall boundary condition.

To the best of our knowledge, although good progress has been made, there is no yet

31
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consensus as to what type of boundary conditions performs best, especially in the

presence of conservative forces as well as in complex-geometry flows.

A broad classification of the three main approaches to impose boundary conditions

in DPD was provided in [55] as follows:

1. The Lees-Edwards method described further in section 5.2 to impose planar

shear, also used in LBM [74], which is essentially a way to avoid modeling

directly the physical boundary [7, 8, 38]. The periodic Poiseuille flow method [3]

considered later in chapter 7 also falls into this category.

2. Freezing regions of the fluid to create a rigid wall or a rigid body, e.g. in

particulate flows, see [8, 31].

3. Combine different types of particle-layers with proper reflections, namely spec-

ular reflection, bounce-back reflection, or Maxwellian reflection [19, 56, 76].

The third category is indeed quite broad, and the technical details in the various

implementations published so far are quite different. Since the method proposed in

this chapter also employs particle-layers as well as reflections, we review in some more

detail the most representative works published so far that fall under category (3).

In [56] a particle-layer is stuck on the solid boundary and effective dissipative

and random forces are obtained analytically on the DPD fluid particles by assum-

ing a continuum limit. However, reflections were found necessary to reflect particles

back into the fluid when they cross the wall since the effective computed forces are

not sufficient to prevent wall penetration. In [55] the effect of specular, Maxwellian

and bounce-back reflections was also investigated. In specular reflections the velocity

component tangential to the wall does not change while the normal component is

reversed. In the bounce-back reflection both components are reversed. A Maxwellian

reflection involves particles that are introduced back into the flow with a velocity

following a Maxwellian distribution centered around the wall velocity. In [55], a key

non-dimensional parameter was identified that affects the wall slip velocity. Specifi-

cally, there are five governing parameters in the DPD fluid system: M (the mass of
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particles); γ (the friction coefficient); Rc (the cut-off radius); kBT (temperature); and

λd = ρ−1/d (the average distance between particles, where d is the space dimension

and ρ is the number density). We can define the dimensionless friction coefficient

γ̃ ≡ γλ

dvT

where vT =
√

kBT/M is the thermal velocity scale. Large values of γ̃ mean that

the particles move very little in the time scale associated with the velocity decaying

due to thermal fluctuations. In [55] the plane Couette flow was considered in order

to evaluate the above boundary conditions. The Lees-Edwards boundary conditions

work well for this model but the objective is to see what type of reflections are

appropriate with their particle-layer approach. It was shown in [55] that for large

values of γ̃ all three reflections result in a no-slip condition. However, for small values

of γ̃, the specular and Maxwellian reflections produce an excessive slip velocity at the

wall while the bounce-back approach still satisfies the no-slip condition. An anomaly,

however, was observed in the temperature profile very close to the wall at small

values of γ̃ even with the bounce-back boundary conditions. Another problem with

the approach of [55] is that the computation of forces is analytic and cannot be easily

extended to non-planar walls. In addition, the more difficult case where conservative

forces are present was not considered. As we shall see below, this is an important

case as it induces large density fluctuations at the wall.

In [76] an extra particle-layer is included outside of the domain with the objective

of constructing a correct velocity profile that continues beyond the wall boundary. The

position and velocities of particles inside that layer are determined from the layer of

DPD particles adjacent to the boundary and within a distance Rc (the interaction

radius). For example, to impose zero velocity at a solid boundary, points in the

particle-layer outside the domain have tangential and normal velocity components

opposite from the original. When a DPD particle hits the boundary, a bounce-back

reflection is imposed. This approach works very well in the absence of conservative

forces but when conservative forces are present density oscillations occur. In this case,
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a second layer of DPD particles was introduced by [76] between Rc and 2Rc in order

to compute the repulsive interaction. This approach seems to reduce but not totally

eliminate the density fluctuations at the walls. Overall, the method of [76] is quite

effective but it may not be easily implemented in complex-geometry flows, e.g. flow

around a cube, as it is not clear how to construct such “ghost” particle-layers in such

situations.

Finally, in the third category above we have also included another implementation

reported in [19]. In this implementation, frozen particles are used to represent the wall

but there is an extra thin layer of DPD particles inside the domain and adjacent to the

solid boundary where the no-slip boundary condition holds. Specifically, a random

velocity distribution with zero mean is enforced in this layer with corresponding

particle velocity

~vi = ~vR + ~n(
√

(~n · ~vR)2 − ~n · ~vR),

where ~vR is the random vector and ~n is the unit vector towards the flow domain.

The thickness of the layer in channel flows is selected as the minimum of 0.5% of the

channel width and Rc/2; this thin layer is necessary to prevent the frozen wall cooling

down the DPD fluid. Nevertheless, some temperature drop at the wall boundaries is

present in the simulation results reported in [19], which is undesirable.

The objective of this chapter is to produce a systematic way of imposing the no-

slip boundary condition. The method we propose is under the general category (3)

of the aforementioned list and can be easily implemented for simple- and complex-

geometry flows. The main idea is to provide a systematic procedure to compute

the repulsion force exerted by the wall particles on the fluid in combination with

bounce-back reflections, across a wide range of densities for liquids. The new method

is verified for Poiseuille flow, Stokes flow over an oscillating plate, and for the lid-

driven cavity, using both analytical solutions and corresponding high-order accurate

Navier-Stokes solutions.
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5.2 Lees-Edwards Boundary Conditions

We will use the Lees-Edwards method later in the text, so here we provide its brief

description. Consider a system of particles in a periodic box and assume that the up-

per wall is moving with velocity Ux/2 and lower wall with −Ux/2. Lees and Edwards

[38] suggested a method to simulate this shear flow by applying modified periodic

boundary conditions. A particle crossing the upper boundary of the box at time t is

re-introduced through the lower boundary with its x-coordinate shifted by −Uxt and

the x-velocity decreased by Ux. For a particle crossing the lower boundary of the box

the x-coordinate shift is Uxt and the x-velocity is increased by Ux. In addition, in

computing the force between particle i interacting with particle j through the upper

(lower) boundary, −Ux (+Ux) should be added to the relative velocity ~vij.

5.3 Diagnostic DPD Simulations

Figure 5.1: Sketch of the cubic domain for simulating Poiseuille flow. Periodic bound-
ary conditions are imposed in two directions. The walls are simulated by freezing DPD
particles.

In order to appreciate the degree of difficulty in imposing no-slip boundary condi-

tions with the DPD method as well as to identify the most influential parameters, we

first perform some diagnostic DPD simulations for Poiseuille flow in a channel. The

flow domain is a cube with size 10, and periodic boundary conditions are imposed
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along two directions, see figure 5.1. In order to sustain the flow, an external body

force equal to 0.02 (DPD units) is imposed. The density of the DPD fluid is ρf = 3

and the temperature is kBT = 1. The random and dissipative forces are defined by

the parameters σR = 3 and γ = 4.5, respectively, while the conservative force param-

eter is set to af = 25. We simulate the solid walls by freezing the DPD particles in

the wall regions. The wall particles interact with fluid particles, however we do not

allow them to move. In some cases we will also use bounce-back boundary conditions.

In order to investigate the effect of the wall density, we will use different values for

the number density of the walls, ρw. In addition, we will vary the conservative (also

called repulsive) force coefficient for the wall particles, aw. The results we will present

below are obtained by subdividing the domain into 100 bins across the channel, while

the simulations were run for 200,000 time steps and the results were averaged over

the last 40,000 time steps.
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Figure 5.2: Left: Velocity profile. Right: Density and temperature profiles. The walls
are simulated by freezing DPD particles. (ρw = ρf ; aw = af ).

First, we simulate the case with the walls modeled by freezing the DPD particles

in two layers inside each wall region. The walls have the same density as the fluid,

i.e. ρw = ρf , and the conservative force of the wall DPD particles, aw, is the same as

of the fluid particles, af . The results of the simulations are shown in figure 5.2. The

dashed line is density, the dash-dotted line is partial temperature along the periodic
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cross-flow direction and triangles is the velocity profile across the channel. The dotted

lines are the Navier-Stokes solutions corresponding to no-slip boundary conditions.

The main finding here is that the fluid particles can penetrate wall regions, as it

can be seen from the non-zero density of the fluid particles inside the walls. This is

the result of the soft repulsive forces employed in the DPD formulation. In order to

prevent the fluid particle from penetrating the walls we can increase the wall density

or the repulsion (conservative) force of the wall particles.
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Figure 5.3: Left: Velocity profile. Right: Density and temperature profiles. (ρw =
4ρf ; aw = af ). The walls are simulated by freezing DPD particles.

Next we increase the wall density to be four times higher than fluid density.

The results from these DPD simulations are shown in figure 5.3. There is no fluid

penetration into the wall regions, however, large density fluctuations appear across

the channel. The density level of the fluid in the middle of the channel is elevated

and there are almost no particles close to the walls. The fluid is squeezed towards

the middle of the channel by the wall particles leading to a large velocity slip.

If we increase the repulsion force of the wall particles, keeping the wall density the

same as fluid density, we obtain similar results as before as shown in figure 5.4. Again,

density fluctuations and large slip are observed. From these results we conclude, that

to prevent fluid particles from penetrating the walls increasing the wall density of

wall particles or the repulsion force may not be an effective solution.
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Figure 5.4: Left: Velocity profile. Right: Density and temperature profiles. (ρw =
ρf ; aw = 4af ). The walls are simulated by freezing DPD particles.
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Figure 5.5: Left: Velocity profile. Right: Density and temperature profiles. (ρw =
ρf ; aw = af ). The walls are simulated by freezing DPD particles in combination with
bounce-back boundary conditions (shown as shaded rectangles).
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Figure 5.6: Left: Velocity profile. Right: Density and temperature profiles. (ρw =
ρf ; aw = af ). The walls are simulated by freezing DPD particles in combination with
bounce-back boundary conditions. The wall particles are shifted by half inter-particle
distance.

We now return to the first test case above and employ the bounce-back boundary

condition on the surface of the walls, keeping the density and the conservative force

of the wall particles the same as of fluid particles. From the results shown in figure

5.5, we can see that the fluid density is low close to the wall. This is due to the

excessive repulsion of fluid particles away from the walls. One way to fix this problem

is to shift the wall particles away from the fluid-solid interface. The question is how

to choose the shift distance? A straightforward approach is to shift the wall particles

by half inter-particle distance, which is 1
2
ρ
−1/3
f . The results from such simulations are

shown in figure 5.6. The density fluctuations are less pronounced than in previous

cases while the level of the density in the middle of the channel is close to the desired

level. The velocity profile has improved, although some slip is still present. When

we fix the density profile by shifting wall particles, we also reduce the dissipative

force (or friction) between the fluid particles and the walls; the latter depends on the

distance between particles. Bounce-back boundary conditions compensate for this

effect, however, this correction may not always be sufficient and may lead to some

small slip, as we can see from the results of figure 5.6.
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5.4 Particle Boundary Conditions

Figure 5.7: Sketch of an imaginary plane on which we compute the force exerted by
the wall particles.

In this section we propose a procedure to apply no-slip boundary conditions build-

ing on what we presented in the previous section. Let us consider the wall, which

is created by freezing layers of DPD particles, see figure 5.7. The particles are dis-

tributed on a regular lattice with distance ρ
−1/3
w . We know the structure of the wall

and the conservative force, so we can calculate the force exerted by the wall particles.

Specifically, to compute the average force per unit area due to wall particles we used

30× 30 = 900 points. They were uniformly distributed over a square patch with size

ρ
−1/3
w that was placed within a specified distance from the wall. The average force

was taken to be the arithmetic average of the force at these 900 points. The plot of

this force per unit area against the distance from the wall is shown in figure 5.8.

We note here that this force is proportional to the effective wall-fluid particle

conservative force parameter, ae =
√

awaf . Next, we compute the total force per

unit area exerted by the wall particles for different values of the wall density; the

total force is the area under the curve in figure 5.8. Subsequently, we fit a second-

order polynomial using the computed values to obtain an analytic approximation

for the total force in the range of densities from ρw = 3 to 25, and the results are

shown in figure 5.9. We have set the coefficient ae to 1.0 in these computations. The
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Figure 5.8: Force exerted by wall particles per unit area against the distance from
the wall.

approximation we obtained for the total force is

Fw = ae(0.0303ρ2
w + 0.5617ρw − 0.8536), (5.1)

where ρw is the wall density. This approximation is valid only for wall density ρw

variations between 3 and 25. For other values of the wall density or different wall

structure (e.g., fcc lattice) we can employ a similar procedure to obtain the total force

Fw.

We now consider the fluid in the cubic domain and ignore for the moment the

presence of the walls. If we place an imaginary plane on the surface of the simulation

domain the force exerted by fluid per unit area in this plane will be equal to the

pressure of the fluid, which can be estimated by the expression, see [24],

P = ρfkBT + 0.1afρ
2
f . (5.2)

If we move this imaginary plane away from the wall, the force decreases and at one

cut-off distance Rc from the wall it is zero. Our objective now is to adjust the wall

particle repulsion force coefficient, aw – and as a result the effective conservative force

coefficient, ae – in such a way, that if we place a particle within one cut-off distance
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Figure 5.9: Computed total force from the wall - circles; second-order polynomial fit
- solid line. The effective repulsive force coefficient ae is set to 1.0 here.

from the wall, the average force acting from the wall will be equal to the force from

the fluid. We can parameterize the total force per unit area from the fluid as αwP . A

value of αw that gives good results in simulations for DPD fluid densities considered

in this chapter is 0.39. Specifically, for αw = 0.39, the computed fluid density level

in the middle of the channel is within 1% from desired value. For fluid densities not

considered in this chapter, αw may be adjusted appropriately.

In summary, the final result is that we can estimate the value of the conservative

force coefficient of wall particles from

aw =
a2

e

af

, (5.3)

where

ae =
0.39(ρfkBT + 0.1afρ

2
f )

(0.0303ρ2
w + 0.5617ρw − 0.8536)

. (5.4)

In the following, we will present several prototype flow examples in order to eval-

uate the proposed boundary conditions.
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Figure 5.10: Left: Velocity profile. Right: Density and temperature profiles. The
walls are simulated by freezing DPD particles in combination with bounce-back
boundary conditions. The conservative force of the wall particles is computed as
described in the text. (ρw = ρf = 3; aw = 3.2447).

5.4.1 Poiseuille flow

The first test case is Poiseuille flow, as in the previous section, with the density of

the fluid and the wall density equal to 3. We use bounce-back boundary conditions

on the surface of the wall. The conservative force of the wall particles is adjusted as

described above, see equation (5.3), and it is equal to aw = 3.2447. As we can see

in figure 5.10, we have some residual density variations at the ends of the channel,

however in the middle of the channel the density has the desired level. In addition,

we satisfy the no-slip conditions. Similar cases for density equal to 6 and 9 are shown

in figure 5.11 and figure 5.12, where the wall particle conservative force coefficients

are equal to 2.4320 and 2.4111, respectively.

We have also verified the DPD code by repeating case A (Poiseuille flow of simple

DPD fluid) considered in [19]. The simulation parameters are the same as in the

original paper except the implementation of no-slip boundary conditions. We use two

layers of freezed DPD particles inside each wall region, in combination with bounce-

back reflection. The conservative force coefficient for wall particles is computed as

described above and is equal to 2.6588. The results of simulations are in a very good
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Figure 5.11: Poiseuille flow. Left: Velocity profile. Right: Density and temperature
profiles. The walls are simulated by freezing DPD particles in combination with
bounce-back boundary conditions. The conservative force of the wall particles is
computed as described in the text. (ρw = ρf = 6; aw = 2.4320).
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Figure 5.12: Poiseuille flow. Left: Velocity profile. Right: Density and temperature
profiles. The walls are simulated by freezing DPD particles in combination with
bounce-back boundary conditions. The conservative force of the wall particles is
computed as described in the text. (ρw = ρf = 9; aw = 2.4111).
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Figure 5.13: Stokes oscillating plate problem. The fluid domain is a cube, periodic
in two directions. The walls are simulated by freezing DPD particles, in combination
with bounce-back boundary conditions. The lower wall is oscillating.

agreement with [19]. In particular, the computed fluid velocity in the middle of the

channel is 8.633 in comparison to the value 8.639 predicted in [19].

5.4.2 Unsteady Stokes flow

Next we consider an unsteady case, namely Stokes flow over an oscillating flat plate,

for which an analytic solution exists, see [51]. The fluid domain is a cube with size

10, while periodicity is imposed along two directions, see figure 5.13. The lower

wall is oscillating with velocity Ux = sin(Ωxt), where Ωx = π/20. The density of

the DPD fluid is ρf = 10, and the temperature is set to kBT = 1/3. The random

and dissipative force coefficients, σR and γ, are 1.73205 and 4.5, respectively. The

conservative force coefficient of fluid particles, af , is set to 3. The dynamic viscosity of

the fluid was determined from the plane Couette flow simulations with Lees-Edwards

boundary conditions and is equal to 2.19. The walls are modeled as three layers of

DPD particles which move with prescribed velocity Ux, in combination with bounce-

back boundary conditions. Specifically the bounce-back rule is now implemented in a

reference frame where the wall is stationary. The conservative force for wall particles

is computed as described earlier, see equation (5.3); we obtained aw = 0.9275. The

domain was subdivided into 20 bins in the x− and y−directions, and data were
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collected at 16 points during the periodic cycle by phase-averaging over the last 5

time steps over 50 periods. The fluid velocity profiles at 16 instances during one full
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Figure 5.14: Unsteady Stokes flow. Shown are flow velocity profiles at 16 instances
during the period. Left: Time t = 2kπ/8, k = 0, .., 7. Right: t = (2k + 1)π/8,
k = 0, .., 7. DPD simulations – triangles; exact solution – line.

period plotted against the normalized distance from the oscillating wall are shown

in figure 5.14. The normalized distance is defined as Y = y(ν/Ωx)
−1/2, where ν is

kinematic viscosity of the fluid. The analytic solution is shown with solid line, while

the DPD results are shown with triangles. The results of DPD simulations are in a

good agreement with the analytic solution. We note here that the results are very

sensitive to the boundary conditions. In the presence of slip at the oscillating wall,

the lower points on the sides of the plot will not match the analytic solution.

5.4.3 Finite Reynolds number lid-driven cavity flow

Next we consider flow in a lid-driven cavity at finite values of Reynolds number

and we compare results with high-order accurate Navier-Stokes solutions. The DPD

simulation parameters are similar to the previously described case. Here, the lower

wall is moving with a constant velocity, Ux = 0.5475, see figure 5.15, and the Reynolds

number is 25. The simulation results are averaged over 200,000 time steps. We

compare DPD results with spectral element simulation results based on the solver

NEKTAR [35]. Specifically, the 2D spectral element simulations were performed in a
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Figure 5.15: Lid-driven cavity flow. The fluid domain is a cube, periodic in one
direction. The walls are simulated by freezing DPD particles in combination with
bounce-back boundary conditions. The lower wall is moving with constant velocity.

square domain. The size of the domain is 1×1; it is discretized into 900 quadrilateral

spectral elements with fourth-order polynomial expansion employed in each element.

On one wall, a constant velocity is prescribed, Ux = 1.0 while no-slip boundary

conditions are used on other walls. The Reynolds number is set to 25.
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Figure 5.16: Lid-driven cavity flow. Velocity vector field comparison. On the left,
results from spectral element simulations; on the right, results from DPD simulations.
The coordinates are normalized by the domain size, velocity by Ux.

In figure 5.16, we present the computed velocity vector fields for spectral element

and DPD simulations. We have good agreement between the two simulations. We
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extract two velocity profiles, vertical and horizontal cuts through the center of the

domain, and present a more detailed comparison of simulation results in figure 5.17.

On the left, the velocity magnitudes along the vertical cut and on the right along the

horizontal cut are shown. The spectral element simulation results are shown with

lines, DPD results are shown with triangles. Again, we have very good agreement.
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Figure 5.17: Lid-driven cavity flow. Velocity profiles extracted along the vertical and
horizontal lines. The coordinates are normalized by the domain size, velocity by Ux.

5.5 Summary

In this chapter we have introduced a new approach to impose the no-slip boundary

condition for simple- and complex-geometry flows. The main result is summarized in

equations (5.3) and (5.4) that present formulae for the wall conservative parameter

and the effective wall-fluid particle conservative parameter. The specific formulae

given are for a fluid with density ρf in the range between 3 and 25, which covers

values most often used in DPD simulations. For other densities a similar procedure,

as the one we outlined here, can be developed to obtain an effective wall-particle

interaction force. The presence of some density fluctuations in narrow regions very

close to the boundaries is caused by the conservative forces. To the best of our

knowledge, all previously published methods for imposing no-slip condition exhibit
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some degree of density fluctuations, even the method of [76] where the velocity profile

extends beyond the surface and into the wall solid boundary. In chapter 8 we will

present another method which completely eliminates density fluctuations.



Chapter 6

Coarse-graining in DPD

6.1 Introduction

DPD is intrinsically a coarse-graining technique, and thus it is interesting to evaluate

the accuracy of DPD simulation results as a function of the number of molecules per

DPD particle. The number of molecules per DPD particle is known as the coarse-

graining parameter and is denoted by Nm, see [24]. As such, the proper comparison

of DPD results should involve a microscopic method, such as molecular dynamics

(MD). The question then is what happens as we coarse-grain the DPD model, i.e.,

at values of Nm > 1, and what is an upper limit value for acceptable accuracy, for

confined systems, i.e., flow systems with solid boundaries.

Unlike an MD simulation where the choice of potential is based on a theoretical

model of the physical system to be simulated, a DPD simulation involves potentials of

a form independent of the physical system. The DPD potentials do, however, include

parameters that need to be properly chosen to provide an accurate approximation

of the system. Also, an MD simulation contains a set of units intimately related to

the theoretical model. Since, with DPD, the potentials are not given by a physical

model, the relation of natural DPD length and time scales to physical units needs to

be established.

In the present chapter, we propose a process of choosing the DPD parameters and

determining the DPD length and time scales for different values of Nm such that the

50
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DPD simulations correspond to an MD simulation of a Lennard-Jones (LJ) liquid.

The link between the molecular (MD) and mesoscale approach (DPD) is established

by determining a thermodynamic property, here the compressibility modulus, from

MD simulations and adjusting the parameters in the DPD model accordingly. This

approach for linking molecular with mesoscopic scales has been proposed by many

researchers, e.g. see [49]. After determining the correct parameters and scales, we

evaluate the accuracy of the DPD method based on results obtained from MD sim-

ulations and Navier-Stokes solutions. The influence of solid boundaries is typically

very strong in DPD simulations, and, to this end, we employ both exact boundary

conditions, e.g. the Lees-Edwards boundary conditions [38], as well as boundary con-

ditions developed in chapter 5. The two prototype cases we consider are the plane

Poiseuille flow and flow around a periodic array of square cylinders. For the former we

also use the analytical Navier-Stokes solution for comparison while for the latter we

employ spectral/hp element discretizations [35] to obtain highly accurate numerical

solutions.

In the next section, we provide a brief overview of the basic MD formulation

establishing notation and corresponding units. We then present equilibrium and non-

equilibrium simulations to obtain the shear viscosity, which we use in MD and DPD

simulations of simple- and complex-geometry domains.

6.2 MD Basics and Units

In our MD simulations, a system of N particles interact via the pairwise Lennard-

Jones potential

uij(rij) = 4ε
[( σ

rij

)12

−
( σ

rij

)6]
. (6.1)

Therefore, the force on particle i is given by

~Fi =
∑

j 6=i

~∇rij
uij(rij), (6.2)

where rij is the distance between particle centers, and ~rij = ~ri − ~rj.
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Once the force on each particle has been determined, the motion of each particle

is computed by integrating Newton’s second law. In our case, either the fifth-order

Gear predictor-corrector or the Verlet algorithm [2] performed the time integration.

In most of our simulations, we use a modified Lennard-Jones potential

u∗ij =





uij(rij)− uij(rcut), rij < rcut

0, rij ≥ rcut

(6.3)

to reduce the computation time. The modified potential allows for the use of a linked

list which further reduces the computational cost.

In the non-equilibrium simulations, it is important to control the temperature of

the system as we do work on it. For this purpose, we chose to use the extended system

Nosé-Hoover thermostat, see [21]. Essentially, this thermostat works by extending

the Hamiltonian system to include another variable which moves in accordance with

its own potential and scales the velocities of the particles to attain the specified

temperature.

In a typical MD simulation of an LJ fluid, the variables and parameters are in

terms of reduced units. This set of units is closely linked with the LJ potential,

whereby σ is the unit of length, m is the unit of mass, and ε is unit of energy. From

here, we can define the unit of time, τ = (mσ2/ε)
1
2 . Further combinations of these

parameters provide the reduced units of other variables, see Appendix B of Ref. [2].

6.3 The Lennard-Jones Fluid for DPD Simulations

In the previous section we provided a brief introduction to the components of MD

simulations. The LJ reduced units of mass, length, and time were presented. In this

section, we provide a detailed description of our proposed strategy for determining

the DPD parameters and length scale as they correspond to the simulation of a LJ

fluid. This method also includes instructions on determining the DPD time scale,

which we refer to as τDPD, and the mass of a DPD particle, M . With these relations,

we can then simulate a LJ liquid using DPD with different levels of coarse-graining
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Nm.

Our procedure is as follows:

a. Based on the definition of Nm, we determine

M = mNm. (6.4)

b. We relate Rc to σ by equating the mass density of the DPD system with that

of the MD system.

c. To find the conservative force coefficient, a, we equate the isothermal compress-

ibility of the DPD system with that of the MD system.

d. The values of γ and σR are chosen based on the temperature of the DPD system,

simulation time step and integration scheme. In addition, γ and σR must also

satisfy equation (4.6).

e. By insisting the DPD kinematic viscosity is equal to the MD kinematic viscosity,

we extract the DPD time scale, τDPD.

The method outlined above ensures the mass density, viscosity, and the compress-

ibility of the DPD simulation are the same as those of the MD system. Specifically,

this means the linear responses of the pressure to density changes and shear stress

to shear rate are the same for both systems. Therefore, this method is suitable for

regimes where the flow remains Newtonian and is nearly incompressible. With the

isothermal compressibility being both a function of density and temperature, the

above method only provides the local DPD parameters and unit scales with respect

to the point of interest on the phase diagram. Therefore, if one wishes to conduct

simulations at two different phase points, the calibration must be performed twice.

Since the current DPD version performs only isothermal simulations, the temper-

ature of the system, [kBT ]DPD, is an input. Usually, [kBT ]DPD = 1, but one is not

limited to this choice. For example, thoughout this study, we choose [kBT ]DPD = 0.1.

The choice of DPD temperature manifests itself in the resulting DPD timescale.



54

6.3.1 The DPD Cut-off Radius

In addition to finding the working parameters for DPD, we need to relate the length

scale of DPD, Rc, to σ. This is done by matching the mass densities of the two

systems. We denote the dimensional MD number density as ρMD which has units of

σ−3. The DPD number density is denoted by ρDPD and has units of R−3
c . Therefore,

the MD and DPD mass densities are mρMD and MρDPD respectively. In order to

equate the two, we must write the DPD expression for mass density in term of reduced

units. Explicitly, the DPD mass density is Nmmρ∗DPD(σ/Rc)
3 where ρ∗DPD has the

same numerical value as ρDPD but units of σ−3. After equating the MD and DPD

expressions, we obtain

Rc =

(
Nmρ∗DPD

ρMD

) 1
3

σ. (6.5)

In all the cases considered ρMD = 0.8σ−3 and ρDPD = 3.0R−3
c . The choice of ρDPD

is somewhat arbitrary provided ρDPD > 2.0R−3
c , see [24].

6.3.2 The Conservative Force Coefficient
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Figure 6.1: Pressure versus density obtained from MD simulations for different values
of density in order to determine the compressibility of the LJ fluid at T = 1.2ε/kB.
Here, we find for ρMD = 0.8σ−3, κ−1 = 15.38.

To find the value of a = aij in equation 4.4, we follow the process laid out by
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Groot & Warren [24] and Groot & Rabone [23], that is, we match the compressibility

of the DPD system with that of the MD system. In [24], the authors, through a series

of equilibrium simulations with different values of a and ρDPD, showed that for suffi-

ciently large number densities, the DPD equation of state, to a good approximation,

is given by

P = ρDPDkBT + αaρ2
DPD

where α was determined to be 0.101± 0.001. By definition, the isothermal compress-

ibility is κ−1 = 1/kBT (∂p/∂n)T where n is the number density of actual particles

which, in units of R−3
c , is n = NmρDPD. Following [23], we find

κ−1 =
1

kBT

(
∂p

∂ρDPD

)

T

(
∂ρDPD

∂n

)
=

1

Nm

(
1 + 2α

aρDPD

kBT

)
.

The above equation provides the necessary relationship between the mesoscopic

model parameter and the compressibility system. Therefore, with κ−1 determined by

the MD system, the proper value of the conservative force coefficient can be found

from

a = kBT
κ−1Nm − 1

2αρDPD

. (6.6)

To obtain κ−1, we conduct equilibrium isothermal MD simulations where the pres-

sure is computed over a range of densities. The pressure can be found by one of two

equivalent ways. First, it can be taken as the average of the three diagonal compo-

nents of the stress tensor as given by (6.9). Second, the pressure can be computed

via the internal virial

P =

〈
ρkBT +

1

6

N∑
i=1

N∑

j=1,j 6=i

~rij · ~fij

〉

In an MD simulation, the pressure is affected by the cut-off radius of the modified LJ

potential. We can correct the pressure by using (see [21])

Pcor = P +
16

3
πρ2

[2

3

( 1

rcut

)9

−
( 1

rcut

)3]
.
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Nm = 1 Nm = 2 Nm = 3 Nm = 4 Nm = 5
a/kBT 23.96 49.58 75.21 100.84 126.47

Table 6.1: Values of the conservative coefficient a in DPD units for different levels of
the coarse-graining parameter Nm.

The value of κ−1 was found by running equilibrium simulations with N = 2916

and rcut = 2.5σ at T = 1.2ε/kB. The pressure was computed for ρMD = 0.75σ−3

to ρMD = 0.84σ−3. In each instance, the Verlet algorithm was used to advance each

system to t = 200τ with ∆t = 0.005τ . The pressure of the system, was recorded

every timestep after t = 10τ and averaged over the 190τ period. The plot of the

determined pressure versus density is shown in figure 6.1. The data points are fitted

with a quadratic function. By taking the derivative of this function and dividing by

the temperature, we find κ−1 = 15.38 for ρMD = 0.8σ−3. Table 6.1 lists the values of

the conservative coefficient a given by (6.6) using this value of κ−1.

6.3.3 The Random and Dissipative Force Coefficients

The random force coefficient, σR, and the dissipative force coefficient, γ, are chosen

to yield an efficient and numerically stable DPD simulation that satisfies (4.6). As

the random force increases, the speed at which the system reacts to temperature

variations increases [24]. This leads to efficient temperature equilibration. There is,

however, an upper limit to one’s choice of σR. This upper limit is based on the time

integration scheme, time step and temperature. In our DPD simulations, the time

integration scheme was the modified velocity Verlet method with parameter λ = 0.5

[24], the time step was ∆t = 0.02τDPD and the temperature was [kBT ]DPD = 0.1.

Figure 6.2 shows the normalized equilibrium temperature deviation as function of

σR for these simulation parameters. The results show that temperature deviation

grows rapidly if σR is greater than 4.4
√

MεDPD/τDPD. For even higher values, the

simulation is unstable. Therefore, to have an efficient and stable simulation, we choose

σR = 3.0
√

MεDPD/τDPD. With this value of σR, we must have γ = 45.0M/τDPD to
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Figure 6.2: Temperature of DPD system as a function of the random force parameter
σR. (∆t = 0.02τDPD; [kBT ]DPD = 0.1)

satisfy (4.6).

6.3.4 The DPD Time Scale

Just as in the case of the length scale, we must relate the time scale of DPD with that

of MD. In this case, it is not so clear how the two are related. In [23] the authors use

the diffusion constant of the DPD simulation and matched it to that of the molecule

of interest to determine their time scale. They, however, were concerned with the

diffusion of water through a membrane. In our cases where we apply shear to the

fluid, our time scales are related through the diffusion of vorticity, i.e. the kinematic

viscosities. As such, we determine our DPD time scale by matching the kinematic

viscosities of our systems. We denote the MD kinematic viscosity as νMD which has

units σ2/τ . For DPD, the kinematic viscosity is written as νDPD and has units of

R2
c/τDPD. The DPD viscosity can be rewritten as ν∗DPD (Rc/σ)2 τ/τDPD where ν∗DPD

has the same numerical value as νDPD, but units of σ2/τ . Then, by equating the

viscosities, the DPD time scale is given by
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Nm = 1 Nm = 2 Nm = 3 Nm = 4 Nm = 5
Rc/σ 1.5536 1.9574 2.2407 2.4662 2.6566

τDPD/τ 0.34 0.67 1.04 1.48 2.03

Table 6.2: Values of the DPD time scale τDPD in terms of the MD time scale τ for
different values of the coarse-graining parameter Nm. Here we take [kBT ]DPD = 0.1.

τDPD =
ν∗DPD

νMD

(
Rc

σ

)2

τ. (6.7)

The MD and DPD viscosities are determined by conducting equilibrium and

nonequilibrium simulations. The details and results of these simulations are given

in the next section. Equation (6.7) yields the values that are listed in Table 6.2. It

may seem alarming that the resulting timescale for the smaller values of Nm are a

fraction of τ . This, however, is a result of choosing a small value of [kBT ]DPD.

6.4 Numerical Simulations

We first perform simulations to obtain the shear viscosities of the fluid. Once the

viscosities have been determined, we perform simulations of plane Poiseuille flow and

flow past a periodic array of square cylinders.

6.4.1 Equilibrium simulations

We first consider equilibrium simulations to determine the shear viscosities of our MD

and DPD systems. We calculate the shear viscosity using the Green-Kubo relation

µ =
V

kBT

∫ ∞

0

〈σαβ(0)σαβ(t)〉 dt, (6.8)
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Nm = 1 Nm = 2 Nm = 3 Nm = 4 Nm = 5 MD
N 6912 3456 2304 1728 1382 1372

∆t (τ) 0.0068 0.013 0.02 0.030 0.04 0.005
tsim (τ) 340 1340 3120 5920 10150 1000
tst (τ) 68 134 208 296 406 10

Table 6.3: Equilibrium simulations: DPD and MD simulation parameters. All values
are expressed in reduced units even though the results from this simulation determine
the time scales. Note that the DPD simulations were performed on a (20.52σ)3 domain
whereas the MD simulations were performed on a (11.97σ)3 domain.

where σαβ is an off-diagonal component of the stress tensor given by the Irving-

Kirkwood formula

σαβ = − 1

V

( N∑
i=1

mviαviβ +
1

2

N∑

j=1,j 6=i

rijαfijβ

)
. (6.9)

To ensure accurate results for the MD simulation, we did not use a cut-off potential.

It has been shown, however, that using a cut-off potential can also yield accurate

results as long as rcut > 4.5σ [45].

In Table 6.3 we list the simulation parameters and Table 6.5 contains the values

of the viscosities found via the Green-Kubo relation. In all cases the fully periodic

computational domain contained N particles. In reduced units, the DPD and MD

simulations correspond to an LJ fluid with T = 1.2ε/kB and ρ = 0.8σ−3. In the MD

simulation the domain was 11.97σ × 11.97σ × 11.97σ whereas the DPD simulation

domain was 20.52σ × 20.52σ × 20.52σ. The simulations were run to time t = tsim to

determine the viscosity. The data were collected after a transient time period t = tst.

For MD, the Verlet scheme was used for the time integration. We note that for these

equilibrium simulations a much smaller domain was used in MD compared to DPD.

However, in all other simulations presented below the same size domain was involved

in both simulation approaches.
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6.4.2 Lees-Edwards simulations

A plane Couette flow generated by Lees-Edwards boundary conditions [38] provides

a second way of computing the viscosities of the DPD and MD systems. This is

a boundary-free simulation independent of the specific implementation (MD, DPD,

etc.) that is employed to impose the no-slip boundary conditions. The shear is

imposed in the x direction with the velocity gradient in z direction. Therefore, we

can calculate the shear viscosity from the relation:

〈σxz〉 = µ
∂u

∂z
, (6.10)

where σxz is given by equation (6.9).

In Table 6.4 we list the simulation parameters; the resulting values of the shear

viscosity calculated from the non-equilibrium Lees-Edwards simulations are found in

Table 6.5. The agreement with the values obtained through the Green-Kubo relations

is good. The simulations were run with N particles in a fully periodic domain. The

domain for all simulations was 20.52σ × 20.52σ × 20.52σ. Again, T = 1.2ε/kB and

ρ = 0.8σ−3. For the MD simulations, the fifth-order Gear predictor-corrector was the

time integration scheme, and the Nosé-Hoover thermostat kept the temperature at

the desired value. Velocity and stress data was recorded every time step after t = tst

to the end of the simulation when t = tsim and averaged over this period. The z

dimension of the domain was divided into twenty-four bins over which the velocity

and shear stress were averaged.

Now that we have established the shear viscosities of our DPD system for different

values of Nm, we can, as we have explained in the section 6.3, find the appropriate

relation between τDPD and τ for each Nm.

With the time scales established, we turn our attention to non-equilibrium flows

in which we can both confirm the method of choosing DPD parameters and units and

explore the effects of coarse-graining on DPD flow simulations.
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Nm = 1 Nm = 2 Nm = 3 Nm = 4 Nm = 5 MD
N 6912 3456 2304 1728 1382 6912

∆t (τ) 0.0068 0.013 0.02 0.030 0.04 0.005
tsim (τ) 340 1340 3120 5920 10150 1000
tst (τ) 68 134 208 296 406 10

Table 6.4: Lees-Edwards simulations: DPD and MD simulation parameters. All
values are expressed in reduced units even though the results from this simulation
determine the time scales. The same size domain is used in DPD and MD simulations.

Nm = 1 Nm = 2 Nm = 3 Nm = 4 Nm = 5
µ(GK) 1.05 1.31 1.57 1.84 2.16
µ(LE) 1.04 1.31 1.55 1.82 2.15

Table 6.5: Shear viscosity results from the Green-Kubo (GK) and Lees-Edwards
(LE) calculations. The values are expressed in terms of DPD units (M/(RcτDPD).
By the method described in the previous section, these values are constructed to be
identical (in terms of reduced units) to those found in the MD simulation. The Green-
Kubo calculation gave 1.98m/(στ) as the shear viscosity whereas the Lees-Edwards
simulations yielded 1.97m/(στ).
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Figure 6.3: Velocity profiles of the Poiseuille flow simulations. The determined DPD
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reduced units. The line is the fit to the MD data while the open squares are the MD
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legend is the same as in the previous figure.

6.4.3 Poiseuille flow

We aim to compare velocity and stress profiles and examine density fluctuations

in MD and DPD Poiseuille flow simulations of an LJ liquid at T = 1.2ε/kB and

ρ = 0.8σ−3. Based on our derivations of M , Rc and τDPD, the channel sizes and the

imposed pressure gradients in the MD and DPD systems are the same.

With the introduction of bounding surfaces, we adjust our simulations to impose

the no-slip boundary condition. In MD, this is accomplished by adjusting the poten-

tial between the wall particles and the fluid particles. This can be done in two ways.

First, see [69], we can adjust the parameters εwf and σwf in the LJ potential for wall-

fluid particle interactions in addition to adjusting the wall density, ρw. Second, see

[12], we can include an additional parameter 0 ≤ AMD ≤ 1 to multiply the attraction

term in the Lennard-Jones potential. Here, we choose the first method since it has

been shown to produce a constant slip-length as long as the shear rate is sufficiently

small [70]. We find that when our walls are constructed of two (100) layers of an fcc

lattice, σwf = σff , ρw = ρf and εwf = 0.6εff we have no-slip at the wall. For DPD,

the walls are modeled using method developed in chapter 5.

To generate the flow, a force is imposed on each particle. In the MD simulation,
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Nm = 1 Nm = 3 Nm = 5 MD
Nf 8000 2676 1600 8000
Nw 992 440 304 800

∆t (τ) 0.0068 0.02 0.04 0.005
tsim (τ) 340 3120 10150 15000
tst (τ) 68 208 406 200
h (σ) 0.16 0.22 0.27 0.04275

Table 6.6: Poiseuille flow: MD and DPD simulation parameters in reduced units.

this force was chosen to be 0.0085mσ/τ 2. Therefore, in reduced units, the corre-

sponding force per particle for the DPD simulations was Nm times this value. Based

on this imposed force, the viscosity, and the size of our channel, the Reynolds number

of the flow is found to be Re = 4.6.

The simulation parameters are summarized in Table 6.6. The number of fluid

particles is Nf , while the number of wall particles is Nw. The fluid occupies the

region between the two walls. This region has dimensions 34.2σ× 34.2σ× 8.55σ, and

is periodic in the x and z directions. The fluid domain is subdivided in y direction into

slices of height h where the velocity, density and stress data are collected. The fifth-

order Gear predictor-corrector integration scheme with the Nosé-Hoover thermostat

is employed in the MD simulation. The simulations were run to t = tsim with timestep

∆t and data were averaged over all steps after time t = tst.

In figure 6.3 we plot the resulting streamwise velocity profiles from both MD and

DPD simulations – the results are in reduced units. Three values of coarse-graining

are included in the plot corresponding to Nm = 1, 3 and 5. In figure 6.4 we plot the

corresponding shear stress obtained from the two types of simulations. We observe a

good agreement between the different simulations both in the velocity profile as well

as in the shear stress distribution for Nm = 1, 3 but large deviations for Nm = 5.

Figure 6.5 shows the density profile across the channel. We observe that the density

fluctuations for MD and DPD simulations corresponding to Nm = 1 are similar, with

the main difference being the large value of the DPD density at the wall. However,

as the value of Nm increases the density fluctuations in the DPD simulations also



65

Nm = 1 Nm = 3 MD
Nf 7500 2504 7500
Nw 512 216 500

∆t (τ) 0.0068 0.02 0.005
tsim (τ) 6800 20800 14000
tst (τ) 340 1040 250
h (σ) 0.16 0.22 0.855

Table 6.7: Flow past array of square cylinders: simulation parameters for DPD with
Nm = 1, 3 and MD in MD units.

increase, with the Nm = 5 case exhibiting very large values at the wall and also inside

the flow domain. These large density fluctuations associated with Nm = 5 lead to

the incorrect velocity profile shown in figure 6.3. There are regions of low density

which may be as wide as 1.5σ. In these regions the dissipative force is not effective

and we obtain high velocity gradients. It demonstrates that the employed particle-

based boundary conditions are not as robust for high values of the conservative force

parameter. We note that this value increases when we increase Nm, see Table 6.1.

6.4.4 Flow past an array of square cylinders

Next we consider flow past a periodic array of square elements and perform MD,

DPD and Navier-Stokes simulations based on spectral/hp element discretization that

provides high-order accuracy [35]. The boundary conditions are similar to those

employed in the Poiseuille flow (i.e., no-slip on the elements and periodicity on all

outer boundaries), and the force on each particle is the same in both magnitude and

direction.

For the simulation of this flow, Nf , Nw and other parameters are listed in Table

6.7. The square cylinder has dimensions 8.55σ × 8.55σ × 8.55σ and is immersed in

a fully periodic domain with dimensions 34.2σ × 34.2σ × 8.55σ, see figure 6.6. The

origin of the reference frame is set as shown in figure 6.6, and the flow is along the x

direction. The x and y dimensions were divided into bins of size h×h (see Table 6.7)

over which the data were collected. The simulation was run to time t = tsim with
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Figure 6.6: The geometry of computational domain for flow past array of square
cylinders. The dimensions are in MD units. The thick dash lines are the locations
where comparisons are performed.

timestep ∆t and data were collected after t = tst.

For the spectral/hp element simulation, the computations are done in two dimen-

sions using MD units. The kinematic viscosity of fluid is set to 2.475σ2/τ and the

external force is 0.0085mσ/τ 2. The incompressible two-dimensional Navier-Stokes

equations are solved using the spectral/hp element solver Nektar [35]. The domain is

discretized into 1500 spectral elements of fourth-order polynomial expansion in each

element. The simulation is run until steady state is reached.

First, we compare the DPD results corresponding to different values of the coarse-

graining parameter Nm against the results obtained from the MD simulations. In

figure 6.7, we plot the streamwise and cross-flow velocity components at the center-

plane of the domain, and in figure 6.8 we present similar profiles at another location.

Also, in figures 6.9 and 6.10, we plot the corresponding stresses along the y direction.

The agreement is good with some small scattering apparent in the stress profiles.

We now do similar comparisons of DPD results against the Navier-Stokes solutions
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Figure 6.11: DPD versus Navier-Stokes: Plots of the u(streamwise velocity) and
v(cross-flow velocity) profiles at the center of the square cylinder (x = 17.1σ) as
given by the DPD and spectral/hp element simulations.
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Figure 6.12: DPD versus Navier-Stokes: Plots of the u(streamwise velocity) and
v(cross-flow velocity) profiles at x = 8.55σ.
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Figure 6.13: DPD versus Navier-Stokes: Plots of the σxy profiles at the center of the
square cylinder (x = 17.1σ) as given by the DPD and spectral/hp element simulations.
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obtained using spectral/hp element discretizations. In figures 6.11 and 6.12 we plot

velocity profiles, and in figures 6.13 and 6.14 we plot the stress profiles.

6.5 Summary

We have shown that for Nm < 5 for the channel and for Nm < 3 for the cylinder array

good agreement is established between DPD and MD (and Navier-Stokes) simulations

of continuum, no-slip flows in domains approximately 40σ wide. It is important to

note that in addition to the flow quantities, we have, by construction, simulated fluids

with the same thermodynamic property, i.e., the same dimensionless compressibility.

Furthermore, by matching the densities and the viscosities of the MD and DPD

systems, we obtained the appropriate length and time scales for a given degree of

coarse-graining represent by Nm. The validity of these choices is illustrated by the

agreement of the scaled DPD data with the MD data, and the Navier-Stokes solutions.

The relatively low upper value of the coarse-graining parameter Nm is somewhat

surprising. Moreover, it is intriguing that as the coarse-graining parameter is in-

creased larger density fluctuations occur inside the domain. We will address these

issues in the following two chapters.



Chapter 7

Limits of Coarse-graining in DPD

7.1 Introduction

Coarse-graining of dense liquid-state systems can potentially lead to fast simulation

times, thus providing an effective bridge between atomistic and continuum descrip-

tions. In this chapter we analyze some of the fundamental modeling ideas of DPD

and identify three factors that limit its application at high coarse-graining levels:

inter-particle force magnitude, compressibility, and geometric confinement.

7.2 DPD Coarse-Graining Procedure

We will apply coarse-graining to a Lennard-Jones (LJ) fluid of density ρMD = 0.8σ−3

in a domain 34.2σ × 8.55σ × 34.2σ in x-y-z, where σ is the atomic diameter. The

viscosity of the LJ fluid was obtained via non-equilibrium MD simulations using Lees-

Edwards boundary conditions and is equal to 1.97m/(στ), where m and τ are MD

units of mass and time, correspondingly. The dimensionless compressibility κ−1 =

15.36 was found by conducting equilibrium isothermal MD simulations, where the

pressure was computed over a range of densities; for details we refer to chapter 6.

In standard DPD method described in section 4.2 the pair of dissipative and

random forces constitutes the DPD local thermostat. We will refer to this method as

the DPD-Verlet version as we will employ a modified Verlet algorithm to integrate the

72
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Figure 7.1: Dynamic viscosity (DPD units) of the DPD fluid as a function of Nm.
The dashed line in the DPD-Verlet fluid (circles) is a second-order polynomial fit.
The right vertical axis corresponds to the Verlet viscosity only.

stochastic equations of motion [24]. An alternative DPD method that employs the

Andersen thermostat, instead of the aforementioned pair of forces, has been proposed

by Lowe [41]. This method achieves realistic values of the Schmidt number and

is less sensitive to the size of the integration time step. Thermal equilibrium is

achieved probabilistically by drawing relative velocities from a Maxwell distribution,

just like in molecular dynamics (MD) simulations, but for pairs of particles within Rc

instead of individual particles as in MD. The probability is 0 ≤ Γ∆t ≤ 1, where Γ

is the thermalization parameter with large values corresponding to thermalization of

almost all particles. In general, the DPD-Lowe fluid is very viscous so it is of interest

to investigate both the DPD-Verlet and the DPD-Lowe versions.

We first compute the viscosity of DPD fluid for kBT = 0.1 (σR = 3, γ = 45)

and different values of the coarse-graining parameter Nm based on the Lees-Edwards

method [38]. In figure 7.1 we plot representative values of the dynamic viscosity µ for

both the DPD-Verlet and the DPD-Lowe methods. We note that even for small values

of the thermalization parameter Γ the DPD-Lowe fluid is more viscous than the DPD-

Verlet fluid. In the latter case for Nm ≤ 10 the viscosity increases approximately as

N2
m.

In the coarse-graining procedure we keep the DPD density constant as we need
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Nm 1 5 9 13 17
L 22.01 12.87 10.58 9.36 8.56

Table 7.1: Size of the domain in DPD units at different coarsening levels.

to have ρDPD ≥ 3R−3
c in order to have a liquid phase [24]; hence, the volume of the

domain has to decrease accordingly as we increase Nm. In table 7.1 we present the

domain size for different values of Nm.

7.3 Open DPD Systems

We first investigate the effect of coarse-graining by performing DPD-Verlet simu-

lations in a fully periodic domain of size (10Rc)
3 containing 3, 000 particles. The

temperature of the fluid is set to kBT = 0.1 and the DPD force parameters are

σR = 3 and γ = 45. Equation (6.6) is used to calculate the conservative force param-

eter a. The modified velocity Verlet method (with λ = 0.5) [24] and time step 0.02 is

used to advance the system in time. Initially, all DPD particles are densely packed

occupying only a small fraction of the computational domain. After letting the fluid

to equilibrate for 80, 000 time steps, we record the mean-square displacement (MSD)

for 20, 000 steps.

In three-dimensions and for periodic equilibrium systems, the MSD of atoms is

related to the diffusion coefficient D through the Einstein relation

D = lim
t→∞

〈[~r(t)− ~r(0)]2〉
6t

. (7.1)

Equation (7.1) implies that for large times the mean-square displacement grows lin-

early. The diffusion coefficient is obtained by calculating the slope of MSD versus

time in the asymptotic regime. (For non-equilibrium systems the displacement of the

atoms due to the bulk transport is subtracted.) In figure 7.2 we plot the MSD for the

Nm = 1 and Nm = 100 cases. The former shows the initial quadratic response and the

subsequent linear growth with time, as expected; however, in the latter (Nm = 100)
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Figure 7.2: Mean-square displacements Nm = 1 and Nm = 100 measured in a large
periodic domain. The results are shown in DPD units.

we observe a very different behavior, more characteristic of solid-like structures. In

figure 7.3 we plot the diffusion coefficient D computed for different levels of coarse-

graining of the DPD fluid. The values of D gradually decrease with Nm, and for

Nm = 30 the diffusion coefficient is about 450 times smaller than that for Nm = 1.

For homogeneous substances the structural arrangement of atoms depends only on

the distance r between atoms. The radial distribution function (RDF) is proportional

to the probability of finding two atoms separated by distance r and it is defined by

g(r) =
1

NρDPD

〈
N∑
i

N∑

i6=j

δ[r − rij]〉. (7.2)

Here, N is the total number of atoms, ρDPD is the number density, rij is the

distance between centers of atoms i and j, and the angular brackets represent time-

averaging. In figure 7.4 we present the radial distribution functions for different levels

of coarse graining Nm. In all cases g(r) is computed using equilibrium simulations

with 3, 000 particles in the fully periodic domain of size (10Rc)
3. The simulations were

run for 12, 000 time steps and the RDF was computed during the last 2, 000 steps.

RDF is a helpful indicator of the nature of the phase assumed by the simulated

system [27]. For atoms frozen onto the sites of regular lattice structures, g(r) takes

the form of a sequence of delta distributions (figure 7.5). If atoms are vibrating about
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Figure 7.5: Radial distribution functions computed for perfect lattices.

rather than being fixed to the lattice sites, then the delta distributions in g(r) resolve

into Gaussians; but the positions and relative heights of those Gaussian distributions

still allow determination of the crystalline structure (figure 7.6)[27]. For partially

crystalized substances, g(r) may contain secondary peaks not found in g(r) for a

liquid. Such additional peaks are caused by remnants of the lattice structure and can

be readily seen in figure 7.4 for Nm ≥ 20. Comparing figures 7.4 and 7.6, we note that

the location of the peaks of the RDF for the DPD fluid with large Nm are similar to

those of the fcc lattice, therefore we assume the DPD fluid crystalizes to fcc lattice.

Next we study the effect of coarse-graining on the speed of sound in the DPD fluid

as this will provide an estimate of compressibility in the coarse-grained DPD system.

The isothermal speed of sound is given by

c =

√
kBT +

4πρ

3

∫ ∞

0

|FC(r)|g(r)r3dr (7.3)

and can be obtained from the DPD equation of state [24]

p = ρkBT +
2πρ2

3

∫ ∞

0

|FC(r)|g(r)r3dr, (7.4)
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Figure 7.6: Radial distribution functions computed for randomly perturbed lattices.

where |FC(r)| is the magnitude of the conservative force. The values of the speed of

sound given by equation (7.3) as a function of Nm are plotted in figure 7.7. We note

here that c increases approximately as N
1/2
m .

In summary, in this section we have shown that for the specific periodic system we

have examined there seems to be an artificial solidification taking place for Nm ≥ 20

at kBT = 0.1. It is also in agreement with the findings of [71] where such solidification

was reported for values of the conservative force coefficient a ≥ 250 for temperature

level kBT = 1. Using equation (6.6) we find that the corresponding value of the

coarsening parameter is Nm ≥ 10, which is more conservative than the limit we

established directly here.

7.4 Wall-bounded DPD Systems

We now turn our attention to confined DPD fluid flows. In particular, we will examine

Poiseuille flow with two different models for the effect of the wall: (a) ideal periodic

walls, and (b) solid DPD walls. We will investigate for both cases the effect of the

coarse-graining by examining similar quantities as in the previous section.
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and Mach number Ma as functions of Nm.

In the first boundary condition model, we set-up two adjacent counter-flowing

Poiseuille flows using periodic boundaries [3]. Specifically, a rectangular domain is

doubled in size in the cross-flow z direction and the flow is sustained by applying

a body force (x direction) to each particle; the direction of the force is opposite

in the two halves of the domains. This is schematically shown in figure 7.8. This

periodic Poiseuille flow method (PPFM) produces a flow with uniform density from

wall-to-wall apart from the statistical fluctuations. The absence of density artifacts

makes PPFM useful for studying the bulk Poiseuille flow (in the continuum limit),

i.e., without any density oscillations associated with the presence of solid boundaries.

The second boundary condition we use is the model developed in chapter 5.

We report first results with the ideal walls. We employ the same domain as

described in the section 7.2 and we double it in the z direction while a body force

F = 0.0085mσ/τ 2 is applied in the x direction. The simulations are carried out for

410, 000 time steps using the Verlet algorithm while the flow data are collected over

the last 40, 000 steps by subdividing the z direction into bins of size 0.2Rc. These

results are further averaged over both halves of the domain.

The DPD density, velocity in x direction, shear stress and partial temperatures

are shown in figure 7.9. The agreement with incompressible Navier-Stokes solution

for Poiseuille flow is good for Nm ≤ 5. For Nm = 6 there is a slight deviation of the
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bled in size in the cross-flow z direction and the flow is sustained by applying a body
force (x direction) to each particle; the direction of the force is opposite in the two
halves of the domains.

computed velocity profile from the analytic prediction, as well as an increase of the

temperature inside the domain. For higher Nm, the results differ significantly from

the incompressible Navier-Stokes solution.

To understand these results, we consider the scaling of DPD units of the body force

with Nm using an approximate analysis. Let us ignore, at first, the dependence of the

DPD length scale on the coarse-graining parameter Nm. As noted in section 7.2 the

viscosity of the DPD fluid increases approximately as N2
m. Since the DPD time scale

is roughly proportional to the DPD viscosity, we see that, as a first approximation, the

DPD unit of force scales as N4
m. Assuming the validity of the incompressible Poiseuille

flow solution, we obtain that the velocity umax at the center of the channel scales

approximately as N2
m. Given that the speed of sound is roughly only proportional to

N
1/2
m , we obtain that the Mach number scales as N

3/2
m , thus increasing with Nm. In

figure 7.7 we plot the velocity umax and the Mach number Ma = umax/c computed

without ignoring the dependence of the DPD unit of length Rc on Nm; the computed

results are consistent with the approximate analysis. Specifically, for Nm > 5 the

Mach number is greater than 0.15 and hence compressibility effects start becoming

important.

In order to document this point more accurately we also examine the influence of
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Figure 7.9: Density, velocity, temperature and stress profiles in Poiseuille flow ob-
tained using the periodic boundary condition for different levels of coarse-graining.
The results are shown in MD units.
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Figure 7.10: Density, velocity, temperature and stress profiles in Poiseuille flow ob-
tained in a large (L) and small (S) domains using the periodic boundary condition
for different levels of coarse-graining. The results are shown in MD units.



82

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

z

ρ,
 u

, σ
xz

Periodic

Navier−Stokes

0 17

1

1.1

0 17

1

1.1

Nm = 5

T
y

T
z

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

z

ρ,
 u

, σ
xz

Periodic

Navier−Stokes

0 17

1

1.1

0 17

1

1.1

Nm = 10

T
y

T
z

Figure 7.11: Density, velocity, temperature and stress profiles in Poiseuille flow ob-
tained using the periodic boundary condition for different levels of coarse-graining
with the body force decreased by 90%. The results are shown in MD units.

the domain size in the spanwise y direction which becomes relatively small for high

Nm (see table 7.1). To this end, we first repeat the simulations in a larger domain by

increasing the spanwise dimension by four times, i.e. from 8.55σ to 34.2σ. The results

are essentially the same as in the small domain (see figure 7.10), and therefore we

eliminate the spanwise size of the domain as a reason for the deviation of simulation

results for large Nm from the incompressible Poiseuille flow solution. Next, we repeat

the simulations with the body force decreased by 90%, i.e., F = 0.00085mσ/τ 2. In

this case the predicted Mach number is less than 0.15 (up to Nm ≤ 20) and the

simulation results (figure 7.11) are in agreement with the incompressible Poiseuille

flow for Nm ≤ 10, that is, we almost double the limit above which deviations occur

by suppressing compressibility effects. This illustrates one of the limits of the coarse-

graining procedure: due to the specific scaling of the DPD units for large values of

Nm the Mach number may become large and, hence, compressibility effects cause

deviations from the incompressible continuum solutions.

We further coarse-grain the system keeping the body force small so that the Mach

number is kept less than 0.15 in the considered range of Nm values. For Nm > 10, in

both the small and enlarged domains, large increases in temperature and relatively

small deviations from the parabolic velocity profile are observed (figure 7.12). These

effects are likely caused by partial solidification of the DPD system even though
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Figure 7.12: Periodic Poiseuille method, large(L) vs small(S) domain. Density, ve-
locity, temperature and stress.

the diffusion coefficient remains approximately constant as a result of shearing (see

figure 7.13) in contrast to the open system; no specific crystal structure is observed

as we coarse-grain the system for Nm ≤ 20.

As we have already seen for open systems, the DPD fluid solidifies at high levels of

coarse-graining as a result of relatively large magnitude of the conservative force. In

addition, the DPD unit of length Rc is proportional to N
1/3
m , i.e., it increases with Nm.

Correspondingly, the size of the computational domain in DPD units decreases, as

shown in table 7.1, in order to maintain constant density. Such a geometric constraint

may affect the results when shear is imposed through the aforementioned PPFM

approach or by explicitly imposing the wall no-slip condition. In the absence of

the body force, i.e. in equilibrium simulations in the small periodic domain, the

system behavior also changes with Nm. In figure 7.13 we plot the computed diffusion

coefficient D for Nm ≤ 20. There is a sudden drop of D at Nm = 20 due to formation

of a crystal structure inside the domain. The crystal structure shown in figure 7.14

formed after a long-term time-integration, i.e., approximately 200, 000 simulation

steps. A lattice is clearly present, however, it is difficult to distinguish between

possible packing structures from simply visualizing the locations of the DPD particles

inside the domain. It is possible, however, to compute the radial distribution function

of the crystalized system. The resulting g(r) shown in figure 7.15 suggests the presence

of a sc lattice in contrast with our initial assumption about the lattice structure in
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Figure 7.13: Diffusion coefficient (DPD units) for different Nm measured in a small
domain with periodic walls and with solid walls in Poiseuille flow. For comparison
the diffusion coefficient at zero flow (equilibrium) is also shown.

section 7.3. This is probably caused by the layering of the DPD particles imposed by

the geometry as only three layers of particles fit across the domain in the y direction.

In general, the calculated values of RDF are reliable only for distances less than half

size of the domain, which in this case is about 1.01Rc.

Now we report results based on DPD simulations with the second type of boundary

conditions, i.e. the solid walls, which tend to induce density fluctuations close to

the wall. These fluctuations become larger when the conservative force parameter

a increases as we coarse-grain the system. In chapter 6 it was found that density

fluctuations can affect the simulation results for Nm as low as 5. The solid-wall

induced layering of DPD particles close to the walls is observed as we coarse-grain the

system starting from low levels of Nm. This facilitates the structuring of the DPD fluid

and in equilibrium simulations, similar to the aforementioned ones, crystallization

occurs at Nm = 18. The dependence of the diffusion coefficient D on Nm is presented

in figure 7.13; we observe a sudden drop in D at Nm = 18 for this case.
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Figure 7.14: Crystal structure formed in a small domain for Nm = 20.
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Figure 7.15: RDF for crystal structure formed in a small domain for Nm = 20.
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Figure 7.16: Radial distribution functions for Nm = 20 computed in a large periodic
domain with different values of σR.

7.5 Effect of Thermostats

So far we have examined effects of coarse-graining due to the conservative coefficient,

the Mach number and the geometric confinement. Next, we discuss how these results

change if the basic DPD thermostat, consisting of the pair of dissipative and random

forces, changes. We also obtain results with the alternative DPD-Lowe method.

First, we investigate the effects of random force coefficient σR on the DPD coarse-

graining limits. To this end, we perform equilibrium simulations in a fully periodic

domain of size (10Rc)
3 with Nm = 20 and σR = 3, 5, 7. (For σR = 5 and 7 the timestep

is decreased from 0.02 to 0.01 and 0.005 respectively, to achieve stable simulations

with temperature kBT = 0.1.) In figure 7.16 we show the radial distribution functions

for the simulated cases. The computed RDFs are almost identical, thus the choice

of σR does not seem to affect the structure of the DPD fluid. Similarly, the speed of

sound remains constant as σR varies; also the volume of the domain, and thus the

geometric confinement, is independent of σR.

In order to also consider the effect of temperature on the DPD fluid structure,
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Figure 7.17: Radial distribution functions for Nm = 20 computed in a large periodic
domain with different values of kBT .

we performed simulations at different temperature levels in the same fully periodic

domain of size (10Rc)
3. A DPD fluid was simulated with Nm = 20. The simulations

were repeated with fixed σR = 3 and γ = 450, 45 and 4.5 with corresponding tem-

perature levels at kBT = 0.01, 0.1 and 1.0, respectively. (In the simulations with

kBT = 0.01 the timestep is decreased to 0.002.) We found that the computed RDFs

(see figure 7.17) are unaffected by the temperature chosen in the considered range.

Finally, we considered the DPD-Lowe [41] method with the alternative Andersen

type thermostat that can be tuned by employing different values of the thermalization

parameter Γ. Equilibrium simulations were carried out in a periodic domain of size

(10Rc)
3 at kBT = 0.1. The time step was set to 0.02 in DPD units and the system

was simulated for 12, 000 time steps with the statistics collected over the last 2, 000

steps. We simulated two extreme cases where the percent of DPD particles being

thermalized at each time step is 1% and 100% for Γ = 0.5 and 50, respectively. Here

too, we observed that the computed RDFs for different levels of coarse-graining are

the same for both values of Γ and are almost identical to those obtained from the

aforementioned DPD-Verlet method simulations (see figure 7.18). This suggests that
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Figure 7.18: Radial distribution functions computed in a large periodic domain for
different Nm. Lowe thermostat, time step ∆t = 0.02. Left: Γ = 0.5. Right: Γ = 50.

the structure of the DPD fluid simulated with the Andersen thermostat is the same

to the one obtained with the standard DPD thermostat. Therefore, we expect both

fluids to solidify at the same level of coarse-graining in equilibrium conditions, which

is indeed the case as we have verified with DPD-Lowe simulations.

There is a significant difference, however, of the DPD-Lowe method with the

standard DPD-Verlet method in non-equilibrium simulations as the former yields

fluids with much larger viscosity. We computed the dynamic viscosity using the

periodic Poiseuille flow method [3] described in section 7.4. Three values of Γ were

used in the simulations, Γ = 0.5, 25 and 50. The calculated values of the dynamic

viscosity for different Nm are plotted in figure 7.1 along with the DPD-Verlet fluid

viscosity.

We note that the dynamic viscosity in all cases is higher than the one in DPD-

Verlet simulations. Therefore, the DPD unit of force is expected to be larger in Lowe

than in Verlet simulations. Consequently, the predicted Mach number for all levels

of coarse-graining of the Poiseuille system are in the supersonic regime for Γ = 25

and 50! Thus, for Γ between 0.5 and 50 compressibility effects are expected to be

significantly more pronounced with the DPD-Lowe thermostat than with the DPD-

Verlet thermostat. Finally, we note that the DPD unit of length does not depend on

the choice of thermostat and therefore the geometric constraints in simulations are

the same for both methods.
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7.6 Summary

We have considered liquid-state systems both in equilibrium and in Poiseuille flow

in order to investigate the fluid states as a function of the coarse-graining parameter

Nm that expresses how many atoms are packed in a DPD particle. So far the ma-

jority of published work has considered Nm = 1 in applications although the original

developers of DPD advocated coarse-grained versions with Nm > 1, see [15, 24, 31].

In the current work we identified fundamental and practical limits of coarse-graining

in DPD due to the following three factors:

• Solidification of the DPD liquid due to the increase in the magnitude of the

conservative force.

• Compressibility effects due to the increase of the Mach number in non-equilibrium

simulations.

• Geometry constraints due to the decrease of size of the computational domain.

The minimum value of Nm set by these limits determines the maximum level of

coarse-graining and it depends on the particular system being simulated. In addition,

we investigated the effects of thermostats and observed that the fluid structure re-

mains basically the same irrespective of the thermostat, i.e. artificial crystallization

is often observed above Nm > 20. We also note that the artifacts reported in the

current chapter are different than the well-known artifacts attributed to large time

steps in the DPD simulations as has been reported in previous works, e.g. see [34].



Chapter 8

Adaptive Boundary Conditions in

DPD

8.1 Introduction

Dissipative Particle Dynamics simulations of wall-bounded flows exhibit density fluc-

tuations that depend strongly on the no-slip boundary condition and increase with

the level of coarse-graining. These fluctuations may be physical and thus desirable

but in other applications may be erroneous. In this chapter we develop an adaptive

model for wall-particle interactions that eliminates such oscillations and can target

prescribed density profiles.

A typical density profile for a Lennard-Jones fluid with κ−1 = 15.36 is shown in

figure 8.1. We simulate Poiseuille flow and details of the DPD and corresponding

MD simulations can be found in chapter 6. The density fluctuations for MD and

DPD corresponding to Nm = 1 are similar, with the main difference being the large

values of the DPD density at the wall. As Nm increases, the density fluctuations in

the DPD simulations also increase, with the Nm = 5 case exhibiting very large values

at the wall and also inside the flow domain. This is not a desired effect, because we

expect the fluctuations to decrease as we approach the continuum, i.e. Nm →∞. We

present next a new model that implements the no-slip boundary condition in DPD

while at the same time can target a prescribed density profile, i.e. flat or oscillatory.

90
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Figure 8.1: Density profiles for Poiseuille flow. The domain extends from one wall to
the centerline of the channel.

8.2 Adaptive Boundary Conditions

Let us consider a wall perpendicular to the z-axis and located at z = 0. The wall is

moving with the velocity ~VW remaining in z = 0 plane. On each particle within spec-

ified distance from the wall we apply a force ~FW directed perpendicular to the wall,

positive in the direction pointing normal into the fluid region. The magnitude of the

force ~FW depends on the distance from the wall and is iteratively re-computed based

on the estimated density fluctuations as described next. We consider a subregion of

the computational domain of width L adjacent to the wall and divide it into bins of

size h (see figure 8.2). In general, L should be greater or equal to the cutoff radius Rc.

The value of h can be chosen based on the desired resolution of the simulation results.

The total number of bins is then Nb = L/h, and we number them in increasing order

away from the wall, so that the bin adjacent to the wall has index ib = 1, and the

furthest bin from the wall has index Nb. During the simulations in each bin ib the

time-averaged density ρs(ib) is collected over a specified number of time-steps Nav.

Next, the values of ρs are locally averaged over (up) to nav bins and compared to

desired density values ρd averaged over the same bins. Specifically, for the bin ib the
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Figure 8.2: Sketch illustrating the concept of adaptive boundary condition (ABC).
The sketch corresponds to the case with parameters nav = 2 and Nb = 5 (defined in
the text). The bins are shown with dashed lines. The bin indices ib are shown in a
lower part of the bins. The desired (uniform in this case) density level ρd is shown
with a dotted line. The DPD density profile ρ is shown with a dash-dotted line. The
time averaged density levels ρs in the bins are shown with thin solid lines. The locally
averaged density levels are shown with thick solid lines. The densities are averaged
over the bins with indices from ia = max(ib − nav + 1, 1) to ib. These indices are
listed in the upper part of the bins. If locally averaged density is higher than desired
density the force from the wall ~FW (ib) is increased (shown with the arrow pointing
away from the wall). If the averaged density is lower, the force is decreased (shown
with the arrow pointing towards the wall).
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densities are averaged over the bins with indices from ia = max(ib − nav + 1, 1) to

ib. The values of ia for different bin indices for specific value of nav = 3 used later

in this chapter are: (ib,ia): (1,1);(2,1);(3,1);(4,2);(5,3); etc. The case with nav = 2

is illustrated in figure 8.2. The force ~FW (ib) acting on the particles in bin ib is then

updated according to

~FW (ib) = ~FW (ib) + CW

(∑ib
i=ia

ρs(i)∑ib
i=ia

ρd(i)
− 1

)
, (8.1)

where CW is a positive constant of order one. After the force is updated, new values

of ρs are computed and the iterative process continues. The wall force ~FW is added

to the particles within distance L from the wall at each time-integration step.

The random and dissipative force contributions from the wall are computed in a

way similar to [76]. We describe the procedure next.

Let us assume that there are NW particles within distance L from the wall. The i-

th particle has coordinates xi, yi, zi and velocity ~vi. The total force acting on particle i

located inside the bin ib is ~Fi = ~FW (ib)+Σj 6=i(~FC
ij + ~FD

ij +∆t−1/2 ~FR
ij ). It is convenient

to introduce a ghost particle g, although it is not necessary to construct it explicitly

in the simulations. The force contribution of the wall boundary conditions at each

time step is expressed using the following pseudo-code.

for particle i = 1, .., NW

find bin ib in which particle i is located

~Fi = ~Fi + ~FW (ib)

create ghost particle g with xg = xi+ξx, yg = yi+ξy, zg = −zi and ~vg = 2~VW−~vi

for particle j = i, .., NW

compute ~FR
jg, ~FD

jg

~Fj = ~Fj + ~FD
jg + ∆t−1/2 ~FR

jg

if i 6= j ~Fi = ~Fi − ~FD
jg −∆t−1/2 ~FR

jg

end

end

Variables ξx and ξy take uniformly random values from the interval [−Rc, Rc].
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Figure 8.3: Comparison of density, velocity, temperature and stress profiles for
Poiseuille flow corresponding to adaptive and periodic boundary conditions (Nm = 5).
The incompressible Navier-Stokes solution is shown with lines.

In addition, when fluid particles penetrate into the wall region we perform a

bounce-back reflection of these particles. Typically, we start the simulations with the

wall force ~FW = 0 in all bins. We let the DPD fluid equilibrate for a short time (about

1000 steps). As a result large density fluctuations form next to the wall. Next, we

apply the adaptive procedure described above. Once the desired density fluctuations

are obtained, we collect statistical data from the simulations. We will refer to this

procedure as adaptive boundary conditions or ABC.

8.3 Simulation Results

To evaluate the performance of the proposed model, we have simulated Poiseuille

flow using both the periodic Poiseuille flow method(PPFM) [3] and adaptive (ABC)

techniques at different levels of coarse-graining Nm ≤ 5. The fluid we consider is

governed by a modified Lennard-Jones potential with density ρMD = 0.8σ−3 and

occupies a volume of 34.2σ×8.55σ×34.2σ; here σ is the atomic diameter in MD. The
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dimensionless compressibility of the fluid is κ−1 = 15.36 (see chapter 6). The DPD

fluid density ρDPD is chosen to be 3R−3
c . The viscosity of DPD fluid for each value

of coarse-graining parameter Nm can be computed using the Lees-Edwards method

[38]. The values of the dynamic viscosity µ for different levels of coarse-graining

are: (Nm, µ) : (1, 1.04); (2, 1.31); (3, 1.55); (4, 1.82); (5, 2.15). The random (σR = 3)

and dissipative (γ = 45) force coefficients are used in the DPD integration scheme

(a modified velocity Verlet method with λ = 0.5, [24]), timestep ∆t = 0.02 and

temperature kBT = 0.1, all in DPD units. All plots, except for the temperature

which is normalized by the equilibrium temperature kBT = 0.1, are in reduced MD

units in this chapter.

In the PPFM simulations the domain was doubled in the z direction and the body

force F = 0.0085 was applied in the x direction. The simulations were run for 410, 000

timesteps and the domain was subdivided in the z direction into equal bins of size

0.2Rc, with the data collected over the last 40, 000 steps. The simulation results for

Nm = 5 are plotted in figure 8.3. The DPD density, x-velocity, shear stress and partial

temperatures averaged over both halves of the computational domain are shown. The

agreement with incompressible Navier-Stokes solution for Poiseuille flow is good for

Nm ≤ 5. For larger values of Nm we observed deviations and above Nm = 20 an

apparent solidification process is in place.

In the ABC simulations we integrated the DPD equations for 1, 000, 000 timesteps

and the statistical data were averaged over the last 40, 000 time steps. A uniform

density profile ρd was imposed at ρDPD = 3R−3
c . Also, we used L = 1Rc, h = 0.2Rc,

nav = 3 and CW = 1; the local density values were averaged over Nav = 500 timesteps.

Typically, about 50 wall force adjustments in simulations were enough to obtain

desired density values close to the wall (figure 8.4). In figure 8.5 the magnitudes of

density fluctuations across the channel are plotted for the first 100 interactions for one

of the simulation cases. Statistical fluctuations obtained through density averaging in

the bins of the same size and over the same number of steps for the periodic Poiseuille

flow method are shown for comparison. The simulation results are shown in figure 8.3

for Nm = 5; for Nm < 5 similar results were obtained. In general, they are in a good
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Figure 8.4: Evolution of density fluctuation versus force-iterations in simulations
(Nm = 5) with adaptive boundary condition.
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periodic Poiseuille flow method are shown for comparison.

agreement with those obtained from the PPFM method, although there is a difference

in the temperature profile close to the wall.

The reason for an increase of partial temperature in the normal to the wall di-

rection is the wall force ~FW . In simulations presented here, an average increase of

partial temperature in the z direction was about 11% while the total temperature

increase was about 4%. It is possible to affect the temperature close to the wall by

modifying the dissipative force coefficient γ of DPD particles. The procedure we ap-

ply for adjusting the temperature is similar to one used for the density. Specifically,

the coefficient γ of particles in the bin close to the wall is increased if the temperature

is above the desired level in that bin or decreased otherwise. This can effectively con-

trol the total temperature, however the difference between the partial temperatures

in normal and parallel to the wall directions remains about the same. For example,

for the case considered here with Nm = 5 the average increase of partial temperature

dropped by 3-4% and the total temperature was within 2% of 0.1kBT (figure 8.6).
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Finally, we demonstrate that the ABC approach can be employed to target specific

density fluctuations close to the solid wall. Here, for illustration purposes, we present

a case, where the density fluctuations imposed by boundary conditions in DPD corre-

spond to the coarse-grained MD density fluctuations. Specifically, the coarse-grained

density fluctuations close to the wall are obtained from MD simulations by averaging

them in bins of size 0.2Rc, where the value of DPD unit of length Rc corresponds

to Nm = 5, see equation (6.5). The fluctuations are significant within distance of

2Rc from the wall and therefore we chose L = 2Rc in the ABC method. In addition,

we set h = 0.2Rc, Nav = 500, nav = 3 and CW = 1. The desired level for density

fluctuations ρd in each bin is set based on coarse-grained MD data. In figure 8.7 we

plot the MD and DPD simulation results. In general, the density, velocity and stress

profiles are in good agreement, although the DPD temperature is increased close to

the wall due the aforementioned reasons.

8.4 Summary

In this chapter we have developed an adaptive model for wall-particle interactions that

allows to target the desired density profile close to the wall, while at the same time

keeping the no-slip boundary condition. We note here that the method is general and

not limited to dissipative particle dynamics. We believe it can be used in molecular

dynamics (MD) and Monte-Carlo (MC) simulations in various fields but also in the

lattice Boltzmann method (LBM) and in smooth particle hydrodynamics (SPH).



Chapter 9

Simulation of Flows Around Solid

Spheres using DPD

9.1 Introduction

Suspensions of small particles such as colloids, food products, paints and physiologi-

cal systems (including blood) are common to many industrial and natural processes.

The properties of such suspensions are often determined by their mesoscale structure

and mesoscopic computer simulation methods offer a powerful alternative to the ex-

periments. In this chapter we use the Dissipative Particle Dynamics method to model

flows around solid spherical particles. Several approaches for simulating rigid parti-

cles are presented and evaluated. The simulation results are compared with analytic

predictions, experimental observations and other simulation results. All parameters

are in DPD units.

9.2 Models for Simulating Spherical Particles

Several types of models for simulating spherical particles in DPD can be found in

literature. In [75] the solid spheres are modeled as a structureless objects. There,

the fluid particles interact with the surface of the sphere instead of its center. The

advantage of this method is that each sphere can be represented with just one particle.

100
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The disadvantage is that it is difficult to extend the method to the objects of arbitrary

shape. Another commonly used approach for modeling solid objects is to group and

“freeze” collections of DPD particles. The particles can be grouped in a specific way

to reduce the roughness of the surface as in [11], or simply be a subset of the initial

lattice, which is typically of fcc or sc type [7, 42]. In simulations the motion of these

DPD particles is constrained so that their relative positions remain the same. It was

observed that for finite Reynolds number flows around solid objects constructed this

way the fluid particles can penetrate the objects. This can affect the accuracy of DPD

calculations, and hence the reflection boundary conditions sometimes are added [37].

In this chapter we consider four models for simulating solid spheres, two of them are

based on the ideas developed in chapters 5 and 8.

In the first model the spherical particle is created by grouping the subset of the

initial DPD particle lattice. We will refer to this model as model “A” in the following

sections.

Model “B” is a combination of model “A” with a bounce-back reflection at the

surface of the sphere.

An extension of the solid wall boundary conditions described in chapter 5 will be

referred to as model “C”. In this model, the DPD particles inside the sphere are

distributed in layers, in combination with bounce-back reflection at the surface of

the sphere. In addition, the conservative force coefficient of DPD particles inside the

sphere is adjusted using equation (5.3). The density of the sphere, ρs, is chosen to

be equal to the fluid density, ρf . The layers are formed starting from the outer layer

which is located on the surface of the sphere. The density of the particles in this layer

is equal to ρ
2/3
s . Other layers are formed within distance ρ

−1/3
s of each other and fill

the inner part of the sphere. Each new layer has density equal to ρ
2/3
s or less if there

are not enough particles to fill in the layer completely. The number of layers depends

on the sphere radius and the volume density of the sphere. For example, the sphere

of radius A = 3 and density ρs = 3 consists of 2 layers. The outer layer has 235

particles while the inner layer - 104 particles. To achieve uniform distribution of the

DPD particles in each layer the following procedure is used. Initially, the particles
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Figure 9.1: DPD particle distribution inside the sphere of radius A = 3 and density
ρs = 3. The sphere consists of 2 layers of particles. The outer layer has 235 particles
while the inner layer - 104. The particles are distributed uniformly in each layer to
reduce the roughness of the sphere surface.

are placed randomly inside the layer. Then, the pairwise repulsive force proportional

to the inverse of the inter-particle distance is added to all particles. The positions of

the particles are iteratively updated to minimize the energy of the system. During

this process the positions of the particles are constrained to the corresponding layers.

The final distribution of the particles inside the sphere of radius A = 3 and density

ρs = 3 is shown in figure 9.1. The sphere has a smooth surface, however due to the

uneven distribution of the DPD particles inside the volume, the moments of inertia are

different from the moments for a sphere with uniform density. In some applications

this may be important.

Model “D” is based on the adaptive boundary conditions developed in chapter 8.

The sphere is again constructed from layers of DPD particles in combination with

bounce back reflection at the surface of the sphere. The conservative force coefficient

of the DPD particles inside the sphere is set to zero and an adaptive force acting on

the fluid particles in the radial direction is added to minimize density fluctuations

close to the surface of the sphere. For low Reynolds number flows this model can

produce almost uniform density profile close to the sphere.
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9.3 Flow over simple cubic array of spheres

In this section fluid flow past a periodic array of spheres is considered. Simulation

domain is a cube, periodic in all directions. A single sphere is placed in the center

of the domain; periodic images of the sphere form a simple cubic lattice in three

dimensional space. An external force Fext is applied to the fluid in x direction, while

the position of the sphere is fixed in space. The volume of simulation domain Ω is

subdivided into the volume occupied by the fluid, Ωf , and the volume occupied by

the sphere, Ωp. The superficial velocity is defined as

ū =
1

Ω

∫

Ωf

~u(x) d3x, (9.1)

where ~u(x) is a fluid velocity. It can be shown that sedimentation velocity of an array

of objects under the action of a body force is equal to the superficial velocity [14].

In 1959 Hasimoto [29] calculated the drag force on the dilute arrays of spheres

from the fundamental periodic solutions of the Stokes equations. For a simple cubic

array of spheres the drag force normalized by the Stokes drag is given by

F−1 = 1− 1.7601ϕ1/3 + ϕ− 1.5593ϕ2 + O(ϕ8/3). (9.2)

The volume fraction ϕ is defined as Ωp/Ω. In 1982 Sangani and Acrivos [60] extended

Hasimoto’s results to a larger volume fractions. They obtained

F−1 = 1− 1.7601ϕ1/3 + ϕ− 1.5593ϕ2 + 3.9799ϕ8/3 − 3.0734ϕ10/3. (9.3)

For a spherical particle the drag force coefficient is defined as

CD =
Fs

1
2
ρf ūπA2

, (9.4)

where Fs is a total force exerted by fluid on the sphere surface. For small particle

Reynolds numbers (ReP < 1) the drag coefficient can be estimated using a Stokes
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drag law,

CD =
24

ReP

, (9.5)

or with the Oseen correction,

CD =
24

ReP

(1 +
3

16
ReP ). (9.6)

The particle Reynolds number is based on the particle diameter, the superficial ve-

locity and kinematic viscosity of the fluid, and is defined as

ReP =
2A|ū|

ν
. (9.7)

In the simulations we set the DPD fluid density ρf = 3. The dissipative and

random force coefficients are γ = 4.5 and σR = 3. The conservative force coefficient is

set to a = 25. The modified velocity Verlet method [24] with parameter λ = 0.5 and

time step 0.02 is used for time integration. The cubic domain of size L is periodic

in all directions. The sphere of radius A is placed in the center of the domain. The

solid volume fraction is defined as

ϕ =
4/3πA3

L3
. (9.8)

By varying sphere radius or the size of the computational domain different volume

fractions can be obtained. The flow is driven by an external force, Fext, applied to

the DPD fluid particles in x direction. In all cases the simulations are run for more

than 1000000 time steps. The results are averaged over at least 750000 time steps.

We start from considering the case with the sphere radius A = 3 and domain size

L = 18.568034. The solid volume fraction of this system is equal to ϕ = 0.01325.

The force Fext in a range from 0.00005 to 0.5 is applied to generate the flow. The

superficial velocity ū is computed from the velocities of the fluid particles. Given the

force exerted by fluid on the sphere, Fs, and fluid superficial velocity, ū, the particle

Reynolds number, ReP , and the drag coefficient, CD, can be calculated.
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Figure 9.2: Drag coefficient CD as a function of particle Reynolds number ReP for the
flow past solid sphere in a periodic domain. The periodic images of the sphere form
a simple cubic lattice in three dimensional space. The sphere radius is A = 3, the
solid volume fraction is ϕ = 0.01325. The sphere is modeled by freezing the portion
of the initial DPD particle lattice (model “A”).
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Figure 9.3: Drag coefficient CD as a function of particle Reynolds number ReP for the
flow past solid sphere in a periodic domain. The periodic images of the sphere form
a simple cubic lattice in three dimensional space. The sphere radius is A = 3, the
solid volume fraction is ϕ = 0.01325. The sphere is modeled by freezing the portion
of the initial DPD particle lattice in combination with bounce back reflection at the
solid-fluid interface (model “B”).



106

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

Re
P

DPD
SEM
Stokes
Oseen
Sangani & Acrivos

Figure 9.4: Drag coefficient CD as a function of particle Reynolds number ReP for the
flow past solid sphere in a periodic domain. The periodic images of the sphere form a
simple cubic lattice in three dimensional space. The sphere radius is A = 3, the solid
volume fraction is ϕ = 0.01325. The sphere is modeled using layers of DPD particles,
in combination with bounce back reflection at the sphere surface. The conservative
force coefficient of the DPD particles inside the sphere is adjusted using equation
(5.3) (model “C”).

In figures 9.2, 9.3, 9.4 and 9.5 we plot the drag force coefficient as a function of

particle Reynolds number for sphere models “A”, “B”, “C” and “D”, respectively.

The calculated values of CD are compared with spectral element method (SEM)

simulation results obtained by Gelonia Dent at Brown University [14]. Stokes, Oseen

and Sangani & Acrivos predictions are also shown in the figures. All models give

acceptable results, although models “C” and “D” seem to be more accurate.

For fixed sphere radius (A = 3) we decrease the size of the domain to L = 7.513251

to obtain higher solid volume fraction ϕ = 0.2. The calculated drag coefficients for

models “A”, “B” and “C” are plotted in figures 9.6 - 9.8. In all cases, large deviations

of the DPD simulation results from the spectral element method prediction obtained

by Dent are observed. For a fixed sphere radius the number of DPD particles in the

gaps between the spheres decreases with increasing solid volume fraction, and hence,

to resolve the flow accurately for high volume fractions, large sphere radii are required

in simulations. Therefore, we increase the sphere radius to A = 8 keeping the solid
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Figure 9.5: Drag coefficient CD as a function of particle Reynolds number ReP for the
flow past solid sphere in a periodic domain. The periodic images of the sphere form a
simple cubic lattice in three dimensional space. The sphere radius is A = 3, the solid
volume fraction is ϕ = 0.01325. The sphere is modeled using layers of DPD particles,
in combination with bounce back reflection at the sphere surface. An adaptive model
for wall-particle interactions is used to obtain uniform density profile close to the
sphere surface (model “D”).

volume fraction constant (ϕ = 0.2). The simulation results are shown in figures 9.9

- 9.11. The results for model “C” can be further improved by rearranging the DPD

particles inside the sphere. Specifically, the density of the particles inside each layer

can be increased to match the fluid density ρf . The computed drag coefficient in this

case is in a good agreement with spectral element simulation results (figure 9.12).

9.4 Spherical Particle Settling in a Fluid at Rest

In this section we study the motion of a solid sphere settling under gravity in a fluid

at rest. The computational domain is periodic in x and y directions. The DPD fluid

covers 0 ≤ x ≤ 249.61, 0 ≤ y ≤ 48.53, 1 ≤ z ≤ 172.24 and is bounded by two

walls of width 1 in z direction. The walls are modeled by freezing the DPD particles.

The fluid density is equal to ρf = 3. There are about 6.5 million DPD particles in

the domain. The modified velocity Verlet method with λ = 0.5 and timestep 0.02



108

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

Re
P

DPD
SEM
Stokes
Oseen
Sangani & Acrivos

Figure 9.6: Drag coefficient CD as a function of particle Reynolds number ReP for
the flow past solid sphere in a periodic domain. The periodic images of the sphere
form a simple cubic lattice in three dimensional space. The sphere radius is A = 3,
the solid volume fraction is ϕ = 0.2. The sphere is modeled by freezing the portion
of the initial DPD particle lattice (model “A”).
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Figure 9.7: Drag coefficient CD as a function of particle Reynolds number ReP for
the flow past solid sphere in a periodic domain. The periodic images of the sphere
form a simple cubic lattice in three dimensional space. The sphere radius is A = 3,
the solid volume fraction is ϕ = 0.2. The sphere is modeled by freezing the portion
of the initial DPD particle lattice in combination with bounce back reflection at the
solid-fluid interface (model “B”).
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Figure 9.8: Drag coefficient CD as a function of particle Reynolds number ReP for the
flow past solid sphere in a periodic domain. The periodic images of the sphere form a
simple cubic lattice in three dimensional space. The sphere radius is A = 3, the solid
volume fraction is ϕ = 0.2. The sphere is modeled using layers of DPD particles,
in combination with bounce back reflection at the sphere surface. The conservative
force coefficient of the DPD particles inside the sphere is adjusted using equation
(5.3) (model “C”).
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Figure 9.9: Drag coefficient CD as a function of particle Reynolds number ReP for
the flow past solid sphere in a periodic domain. The periodic images of the sphere
form a simple cubic lattice in three dimensional space. The sphere radius is A = 8,
the solid volume fraction is ϕ = 0.2. The sphere is modeled by freezing the portion
of the initial DPD particle lattice (model “A”).
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Figure 9.10: Drag coefficient CD as a function of particle Reynolds number ReP for
the flow past solid sphere in a periodic domain. The periodic images of the sphere
form a simple cubic lattice in three dimensional space. The sphere radius is A = 8,
the solid volume fraction is ϕ = 0.2. The sphere is modeled by freezing the portion
of the initial DPD particle lattice in combination with bounce back reflection at the
solid-fluid interface (model “B”).
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Figure 9.11: Drag coefficient CD as a function of particle Reynolds number ReP for
the flow past solid sphere in a periodic domain. The periodic images of the sphere
form a simple cubic lattice in three dimensional space. The sphere radius is A = 8, the
solid volume fraction is ϕ = 0.2. The sphere is modeled using layers of DPD particles,
in combination with bounce back reflection at the sphere surface. The conservative
force coefficient of the DPD particles inside the sphere is adjusted using equation
(5.3) (model “C”).
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Figure 9.12: Drag coefficient CD as a function of particle Reynolds number ReP for
the flow past solid sphere in a periodic domain. The periodic images of the sphere
form a simple cubic lattice in three dimensional space. The sphere radius is A = 8,
the solid volume fraction is ϕ = 0.2. The sphere is modeled using layers of DPD
particles with the density matching the fluid density, in combination with bounce
back reflection at the sphere surface. The conservative force coefficient of the DPD
particles inside the sphere is adjusted using equation (5.3).

is used in simulations. The temperature is set to kBT = 1 (σR = 3, γ = 4.5). The

conservative force coefficient is equal to a = 25. A spherical particle of radius A = 6

initially is placed inside the domain with its center at (x0, y0, z0)=(20.8, 24.26, 88.05).

The sphere is constructed by freezing the layers of DPD particles in combination with

bounce-back reflection at the solid-fluid interface. The density of the sphere is equal

to the fluid density. The conservative force coefficient of the DPD particles inside the

sphere is set to 3.2447 (equation (5.3)). The sphere is released without initial velocity

or rotation and is settling under the force Fext = 1.033912 in z direction.

Eight simulations are performed. In each simulation initial velocities of fluid

particles are randomly chosen from the Maxwell equilibrium distribution. The settling

velocity of the sphere, Vs, is found as an ensemble average. In figure 9.13 we plot Vs

as a function of time. The symbols are the mean value of velocity at different time

moments while the bars are standard deviation. The settling velocity is normalized

by the terminal velocity VT . The time is normalized by the characteristic time τ95,
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Figure 9.13: Sphere velocity versus time. The sphere velocity Vs is normalized by
the terminal velocity VT . τ95 is the time it takes for the sphere to reach 95% of the
terminal velocity. The symbols represent the mean values of velocity averaged over
8 DPD simulations; the standard deviations are shown with bars. The solid line is
an empirical curve obtained from the experimental measurements by Mordant and
Pinton [47].

which is defined as the time it takes the particle to reach 95% of the terminal velocity.

The simulation results are compared with the empirical curve obtained from the

experimental measurements by Mordant and Pinton [47]. The results are in a good

agreement.

9.5 Flow past a sphere near one wall of a 3D chan-

nel

In this section we consider the flow past a sphere placed near one wall of a three

dimensional channel. For comparison we employ spectral/hp element discretization

[35] to obtain an accurate numerical solutions.

The fluid domain occupies the region 0 ≤ x ≤ 52.002, 0 ≤ y ≤ 24.2676 and

0 ≤ z ≤ 24.2676. The domain is periodic in x and z directions, while the no slip

boundary conditions are modeled on the y boundaries of the domain using the particle

based boundary condition described in chapter 5. The DPD fluid density is ρf = 3.
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Figure 9.14: Flow past a sphere near one wall of a 3D channel. The DPD streamwise
and normal fluid velocity profiles (symbols) are compared to spectral element method
(SEM) results (lines).

The random and dissipative force coefficients are set to 3 and 4.5, respectively. The

conservative force coefficient is equal to 25. The positions of the particles are updated

using the modified velocity Verlet algorithm [24] with λ = 0.5 and time step 0.02.

The DPD fluid kinematic viscosity was found to be ν = 0.284. The spherical particle

of radius A = 3.4668 is placed with its center at x = 26.001, y = 12.1338 and

z = 6.9336. The sphere is modeled by freezing the layers of DPD particles with

conservative force adjusted according to equation (5.3) in combination with bounce

back reflection at the surface of the sphere. The flow is sustained by the external force

Fext = 0.00125277 in x direction. The simulations were run for 1.6 million time steps.

The domain was divided into bins of size h = 0.5 over which the velocity was averaged

for 1.2 million time steps. The fluid velocity profiles were extracted along three lines

inside the computational domain. The lines are located in y = 12.1338 plane and are

parallel to z axis. The x coordinates of the lines are x = 26.001, x = 29.468 and

x = 32.934.

In spectral element simulations the 3D channel has dimensions 15, 7 and 7 in x,

y and z directions, respectively. The channel is periodic in x and z directions. The

no-slip boundary conditions are specified in y direction. The sphere of radius A = 1

is placed with its center within distance 2 from the y = 0 boundary. The simulation
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domain is discretized into the 4608 spectral hexahedra elements. The third order

polynomial expansion is used in each element. The kinematic viscosity of the fluid is

set to ν = 1. The flow is driven by constant force in x direction, Fext = 1.94152185.

The simulations were run until steady state was reached.

In figure 9.14 we compare extracted streamwise and normal velocity profiles ob-

tained by DPD and SEM. The SEM simulation results were scaled appropriately to

be in DPD units. The agreement is good with some scattering apparent in the nor-

mal velocity profiles in DPD. We note here that the DPD results can be improved by

averaging over larger number of time steps.

9.6 Migration of a Spherical Particle in Shear

In this section we consider migration of neutrally buoyant spherical particle in shear.

Several experimental, theoretical and numerical studies of this phenomenon can be

found in literature [43, 58, 61, 62, 63]. Here, we compare the DPD simulation results

with the computational results obtained by Lomholt [39] using the Force Coupling

Method [40, 44].

The computational domain is a box, periodic in x and y directions. The particle

based boundary conditions (chapter 5) are used on the boundaries in z direction.

The fluid domain covers the region 0 ≤ x ≤ 48.535289, 0 ≤ y ≤ 27.734450, 0 ≤ z ≤
49.922011. The DPD fluid density is ρf = 3. The temperature is set to kBT = 1 by

choosing σR = 3 and γ = 4.5. The conservative force coefficient of the fluid particles is

equal to a = 25. The modified velocity Verlet scheme is used for time integration [24].

Parameter λ is equal to 0.5, while the time step is 0.02. The flow is driven by the

force Fext = 0.00041296 applied in x direction. The Reynolds number based on the

half width of the channel, L = 24.9610055, fluid kinematic viscosity, ν = 0.284,

and fluid velocity in the center plane (z = 24.9610055), umax = 0.4544, is equal to

Re = Lumax

ν
= 40. The sphere is created by freezing the DPD particles. Initially

it is located close to the center of the channel. The trajectory of the sphere was

recorded during the simulations for about 2,000,000 time steps. In figure 9.15 we plot
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Figure 9.15: Migration of neutrally buoyant spherical particle in poiseuille flow. The
trajectory of the z coordinate of the sphere center as a function of time is shown
with a solid line. The time-averaged mean position of the sphere is shown with a
dash-dotted line. The dotted lines are one standard deviation away from the mean
position. The dashed line, represents the final position of the sphere obtained in [39]
using Force Coupling Method simulations.

z coordinate of the sphere center as a function of time. The sphere wanders around

its equilibrium position which is located approximately in the middle of the channel

midplane and the wall. The time-averaged mean position of the sphere (z = 13.5815)

is shown in figure with a dash-dotted line. The dotted lines are one standard deviation

(2.5614) away from the mean position. The dashed line, represents the final position

of the sphere (z = 0.504L) obtained by Lomholt [39].

9.7 Viscosity of a Dilute Suspension of Spherical

Particles

In this section we calculate viscosity of a dilute suspension of spherical particles. We

use a method introduced by Gosling et al [22] in 1973. In this method a domain of
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Figure 9.16: Viscosity of the dilute suspension of solid spheres, νs, normalized by the
DPD fluid viscosity, ν, as a function of volume fraction ϕ.

size (Lx, Ly, Lz) is periodic in all direction. The force Fx,

Fx = αxm sin(
2πz

Lz

) (9.9)

is applied in the x direction to develop a steady flow profile. The flow profile is

expected to be of the form

ux =
αxL

2

4π2ν
sin(

2πz

Lz

). (9.10)

The kinematic viscosity of the fluid can be found by fitting the calculated velocity

profile using equation (9.10). The necessary conditions for the method to produce

reliable results can be found in a recent paper [73].

We apply the Gosling method to a dilute suspension of spherical particles. The

simulation domain dimensions are Lx = 22.012848, Ly = 22.012848 and Lz =

132.077090. The radius of spherical particles is chosen to be A = 3.301817. The

number of spheres varies in the simulations from 10 to 30 to obtain different volume

fractions. The spheres are modeled by freezing the regions of the initial fcc lattice.

The positions of the spheres inside the domain are chosen randomly at the beginning
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of the simulations. The DPD fluid density is equal to ρf = 3. The modified velocity

Verlet scheme (λ = 0.5) is used [24]. The time step is equal to 0.02. The DPD force

coefficients a, σR and γ are set to 25, 3 and 4.5, respectively. The DPD fluid viscosity

was found to be ν = 0.284. In figure 9.16 the calculated suspension viscosity νs for

different solid volume fractions ϕ is compared to the Einstein prediction for a dilute

suspensions,
νs

ν
= 1 +

5

2
ϕ + O(ϕ2). (9.11)

The agreement is good.

9.8 Summary

In this chapter we have simulated the flows around solid spherical particles using

DPD. Several problems were considered. The simulation results were compared with

analytic predictions, experimental observations and other simulation results.



Chapter 10

Simulation of Platelet Aggregation

using DPD

10.1 Introduction

The kinematic viscosity of the DPD fluid with typical simulation parameters is rela-

tively low (about 1 in DPD units) and therefore simulations of platelet aggregation

in flows with realistic Reynolds numbers require very long computational times. The

purpose of this chapter is not to use the DPD as an instrument for simulation of

platelet aggregation, but rather to test its ability to reproduce characteristic features

of the process, previously obtained by means of FCM computations in chapter 3.

We consider the flows with Reynolds numbers higher than observed in vivo. Specif-

ically, the particle Reynolds numbers based on the platelet diameter and mean flow

velocity in the vessel, are of order 1. We note here, that the viscosity of the DPD fluid

can be increased for example by using the Lowe thermostat [41] with large values of

parameter Γ. Based on the values of the dynamic viscosity computed in chapter 7

the Reynolds number can be decreased by one or two orders of magnitude this way.

Lowe method is a global thermostat and to the best of our knowledge no implementa-

tion suitable for large scale parallel computations exists. This limits the application

of the Lowe thermostat for relatively small systems. It may also be possible to use

different weight function w in a standard DPD formulation, see equation (4.5), to
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affect the viscosity of the DPD fluid. It was shown in [11] that for specific choice of

the weight function the realistic Schmidt numbers can be achieved in simulations; the

dependence of fluid viscosity on w needs to be studied in the future.

10.2 Numerical Simulations and Results

The flow domain is a cylinder with radius Ac = 20.8 in DPD units. The axis of

the cylinder is parallel to z coordinate axis and is passing through the origin of

the coordinate system. The cylinder extends from z = 0 to z = 104. The system

is periodic in z direction; the DPD particles leaving the computational domain at

z = 104 are introduced back into the system at z = 0. The DPD fluid density is set

to ρf = 3. The conservative force coefficient a is set to 25. The values of random

and dissipative force coefficients are σR = 3 and γ = 4.5, respectively. The modified

velocity Verlet scheme with parameter λ = 0.5 [24] and time step 0.02 is used to

advance the system in time. The kinematic viscosity of the DPD fluid was found to

be ν = 0.284.

The no-slip conditions at the walls of the cylinder are modeled using the particle

boundary conditions developed in chapter 5. The parabolic inflow velocity profile is

generated by placing the inflow region inside the channel. The z component of the

velocity of DPD particles inside the inflow region is set to the value equal to the

fluid velocity at the location of the particle given by the Poiseuille flow solution. The

inflow region covers part of the flow domain between z = 97 and z = 98.5. Due to the

periodicity of the system in z direction parabolic velocity profile develops upstream

of the platelet aggregate.

The aggregate is initiated by placing a small number of activated seed platelets

attached to the wall. In simulations described below six seed platelets were placed

close to the wall approximately at z = 28. The platelets are modeled as a rigid spheres

of radius A = 2.08 by grouping the DPD particles. The particles are arranged in layers

as described in section 9.2 to minimize the roughness of the surface. The density of

the DPD particles inside each platelet is equal to the fluid density ρf = 3, while
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Figure 10.1: Accumulation of platelets in a thrombus with flow rate of 167µm/s.
Solid lines used to correlate exponential growth phase; slopes plotted on figure 10.2.

the conservative force coefficient a is set to 25. Except for the seed platelets the flow

domain is initially free of platelets. We assume that platelets are distributed uniformly

in flow upstream of the growing aggregate. During the computations platelets are

introduced into the flow upstream of the aggregate in z = 2.8 plane. The probability

of adding a new platelet at some specific location is proportional to the velocity at this

location, which is assumed to have a parabolic profile. When the location is selected

all fluid particles which fall inside the volume occupied by a platelet are replaced by

the DPD particles forming the sphere. The freshly added platelet is allowed to follow

the flow and interact with the walls and other platelets. Platelets reaching z = 95

plane are eliminated from the simulations. This is done by removing the constraints

on the motion of the DPD particles inside the platelets.

The platelets interact with each other and the vessel walls following the rules

described in chapter 3. Activated platelets are allowed to adhere anywhere they

come sufficiently close to the wall. The values of RR, RL, RM and RB were set to 1,

1.5, 2.5 and 3.5, respectively. The extent of the activation-distance corona was defined

by RA = 1.5. Constants α1, α2, α3 and α4 defining the strength of the interaction
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Figure 10.2: Exponential thrombus growth rate coefficients as a function of flow rate
in small vessel 30µm diameter. The trend of the growth rate coefficients as a function
of flow rate matching qualitatively the trend from FCM simulations in chapter 3.

forces between platelets and walls are equal to 2000, 2000, 1000 and 1000 in DPD

units, respectively. The range of activation delay time was specified by ta1 = 25

and ta2 = 100. Six simulations are performed with the mean flow velocities in the

channel between 0.15 and 0.75. To reduce the computational time the concentration

of platelets in blood was chosen to be about 1000000 per cubic millimeter.

For a platelet following the blood stream in the vessel we can define time td, the

time it takes the platelet to travel the distance equal to its diameter based on the

mean flow velocity. The ratio of the mean activation delay time and td is a non-

dimensional number. For an activation delay time of 0.1s, platelet of radius 3µm in

the vessel with mean blood flow velocity, this ratio is about 1.667. By assuming that

in DPD simulations the platelet radius corresponds to 1.5µm and the mean activation

delay time is 0.1s, we define the unit of time and length. In these units the diameter

of the vessel is equal to 30µm and simulated mean blood flow velocities are in the

range between 167µm/s and 833µm/s. The following results are expressed in these

units.

The simulation results qualitatively match aspects of the formation of the platelet

mural aggregates obtained in chapter 3. In figure 10.1 we show the number of adhered
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to the aggregate platelets as a function of time for one of the simulation cases. In

common with FCM studies, there is an exponential growth rate of aggregate volume

with time. Thrombi initiated at other flow rates also have their major phase of growth

exponential in time. The effect of blood flow rate on the exponential coefficient

broadly matches the rise and fall with blood flow velocity (see figure 10.2).

10.3 Summary

In this chapter we simulated platelet aggregation using the DPD method. Although

the Reynolds numbers were unrealistically high in computations, the simulation re-

sults reproduce the main features of platelet aggregation, such as exponential growth

rate of aggregate volume and variation of growth rate coefficient with the blood flow

velocity.



Chapter 11

Concluding Remarks

11.1 Summary

In this thesis we have achieved the following goals:

• We demonstrated that the concept of platelet activation delay time can be

integrated into a computer model of mural thrombus formation, which incorpo-

rates a small number of physical parameters and functions to represent physico-

chemical factors such as cell adhesion molecule behaviour, fibrinogen, and so

forth for the scale represented in the model.

• We presented the results of first simulation of thrombus formation in 3-D flows

by accounting for the movements of all platelets individually involved.

• We proposed a process of choosing the DPD parameters and determining the

DPD length and time scales for different levels of coarse-graining. Through this

we established the link between the atomistic molecular dynamics and mesoscale

DPD approach.

• We identified three factors that limit the application of the DPD method at

high coarse-graining levels: inter-particle force magnitude, compressibility, and

geometric confinement.
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• We examined the ramifications of different implementations of no-slip boundary

conditions in DPD and subsequently proposed a method, based on an equivalent

force between wall- and DPD-particles, to impose boundary conditions.

• We developed an adaptive model for wall-particle interactions that allows to

target the desired density profile close to the wall, while at the same time

keeping the no-slip boundary condition in DPD.

11.2 Future Directions

In concluding this thesis, we will now suggest some areas of future research which

follow from some of the work presented herein.

We believe that future emphasis in simulations of platelet aggregation will need

to be focussed on the development of more sophisticated models, incorporating finer

details of the process.

Platelets normally account for only about 1% of blood volume, with about 40%

of it occupied by red blood cells (RBC). Therefore, platelets are in a “crowded”

environment of red blood cells and there are frequent collisions between them. Thus,

platelets motion, especially their microscopic motion and fluctuations around their

mean trajectory, are primarily determined by the presence of RBCs. The presence of

RBCs should be taken into account explicitly, even though this would result in very

considerable complexity.

Some other issues to be addressed are the following:

• Incorporation of realistic platelet interaction forces obtained from experiments.

• Numerical simulation of diffusion of chemicals such as ADP, arachidonic acid

and thromboxane A2.

• Simulation of phospholipid bilayer membrane with embedded glycoproteins (GP)

- the receptors for activation and interaction with other cells.

• Modeling of plasma adhesive proteins such as fibrinogen, vWf and fibronectin.
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• Deformation of cells as it may play a key role in determining their aggregabil-

ity [4].

Algorithms developed in this thesis can be applied in various applications. These

applications include, but not limited to:

• Optimal design of artificial internal organs, such as prosthetic heart valves to

minimize platelet aggregation.

• Simulation of blood flows in vessels with stents, optimization of stent geometry.

• Modeling and development of various aggregometers and hemostatometers.

• Assessing the impact of various platelet-active drugs in altering thrombus for-

mation.

• Simulation of platelet aggregation in various physiological flow conditions such

as in stenosed vessels or over atherosclerotic plaque caps.
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