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Abstract of “Dissipative Particle Dynamics: theory, algorithms and application to
sickle cell anemia” by Huan Lei, Ph.D., Brown University, May 2012

Dissipative Particle Dynamics (DPD) is a mesoscopic simulation method, potentially

very effective in simulating mesoscale hydrodynamics and soft matter. This thesis

addresses open theoretical and algorithmic questions of DPD and demonstrates the

new developments with applications to blood flow in health as well as in sickle cell

anemia. The first part investigates the intrinsic relation of DPD to the microscopic

Molecular Dynamics (MD) method through the Mori-Zwanzig theory. We provide a

physical explanation for the dissipative and random forces by constructing a meso-

scopic system directly from a microscopic one. The relationship between DPD and

MD is quantified and the many-body effect on the hydrodynamics of the coarse-

grained system is discussed. We then address algorithmic issues and develop a sim-

ple approach for imposing proper no-slip boundary conditions for wall-bounded fluid

systems and outflow boundary conditions for open fluid systems. The second part

deals with blood flow applications. First, we use DPD and multi-scale red blood cell

models to investigate the transition of blood flow from Newtonian to non-Newtonian

behavior as the arteriole size decreases. Then, we develop a multi-scale model for the

sickle red blood cells (RBCs), accounting for diversity in shapes and polymerization

of hemoglobin. Subsequently, we use this model to investigate abnormal rheology

and hemodynamics of the sickle blood flow under different physiological conditions.

Despite the increased flow resistance, no occlusion was observed in a straight tube

under any conditions unless an adhesive dynamics model was explicitly incorporated

into our simulations. This new adhesion model includes both sickle RBCs as well as

leukocytes. The former interact with the vascular endothelium, with the deformable

sickle cells (SS2) exhibiting larger adhesion. The adherent SS2 cells further trap

rigid irreversible sickle cells (SS4) resulting in vaso-occlusion in vessels less than

15µm. Under inflammation, adherent leukocytes may also trap SS4 cells resulting

in vaso-occlusion in even larger vessels.
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Chapter 1

Introduction

1.1 Overview of Dissipative Particle Dynamics

The development of numerical modeling and simulation has greatly facilitated our

understanding of matter in condensed state. By imposing the “dummy” interaction

principles and conservation laws within local particles/elements, numerical simulation

provides us a convenient tool to probe the evolution of the physical system with

microscopic details as well as extract the macroscopic properties of the systems on

global length scale. Different numerical simulation methods have been developed

and applied to study the various physical systems on different length scales. At

the atomistic level, the density functional theory (DFT), developed in 1960’s [70,

92] and improved in 1990’s [15], can accurately calculate the ground state of solid

matter and has been widely used to study the catalyst effect in material sciences. At

the molecular level, the molecular dynamics (MD) method, based on the empirical

interaction potential between the atomistic particles, can successfully capture the

nucleation process and the following phase transition of super-cooled water system

[109]. In the continuum region, numerical methods such as the finite element, spectral

element [79] and force coupling method [103, 110] have been widely implemented in

the study of solid, fluid and solid/fluid coupled systems.

1
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Besides the physical systems discussed above, many interesting phenomena of

condensed matter occur in physical and biological systems on the mesoscopic level,

where both the atomistic and continuum methods show limitation on numerical mod-

eling of these systems. On one hand, continuum approximation in general breaks

down on this length scale as it fails to capture the anisotropic feature of the local

mass and momentum transportation in such systems. On the other hand, full rep-

resentation of such systems on atomistic level is prohibitively expensive due to the

short time scale and large number of the microscopic particles. While the typical

time step in atomistic simulation is O(1) fs, many physical processes on this level

occur within the time scale O(1) s. Alternatively, several mesoscopic simulation

methods such as Brownian Dynamics (BD), Smooth Particle Hydrodynamics (SPH)

and Dissipative Particle Dynamics (DPD) have been developed to study the sys-

tems on this level. This thesis work mainly focuses on the theory and numerical

applications of the DPD method.

Dissipative Particle Dynamics is a Lagrangian based particle method proposed

by Hoogerbrugge and Koelman [71] to simulate the complex hydrodynamic processes

of isothermal fluid systems. In this method, each DPD particle represents a coarse-

grained (CG) virtual cluster of multiple atomistic particles where the particle motion

is governed by the soft potential imposed between the DPD particles. Compared

with the classical MD method, the computational cost of the DPD simulation is

greatly reduced due to the smaller number of simulation particles and the larger

computational time step. Moreover, the particle based framework enables us to easily

incorporate addition physical features into the systems and extend its application

to complex fluid systems such as polymer solutions [43], colloid suspensions [16] and

blood flow systems [125, 46], etc.

Different from the classical MD simulation, two additional force terms (dissipative

force and random force) appear in the governing equation of the DPD method. The

magnitude of the dissipative force between two DPD particles is proportional to their
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relative velocities. It represents the energy dissipation from a single DPD particle

to its neighbor particles. The random force term, on the contrary, represents the

thermal perturbation on a single DPD particle from the surrounding environment.

Although the coupling of these two force terms determine the thermal temperature

of the fluid systems (following the fluctuation-dissipation theorem), we note that

they are not merely the thermostat forces as the ones introduced in the Nose-Hoover

thermostat. Instead, theoretical work shows that these two force terms originate

from the eliminated atomistic degrees of freedom during the coarse-graining process,

see Ref. [115, 153, 90]. Following these studies, one question arises naturally: does

there exist a direct mapping between an atomistic system and a DPD system through

the coarse-graining process? We address this issue in the first part of the thesis.

Starting from an atomistic system, we construct a CG system within the framework

of the Mori-Zwanzig theory [115, 153]. Simplification of the CG equations with

Markovian approximation results in a force field similar to the DPD formulation.

Physical similarities and differences between two systems with different length scales

are identified.

Although the DPD systems show intrinsic relationship with the atomistic systems

as discussed above, we note that there is no unique relationship between the physical

units of the two systems [88, 97]. In practice, the parameters of the DPD force terms

are usually chosen such that the fundamental properties (compressibility, kinematic

viscosity, etc.) of the DPD systems match with the simulated systems. By properly

choosing the simulation parameters and imposing correct no-slip boundary conditions

[126], the DPD simulations show consistent results with the atomistic/continuum

simulations in both periodic and wall bounded systems, e.g., see Ref. [88]. Following

this work, in the second part of this thesis, we aim to develop a novel outflow

boundary conditions which enables us to simulate fluid systems of multiple outlets

with different flow rates.

The third part of this thesis mainly focuses on the development of a multi-scale
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model of the sickle red blood cell, which is then used to study the morphological

transition of the single cells as well as the abnormal rheology and hemodynamics of

the sickle blood flow. Remarkably, sickle cell anemia originates from an abnormal

amino acid in the hemoglobin molecule within the erythrocyte, which is on the

length scale of O(1) nm; on the contrary, the hematological disorder of sickle blood

such as vaso-occlusion often occurs on the length scale of O(10) µm. Due to the

large span of the length scale, MD simulation would be extremely expensive or even

beyond computation capacity for this system. Alternatively, the mesoscale DPD

method provides us a convenient tool to probe the biophysical characteristics of this

disease with reasonable computational complexity. We present some background

information of the sickle cell anemia in the next section.

1.2 Background information of sickle cell anemia

Sickle cell anemia is a genetic disease which can cause several types of blood disorder

such as vaso-occlusive crisis, splenic sequestration crisis, hemolytic crisis, etc. In the

United States, this disease mainly affects the Americans of Sub-Saharan African

descent with the prevalence of 1 in 500 in the African-American children. According

to the National Institues of Health [1], the average life expectancy of the patients

with sickle cell anemia is round 50 years or beyond.

This disease is named by the special “elongated, sickled-shape” cells identified

in the blood sample of an American-African patient, as first described by James B.

Herrick [67] in 1910. In 1949, Linus Pauling and his colleagues, for the first time,

proposed that this disease is attributed to the abnormal hemoglobin molecules within

the erythrocyte [123]. Subsequent studies [75] reveal that in the sickle hemoglobin

molecule (HbS), the hydrophilic amino acid glutamic acid is substituted by the hy-

drophobic amino acid valine at the β − 6 chain site. In hypoxia conditions, the

HbS molecules aggregate into polymerized state, resulting in the distortion of the
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cell membranes. This process is well characterized by the double nucleation model

proposed by Ferrone et al. [51, 52]. According to this model, the formation of a HbS

polymer domain is triggered by the homogeneous nucleation of the HbS molecules in

bulk solution and proceeds with the explosive growth via polymer elongation and het-

erogeneous nucleation on the pre-existing HbS polymers. Both the homogeneous and

the heterogeneous nucleation rates show extremely high concentration dependence

(with power between 40 and 100). Therefore, the intracellular HbS concentration

plays a predominant role in determining the final configuration of polymer domain,

and therefore has a profound influence on the cell morphology in the deoxygenated

state.

Besides the abnormal cell morphology, sickle cell also exhibits elevated cell rigidity

due to the intracellular polymerization. This results in the abnormal rheology and

hemodynamics of the sickle blood flow. Experimental investigations show that sickle

cell suspensions exhibit larger shear viscosity in bulk shear flow systems and elevated

apparent viscosity in ex vivo microvascular systems.

Remarkably, one of the most important clinical feature of the sickle cell anemia

is the vaso-occlusive crisis, as this is the major cause of the morbidity and mortality

of the SCD patients. Early studies suspect that the pathophysiology of this crisis

is the sickling process of a single cell during the circulation in capillaries. However,

subsequent studies indicate that the vaso-occlusion crisis is a far more complicated

process incorporating multiple inter-related factors [83, 147].

In this thesis, we develop a multi-scale model of the sickle red blood cell within the

framework of the DPD method and use this model to investigate the cell morpholog-

ical transition, the abnormal rheology as well as the vaso-occlusion crisis introduced

above.
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1.3 Outline

The thesis is organized as follows. In the first two chapters, we discuss the new

capabilities of the DPD method. In the third chapter, we use the DPD method to

identify the non-Newtonian to Newtonian transition for blood flow. The rest of this

thesis is devoted to construct a multi-scale model of the sickle red blood cell and use

this model to quantify the biophysical characteristics of the sickle cell anemia.

In chapter 2, we review the DPD method as a coarse-grained (CG) analogue of

Molecular Dynamics (MD) and investigate the intrinsic relationship between the MD

and DPD method by constructing a mesoscopic system directly from a microscopic

system. The dissipative and random force terms are computed using the Markovian

approximation. The many-body effect on the coarse-grained force field is identified

and discussed.

In chapter 3, we develop a no-slip boundary condition for the wall-bounded DPD

fluid systems and an outflow boundary condition for open fluid systems with multiple

outlets. The boundary methods are validated by comparing the DPD simulation

results with the continuum (Navier-Stokes equation) results.

In chapter 4, we present an application of the DPD method in simulating the

blood flow in small vessels. By analyzing the micro-structures and local viscosities

of the blood flow, we identify a non-continuum to continuum transition as the tube

diameter increases to above 100µm.

In chapter 5, we develop a multi-scale model of the sickle red blood cell basing

on Dissipative Particle Dynamics, where different cell morphology and membrane

properties can be incorporated. We implement this model to study the rheology and

hemodynamics of the sickle blood in both shear and tube flow systems.

In chapter 6, we develop a coarse-grained model of the intracellular aligned

hemoglobin polymer. We use this model to investigate the morphological transition

process of the sickle red blood cells. The heterogeneous cell morphologies are com-

pared with the experimental data using different structural factors (circular shape
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factor, elliptical shape factor, etc.).

In chapter 7, we use the sickle red blood cell model developed in Chap. 4 to study

the vaso-occlusion crisis in sickle cell anemia. By investigating the adhesive capabil-

ities among the heterogeneous cell groups, we identify the specific hemodynamical

conditions that trigger the vaso-occlusion conditions. We compare the simulation

results with the ex vivo experimental observations.

We conclude in chapter 8 with a brief discussion about the future work.



Chapter 2

Direct construction of Dissipatve

Particle Dynamics system from

microscopic system

2.1 Introduction

Many of the macroscopic phenomena observed for soft matter, such as liquid crys-

tals, polymers, and colloids are consequences of physical processes at the microscopic

level. It is usually extremely difficult and even beyond computational capacity to

describe these systems at the microscopic level due to the short time scale and the

large number of microscopic particles. Alternatively, many coarse-grained methods

such as Langevin Dynamics [135], Smooth Particle Hydrodynamics (SPH) [106, 58],

and Dissipative Particle Dynamics (DPD) [71] have been proposed to describe sys-

tems at mesoscopic scales, in which the force parameters are chosen to match some

macroscopic properties, e.g., compressibility [60] or diffusivity [117, 95, 101]. Physi-

cally, any system at a certain level of interest can be described by its Hamiltonian, its

governing equations and interaction parameters, all deduced from a more fundamen-

tal description. At the microscopic level, the long-range term of the Lennard-Jones

8
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potential can be derived from a two-body renormalized dipole-dipole interaction in

quantum electrodynamics. Similarly, the coarse-grained (CG) description at the

mesoscale level employs a procedure for eliminating the fast microscopic variables of

atoms or molecules and deducing the evolution of mesoscopic variables with slower

dynamic modes [37]. Therefore, it is of great interest to explore if the parameters

of the effective forces of the mesoscopic models can be directly evaluated from the

microscopic level by a general method.

From the classical Liouville equation, Zwanzig [153] and Mori [115] introduced

the projector operator method, which provides the theoretical basis for the coarse-

graining procedure. Several studies have been reported on the application of this

method to different systems, e.g., the one-dimensional harmonic chain [37], the single

tagged particle [149, 138], and the polymer chain [3]. Recently, a more generalized

equation of motion for coarse-grained many-body systems was proposed by Kinjo

and Hyodo [90], which describes the dynamics of the mesoscopic variables with an

explicit relationship to the microscopic description. It can be viewed as a “priori” CG

equation from which the Langevin Dynamics and Dissipative Particle Dynamics can

be derived from different assumptions. The generalized equation of motion consists

of three types of forces: the ensemble average conservative force, the random force

reflecting the microscopic fluctuations around the ensemble average force, and the

friction force determined from the time correlation of the random force. The latter

two are the dissipation and noise terms originating from the eliminated degrees of

freedom as a consequence of the coarse graining [37].

The static properties of the CG system are closely related to the average force

field. Extensive studies on this relation have been reported for many different sys-

tems [39, 91, 105, 89, 4, 63, 56]. Espanol [39] modeled the DPD particles by grouping

several LJ particles into clusters, and derived the conservative force field from the

radial distribution function of the clusters. Akkermans and Briels [4] computed the

effective force field by minimizing the free energy difference between the CG and
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MD systems. Harmandaris et al. [63] and Fukunaga et al. [56] extracted the effective

force field for complex polymers from the distribution functions of the bond length,

bending angle and torsion angle. However, much less work has focused on the dis-

sipative and random forces of the coarse-grained systems, which play a crucial role

in determining the dynamic properties of the CG system. To this end, Akkermans

and Briels [3] computed the Langevin-type friction force for a single tagged chain.

Eriksson et al. [35] estimated the dissipative force term of DPD system by the force

covariance function. The absence of the dissipation and random terms introduces

an ambiguity on the time scale of the CG system, which is typically resolved by

matching the diffusivities of the two systems. However, for complex fluid problems

such simple matching may not be applicable as more than one dynamic property are

involved.

The aim of this chapter is to construct a mesoscopic system of clusters of micro-

scopic particles governed by the Lennard-Jones potential and investigate its behavior.

The dissipative and random force as well as the effective mean force are evaluated

directly from the microscopic system. Both static and dynamic properties are eval-

uated in terms of the reduced LJ units without re-scaling the time unit between

the two systems. Both Langevin and DPD simulations are performed separately de-

pending on the different random force models we choose. In this respect, we expect

similar results for both static and dynamic properties between the CG and micro-

scopic simulation results. By such comparisons we expect to gain some insight into

the relationship between the two levels of description.

The chapter is organized as follows. In Sec. 2.2, we review the general CG

equation proposed by Kinjo and Hyodo, and simplify it with further approximations.

In Sec. 2.3, we construct a microscopic model from which we extract the force field

for the CG model of the system. In Sec. 2.4, we investigate the CG system governed

by the Langevin and the DPD equations of motion and compare the results with MD

simulations. In Sec. 2.5, we discuss the effect of different types of CG force fields.
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We conclude in Sec. 2.6 with a brief discussion.

2.2 Theoretical background

Let us consider a microscopic system with N particles, each with mass m. The

Hamiltonian of the system is

H =

N
∑

i=1

p2
i

2m
+

N
∑

i<j

v (|ri − rj|) , (2.1)

where p is the particle momentum and v (r) stands for the potential energy between

two atomistic particles. If we divide the system into K groups with Nµ particles in

each group, then the Hamiltonian can be rewritten with respect to the coordinate

of center of mass (COM) of each group and relative positions of each particle to its

group, i.e.,

H =

K
∑

µ=1

Pµ
2

2Mµ
+

K
∑

µ=1

Nµ
∑

µi=1

p′2
µi

2mµi

+

K
∑

µ<ν

V (|Rµ − Rν |)

+
K

∑

µ=1

Nµ
∑

µi<µj

v
(
∣

∣r′µi
− r′µj

∣

∣

)

, (2.2)

where Mµ is the mass of group µ, and mµi
is the mass of ith particle in group µ.

Rµ and Pµ denote the position of the COM and the total momentum of the group

µ, respectively, while V (R) is the interaction potential between two groups µ and

ν. Also, r′µi
and p′

µi
are the relative position and momentum, respectively, of ith

particle with respect to the COM of group µ, where

p′µi = pµi −
mµi

Mµ
Pµ. (2.3)

If the system is in the NVT ensemble, Eq. (2.1) and Eq. (2.2) reveal that the atomistic

particles and the clusters are coupled with a thermostat at the same temperature.
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This is based on the equi-partition theorem, as shown below in Eq. (2.4), noting

that the added K quadratic terms in Eq. (2.2) are eliminated by the K constraints

implied by Eq. (2.3).
〈

p2
i

2mi

〉

=

〈

P2
µ

2Mµ

〉

=
3

2
kBT. (2.4)

Therefore, if we coarse grain the original atomistic system into K clusters, the re-

sulting system will be thermodynamically consistent.

The equation of motion of the CG groups in this system, derived by Kinjo and

Hyodo [90], can be approximated by

Ṗµ =
1

β

∂

∂Rµ
lnω (R) − β

K
∑

ν=1

∫ t

0

ds
〈[

δFQ
µ (t − s)

]

⊗
[

δFQ
ν (0)

]T
〉 Pν (s)

Mν

+ δFQ
µ (t) , (2.5)

where β = 1/kBT and R ∈ R
3K is a point in the phase space of the CG groups 1. The

three terms on the right-hand-side of Eq. (2.5) represent the average conservative,

dissipative, and random forces, respectively. Our objective is to evaluate the three

terms directly from a specific microscopic model with further approximations, as

discussed below.

Here, ω (R) in the first term can be viewed as a normalized partition function of

all the microscopic configurations corresponding to point R in the CG phase space

defined by:

ω(R) =

∫

dN r̂ δ
(

R̂ − R
)

e−βU

∫

dN r̂ e−βU

, (2.6)

where U is the potential energy of the atomistic system. Therefore, the first term is

the ensemble average force on group µ over all the microscopic phase points corre-

sponding to a specific CG phase point R, denoted as 〈Fµ〉ΓS
.

1A point in phase space is (R,P) ∈ R
6K , but here we neglect the momentum part.
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The last term δFQ
µ (t) is the fluctuating force on group µ. The second term is

the dissipative force, which contains an integral of the memory kernel of the random

force. A direct computation of this term is very difficult, even for the 1D harmonic

chain [37]. In practice, if the typical time scale of the momentum and random force

correlation of the CG cluster is separable (e.g., if the correlation function of the

velocity decays much more slowly than the correlation function of the random force,

as we will show in Sec. 2.4), we can make a Markovian approximation as

〈

[

δFQ
µ (t − s)

] [

δFQ
ν (0)

]T
〉

= 2Γµνδ (t − s) , (2.7)

∫ t

0

ds
〈

[

δFQ
µ (t − s)

] [

δFQ
ν (0)

]T
〉 Pν (s)

Mν
= Γµν

Pν (t)

Mν
, (2.8)

where the factor 2 in Eq. (2.7) comes from the integration over the delta function

from 0, and Γµν is the friction matrix defined by

Γµν ≡
∫ ∞

0

dt
〈

[

δFQ
µ (t)

] [

δFQ
ν (0)

]T
〉

. (2.9)

Given Eq. (2.7) and (2.8), the general CG Eq. (2.5) can be approximated as a real

time equation, i.e, it does not depend on the time history. Hence, each term can be

evaluated by microscopic simulation methods, as shown in the next section.

2.3 Microscopic model

2.3.1 Lennard-Jones system

We employ molecular dynamics (MD) simulation in a 20×20×20 box with periodic

boundary conditions. We run several different cases but the largest size is 6400

particles governed by the Lennard-Jones (LJ) potential, adjusted to vanish at the
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cutoff radius rc,

v (r) = vLJ (r) − vLJ (rc) , (2.10)

vLJ (r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

,

where rc is 2.5σ. All the quantities in this and the following sections are evaluated in

the reduced LJ units (e.g., the length, mass and energy units are σ, 1, ǫ respectively).

The particles are grouped into K clusters with Nc particles per cluster. The cluster

number density is defined as

ρc = ρ/Nc, (2.11)

where ρ is the number density of the LJ system. For each cluster, the LJ particles

are subject to the constraint of constant radius of gyration (Rg), i.e.,

1

Nc

Nc
∑

i=1

(rµ
i −Rµ)

2
= R2

g = constant, (2.12)

where Rµ is the COM of the cluster µ, as shown in Fig. 2.1. The radius of gyration

Rg is a natural measure of the cluster size. Although the LJ particles may wander

across the cluster surfaces, the constraint associates the constituent particles with a

specific cluster so that the dynamic properties of the clusters can be evaluated [89].

It defines the inner number density of the atomistic particles inside each cluster

ρinner = Nc/
4

3
πR3

g. (2.13)

The system was simulated in a NVT ensemble with the Nose-Hoover thermostat

and the RATTLE algorithm to deal with the constraints [108, 6]. The time step was

varied from 5 × 10−4 to 10−3.

Theoretically, the coarse-grained potential field of the clusters UCG(R) depends

on the K-body configuration {R} ≡ (R1,R2, ...,RK , ρc, T ), as does the average force



15

Figure 2.1: A sketch of the force between two clusters. Small spheres represent
atomistic particles while shells represent CG particles. The force vectors drawn in
the figure correspond to the instantaneous forces obtained from the MD simulation.
The total force Fµν between two clusters is generally not parallel to the radial vector
eµν .

〈Fµ〉ΓS
on cluster µ, which is difficult to evaluate directly. If we approximate the

mean field force on a single cluster by pair-wise forces with respect to other clus-

ters [89], 〈Fµ〉ΓS
can be simplified as

∑

ν 6=µ 〈f (Rµν)〉, where 〈f(r)〉 is the average pair

force between two clusters and can be obtained by the MD simulation with specific

cluster density ρc and temperature kBT . (We note, however, that this assumption

may lead to erroneous results at high densities, as we will discuss later in Sec. 2.4.)

To compute the average pair force 〈f(r)〉, we divide the distance between two clusters

into several bins with dr the distance between each bin. Then, 〈f(r)〉 is obtained

by taking the ensemble average of the radial component of the instantaneous force

fµν between two clusters µ and ν, over all microscopic configurations with the pair

distance between r − dr/2 and r + dr/2, i.e.,

〈f(r)〉 =

〈

fµν ·
Rµν

Rµν

〉

r−dr/2<Rµν<r+dr/2

. (2.14)

We also introduce the corresponding pair potential of mean force 〈V (r)〉 as the spatial
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integration of 〈f(r)〉, i.e.,

〈V (r)〉 =

∫ ∞

r

〈f(r′)〉 dr′. (2.15)

From the simulations, we found that the average force (potential) field depends on

the temperature kBT , the radius of gyration Rg, the number of particle within each

cluster Nc, and the number density of the clusters ρc. We discuss our findings in

detail below.

2.3.2 Simulation Results

We examine the average pair force 〈f(r)〉 for two different values Rg = 0.95 and

Rg = 1.4397 (the latter value is chosen so that ρinner ≡ ρ = 0.8). Fig. 2.2 shows the

temperature-scaled pair potential β 〈V (r)〉 for ρc = 0.08 and Nc = 10. Compared to

the LJ system, the CG potential field for both Rg values show softer and temperature-

dependent properties. For Rg = 1.4397, the potential field is similar to the Gaussian

chain model [105]. For Rg = 0.95, the clusters behave more like a “single” LJ

particle and therefore the force field is stiffer with a stronger repulsive force and

deeper attractive well. With temperature between 2.0 and 5.0, both force fields

collapse approximately onto a single curve; this property will be discussed further in

conjunction with the results of static properties later in this section.

We also examine the potential field with different number of particle per cluster

Nc, whereas the inner density ρinner is the same that at Nc = 10 by choosing the

proper value of Rg. Similar temperature dependence is observed. Moreover, if we

scale the potential by Nc and the distance by Rg, the potential functions approxi-

mately collapse into a single curve, as shown in Fig. 2.3. Based on the results we

obtained, we can propose the following scaling:
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Figure 2.2: Potential of the average pair force scaled by temperature, with ρ = 0.8,
Nc = 10, Rg = 0.95 (left) and Rg = 1.4397 (right).
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Figure 2.3: Potential of the average pair force scaled by Nc with kBT = 3.0, ρ = 0.8,
Nc = 10, Rg = 0.95 (left) and Rg = 1.4397(right).



18

r

<
V

(r
)>

1 2 3 4 5

0

10

20

30

ρC = 0.01
ρC = 0.04
ρC = 0.08

r

<
V

(r
)>

1 2 3 4 5
0

20

40

60

80

ρC = 0.04
ρC = 0.06
ρC = 0.08

Figure 2.4: Potential of the average pair force for different densities with Nc = 10,
kBT = 3.0, Rg = 0.95 (left) and Rg = 1.4397 (right).

〈f(r)〉 ∼ NckBT

Rg
h(r/Rg)

〈V (r)〉 ∼ NckBTg(r/Rg),

(2.16)

where h(r) = −dg(r)/dr and g(r) are dimensionless functions depending on ρc and

ρinner. Note that these simulation results are similar to the scaling relationship for

an unconstrained DPD system as derived in [55].

Fig. 2.4 shows 〈f(r)〉 for different number densities ρc at fixed temperature kBT =

3.0. Compared with the Rg = 0.95 case, 〈f(r)〉 for Rg = 1.4397 depends strongly on

ρc, indicating a significant many-body effect, which may affect the properties of the

coarse-grained system, as discussed in Sec. 2.4.

Having obtained the CG force field, we now turn to the static and dynamic

properties of the system. Fig. 2.5 shows the radial distribution function g(r) of the

clusters at different temperatures. For Rg = 1.4397, g(r) is flat and similar to the

standard DPD result, while for Rg = 0.95, g(r) is much sharper, similar to the
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Figure 2.5: Radial distribution function g(r) computed for different temperatures,
with ρ = 0.8, Nc = 10, Rg = 0.95 and Rg = 1.4397. For the latter case, the three
curves coincide.

“single” LJ particle result as expected. Unlike the simple fluid system, the radial

distribution function shows very weak dependence on temperature between 2.0 and

5.0. This result can be readily understood from the weak temperature-dependence

of 〈V (r)〉 shown in Fig. 2.2.

For dynamic properties, we determine the self-diffusivity of the clusters in the

MD system by the Einstein relationship

D = lim
t→∞

1

6t
< |Rµ(t) −Rµ(0)|2 > . (2.17)

We determine the viscosity of the MD system by the periodic Poiseuille flow method [10]

and Lees-Edwards Couette flow. The velocity profile obtained for the periodic

Poiseuille flow is shown in Fig. 2.6. For simulation details, we refer to [10]. The

dynamic properties are listed in table 2.1.
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ρ Rg D η Sc

0.8 0.95 0.0234 7.41 395
0.4 0.95 0.271 1.05 9.69
0.8 1.4397 0.0255 7.08 347
0.4 1.4397 0.141 1.66 29.4

Table 2.1: Dynamic properties for the MD system with kBT = 3.0, Nc = 10; D, η
and Sc stand for diffusivity, dynamic viscosity, and Schmidt number, respectively.
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Figure 2.6: Velocity profiles obtained using the periodic Poiseuille flow method.
The square and circle symbols represent velocity profiles for ρ = 0.8 and ρ = 0.4,
respectively. The lines are quadratic fit curves for each case. The body force gz is
added on each atomistic particle; gz is chosen as 0.02 and 0.005 for ρ = 0.8 and
ρ = 0.4, respectively. The box size is changed to 30×15×15 in this test and the
temperature is kBT = 3.0.
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2.4 Coarse Grained Models

To investigate the relationship between the two different scales we construct different

mesoscale models based on the microscopic results in previous section. Specifically,

we construct CG clusters whose mass is the sum of the mass of MD particles within

each cluster. The CG system remains in the canonical ensemble at the same tem-

perature kBT .

2.4.1 Mean force field approach

We start with a very simple model where we employ only the average force field,

i.e., the first term in Eq. (2.5). The static properties are determined by this term.

Fig. 2.7 compares the Equation of State (EOS) of the CG system with the MD

system. The results are close to the MD results with a difference less than 2%.

Fig. 2.8 compares the radial distribution function of the system. For Rg = 0.95,

the results of the MD and CG systems match well over the entire density regime.

However, for Rg = 1.4397 and ρc = 0.08, the CG result shows a sharper peak than

the MD result. Similar differences have been reported for flexible polymer chains

in [56, 4]. In contrast, Akkermans and Briels [5] proposed a structure-based effective

potential which reproduces the radial distribution of coarse-grained polymer system

over the entire density regime. However, it generates a pressure much lower than the

MD system. These differences are primarily due to the approximation of the clusters

as point particles and the absence of the full many-body interaction, which plays an

important role at high density and larger Rg.

In general, the mean field by itself cannot reproduce the correct dynamic prop-

erties of the CG system. As an illustration, we calculate the self-diffusion coeffi-

cient and the dynamic viscosity for CG system of Rg = 1.4397 with ρc = 0.08 and

kBT = 3.0. The results are DMF = 0.53 and ηMF = 0.74 respectively, indicating

a larger mass transport and smaller momentum transport, compared with the MD
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Figure 2.7: Pressure computed by MD and CG simulations for Nc = 10, kBT = 3.0
with Rg = 0.95 and Rg = 1.4397.

system (DMD = 0.0255, ηMD = 7.08). Moreover, this discrepancy cannot be elimi-

nated by simply re-scaling the units of the CG system. Specifically, if we artificially

match the diffusivity of two system by re-scaling the time unit of the CG system

while keeping the length and mass units fixed, the scaled time unit of CG system

is [t]MF = 20.78[t]MD. Consequently, the dynamic viscosity of the CG system, by

the mean field model, should be 0.74[M ]/[L][t]MF = 0.0356[M ]/[L][t]MD, which is

different from the MD result ηMD = 7.08. In particular, the dimensionless Schmidt

number is different in the two systems. In the MD system, ScMD is around 347 (see

table I) while in the mean field ScMF is around 1. Therefore, the dissipative and

random force terms in Eq. (2.5) cannot be neglected, if the dynamic properties are

considered.
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and ρc = 0.04, with Rg = 0.95 (left) and 1.4397 (right). The lines denote the MD
simulation results. The symbols correspond to MD simulations.

2.4.2 Langevin thermostat approach

Next, we discuss a model including the dissipative and random force terms. We

assume that the random force of each component on each CG particle is an identical

independently distributed (i.i.d.) variable and hence Eq. (2.8) and Eq. (2.7) are

simplified, respectively, as

β

∫ t

0

ds
〈

[

δFQ
µ (t − s)

]

⊗
[

δFQ
ν (0)

]T
〉

=
1

2
βσ2δµνI, (2.18)

〈

δFQ
µx(0) · δFQ

νy(t)
〉

= σ2δµνδxyδ(t), (2.19)

where I is the identity matrix, and we define γ = 0.5βσ2 as the friction coefficient.

The fluctuation-dissipation theorem is satisfied, and Eq. (2.5) simplifies to:

Ṗµ =
∑

ν 6=µ

〈f(rµν)〉 eµν − γVµ + δFQ
µ , (2.20)
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Figure 2.9: Computation of the Langevin thermostat coefficient. (a-b): Time correla-
tion of the velocity and random force on each cluster for ρ = 0.8, Nc = 10, kBT = 3.0.
The solid line denotes ensemble correlation of the x-component of total random force
on a cluster. The dashed line denotes the velocity correlation of the x-component.
(c-d): Time integration of correlation defined by γ(t) = β

∫ t

0

〈

δFQ
µx(0)δFQ

µx(t − s)
〉

ds.
The result converges when t ≈ 3.0 for Rg = 0.95 and t ≈ 15.0 for Rg = 1.4397.
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where Vµ is the velocity of the CG particle. This model states that the motion

of the CG particles is coupled with the standard Langevin thermostat [135, 93],

as implemented in the coarse-grained polymer melts [117]. Note that the friction

coefficient γ is not casually chosen but computed by Eq. (2.18).

The instantaneous random force term on a single cluster µ is δFQ
µ = Fµ − 〈Fµ〉,

where 〈Fµ〉 is a function depending on K − body configurations of the system, which

is difficult to evaluate directly. In practice, we approximate 〈Fµ〉 by decomposing it

into pairwise functions as discussed in Sec. 2.3.1. Accordingly, we approximate δFQ
µ

as

δFQ
µ ≈

∑

ν 6=µ

δfQµν , (2.21)

where δfQµν is the pairwise random force between cluster µ and ν, defined as

δfQµν = fµν − 〈f(r)〉 eµν , (2.22)

where fµν is the instantaneous force between the two clusters.

Fig. 2.9 shows the correlation function of the random force on a single cluster. It

also verifies the Markovian approximation in Eq. (2.8) since the autocorrelation of

velocity decays slower than the random force correlation. The friction coefficient is

obtained by taking the long-time integration of the random force correlation function

until a converged value is obtained.

Having obtained the friction coefficient, we are ready to simulate the CG system

by Eq. (2.20) using the standard algorithm [6]. The temperature is kept constant

by the Langevin thermostat and the static properties are determined by the mean

force term as shown in the previous section. For Rg = 0.95 and ρc = 0.08 (ρ = 0.8),

the self-diffusion coefficient determined by this method is DLD = 0.0063, which is

approximately four times smaller than the MD result (DMD = 0.0234), see table I.

Moreover, this CG system does not capture the correct hydrodynamics. This

result originates from Eq. (2.19), which assumes that the random force on each CG
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particle is independent and therefore cannot be represented in a pairwise fashion.

Physically, it appears that each CG particle is surrounded by some heat bath parti-

cles [32], and the random force on each particle arises from thermal collisions with

heat bath particles. Therefore, the momentum transport between two clusters in

the MD system is modeled in two parts: the pairwise interaction between the two

CG particles through the mean force field, and the thermal collisions with the heat

bath particles represented as the i.i.d. force δFQ on each particle. Specifically, if the

conservative interaction is much larger than the thermal collision effect, the system

approaches the Newtonian regime [122]. However, if the friction and random forces

become comparable with the conservative force (as in the case of this study), the

Langevin thermostat significantly damps the hydrodynamic correlation [32] between

the particles, and the system cannot reproduce the correct hydrodynamics [122, 142].

In this study, the loss of momentum transport between the CG particles in the ran-

dom force field eliminates the information needed for the calculation of viscosity.

2.4.3 Dissipative Particle Dynamics (DPD)

To establish the correlation of the random force between different CG clusters, we

decompose the random force into additive pairwise components between different

particles. Generally, the random force δfQµν defined by Eq. (2.22) is not along the

radial direction eµν , as shown in Fig. 2.1. Therefore, we decompose δfQµν into two

parts: the radial force along eµν and the perpendicular part, e.g.,

δfQµν = eµνe
T
µνδf

Q
µν + (I − eµνe

T
µν)δf

Q
µν

= δfQ
µν,‖eµν + δfQµν,⊥, (2.23)
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where δfQµν,⊥ is the perpendicular part of the random force. We assume that the

random force pairs are independent and uncorrelated in time, i.e.,

〈

δfQ
µν,‖(0)δfQ

ǫη,‖(t)
〉

=
[

σ‖w‖(R)
]2 K(t)

〈

δfQµν,⊥(0) · δfQǫη,⊥(t)
〉

= 2 [σ⊥w⊥(R)]2 K(t), (2.24)

where σ‖w‖ (R) and σ⊥w⊥ (R) are the variances of the random force depending on

the distance R, and

K(t) = (δµǫδνη + δµηδνǫ) δ(t). (2.25)

These assumptions lead to

〈

δfQµν (0) δfQǫη(t)
T
〉

= (δµǫδνη − δµηδνǫ)

×
〈

δfQµν (0) δfQµν(t)
T
〉

. (2.26)

In addition, the memory kernel

∫ ∞

0

〈

δfQµν(0)δfQµν(t)
T
〉

dt is isotropic in planes per-

pendicular to eµν . Therefore, we decompose the matrix as

γµν = β

∫ ∞

0

〈

δfQµν(0)δfQµν(t)
T
〉

dt

= γ‖(Rµν)eµνe
T
µν + γ⊥ (Rµν)

(

I − eµνe
T
µν

)

, (2.27)

where γ‖ and γ⊥ are scalars depending on Rµν . Using Eq. (2.24), they are determined

by

γ‖ (Rµν) = eT
µνγµνeµν

= β

∫ ∞

0

dt
〈

δfQ
µν,‖(0)δfQ

µν,‖(t)
〉

=
1

2
β

[

σ‖w‖(Rµν)
]2

(2.28)
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γ⊥ (Rµν) =
1

2
Tr

[(

I − eµνe
T
µν

)

γµν

(

I − eµνe
T
µν

)]

=
1

2
βTr

[
∫ ∞

0

〈(

I− eµνe
T
µν

)

δfQµν(0)δfQµν(t)
T

⊗
(

I − eµνe
T
µν

)〉

dt
]

=
1

2
β

∫ ∞

0

〈

δfQµν,⊥(0) · δfQµν,⊥(t)
〉

dt

=
1

2
β [σ⊥w⊥(Rµν)]

2 . (2.29)

The dissipative force on a single cluster µ is then obtained from:

β
∑

η

∫ ∞

0

〈

FQ
µ (s)FQ

η (0)T
〉

dsVη

= β
∑

η

∑

ν 6=µ

∑

ǫ 6=η

∫ ∞

0

〈

fQµν(s)f
Q
ηǫ(0)T

〉

dsVη

=
∑

η

∑

ν 6=µ

∑

ǫ 6=η

(δµηδνǫ − δµǫδνη)
[

γ‖(Rµν)eµνe
T
µν + γ⊥ (Rµν)

(

I − eµνe
T
µν

)]

Vη

=
∑

ν 6=µ

γ‖ (Rµν) eµνe
T
µν (Vµ −Vν) +

∑

ν 6=µ

γ⊥ (Rµν)
(

I − eµνe
T
µν

)

(Vµ −Vν)

=
∑

ν 6=µ

γ‖ (Rµν) (eµν · Vµν) eµν +
∑

ν 6=µ

γ⊥ (Rµν) (Vµν − (eµν ·Vµν) eµν) . (2.30)

Similar to Eq. (2.8), the above approximation replaces the continuously varying

impulses on a CG particle by discrete time-independent values, along both the radial

and perpendicular directions for each pair. The first term on the right hand side of the

above equation is the dissipative force of standard DPD [60, 90, 40]. The second term

represents the friction between two CG particles along the perpendicular directions.

This is exactly the dissipative force for the “transverse DPD thermostat”, recently

proposed by Junghans et al. [78]. Putting the three terms together, we obtain the

generalized DPD equation:
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Ṗµ =
∑

ν 6=µ

〈f(rµν)〉 eµν −
∑

ν 6=µ

γ‖ (Rµν) (eµν · Vµν) eµν

+
∑

ν 6=µ

γ⊥ (Rµν) (Vµν − (eµν · Vµν) eµν) +
∑

ν

δfQµν ,
(2.31)

Specifically, we use Eq. (2.28) and Eq. (2.29) to calculate the friction coefficient in

the radial and perpendicular directions, with δfQ
µν,‖ and δfQµν,⊥ defined by Eq. (2.23).

Noting that the radial vector eµν changes with time, the random force terms δfQ
µν,‖(t)

and δfQ
µν,⊥(t) are defined by projecting δFQ

µν(t) onto the vector eµν at time zero.

Fig. 2.10(a) and Fig. 2.10(b) show the random force correlation along both the

parallel and perpendicular direction. For Rg = 0.95, the clusters behave like the

“single” particles, and the radial part of random force dominates for most distances.

However, for the larger Rg = 1.4397, the shearing part becomes comparable to the

radial part, and the integration converges for longer times, as shown in Fig. 2.10(d).

Fig. 2.11 shows the friction coefficients for different distances with Rg = 0.95,

kBT = 3.0 . We fit the γ‖ and γ⊥ by polynomials a(1.0 − r/b)n, where n is 4.0 and

3.0, respectively. Using the fitted function form of γ, we simulate the CG system by

DPD using both the radial and the shear thermostat [78]. In Fig. 2.12 and Fig. 2.13,

we show the mean square displacement of the CG system in the long-time region and

the velocity correlations in short-time region. The difference in the results obtained

with the best fit and the original points is less than 5%. Fig. 2.14 shows velocity

profiles from both the MD and DPD systems obtained by the periodic Poiseuille flow

method. As the momentum transport between clusters is represented by pairwise

forces, the simulation results recover Newtonian flow behavior in this model, as

expected. The dynamic properties of the DPD system are listed in table 2.2.

The DPD results show smaller diffusivities and larger viscosities compared with

the MD results, the deviations being different for the four cases. For Rg = 0.95,

the difference of the diffusivity is about 16% and 1.2% for DPD densities ρc =
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Figure 2.10: Upper: Time correlation of the pairwise random force between two
clusters for ρ = 0.8, Nc = 10, kBT = 3.0, with (a) Rg = 0.95, r = 2.65 and
(b) Rg = 1.4397, r = 2.25. The solid line is the radial part and the dash line is
the perpendicular part. The velocity correlation function decays slower than the
random force as shown. Lower: time integration of the correlation function with (c)
Rg = 0.95, r = 2.65 and (d) Rg = 1.4397, r = 2.25.
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Figure 2.11: Radial and shear friction coefficients for Rg = 0.95; the solid line
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.

0.08 and 0.04, respectively. For Rg = 1.4397, the difference is about 80% and

25%, respectively. The differences are due mainly to two factors: the Markovian

approximation and the overestimation of the friction coefficient. Firstly, the DPD

model we have derived is based on the assumption that the velocity correlation

of the CG particles decays more slowly than the random force correlation. When

the density is high and the velocity correlation is comparable to the random force

correlation, the DPD particles would be overdamped (see, ref [3]), which explains

why we get better results in the semi-dilute regime. Secondly, the friction coefficient

we use is overestimated since we lack the “full” information of the force field for

the CG system [19]. Physically, the many-body potential field UCG(RK) is the

mean field which minimizes the random force covariance. It depends on the entire

particle configuration of the CG system. Therefore, the pairwise mean force field

implemented in this study would always lead to overestimated friction coefficients.

In this study, when the many-body effect is important (e.g., Rg = 1.4397, ρ = 0.8,
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Rg D η Sc

ρ = 0.8 0.95 0.0234 7.41 395
ρDPD = 0.08 0.95 0.0195 9.69 621

ρ = 0.4 0.95 0.271 1.05 9.69
ρDPD = 0.04 0.95 0.269 1.075 9.98

ρ = 0.8 1.4397 0.0255 7.08 347
ρDPD = 0.08 1.4397 0.00525 41.23 9.81 × 103

ρ = 0.4 1.4397 0.141 1.66 29.4
ρDPD = 0.04 1.4397 0.133 2.26 42.47

Table 2.2: Dynamic properties for MD and CG system with kBT = 3.0, Nc = 10

see Fig. 2.4), γ(r) is largely overestimated in this pairwise style and the diffusivity of

the DPD system is only 20% of the MD results. For the other three cases, the many-

body effect is less important and the pairwise mean field we use can approximate

UCG(RK). The friction coefficient can be accurately estimated and therefore the

DPD results match reasonably well with the MD results.

2.5 Other potentials

As shown in the previous sections, while the mean force field 〈f(r)〉 we chose repro-

duces the EOS in a wide density range, it does not reproduce the structure properites

of the MD system in the high density regime when Rg is large. On the other hand,

several methods [105, 5, 143, 107] have been proposed for obtaining a structure-

based effective potential Veff(r), which reproduces the pair distribution function of

the MD system. Therefore, it is worthwhile exploring if a structure-based force field

can improve the dynamic property predictions.

For demonstration, we compute the pair distribution function by MD simulation

with Rg = 1.2 and ρ = 0.8. An iterative method [143] is used to obtain Veff(r),

where 〈V (r)〉 is used as the inital guess. As shown in Fig. 2.15, Veff(r) shows a

longer attractive tail compared with the mean field result, and it reproduces the pair
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distribution function. However, the pressure obtained is 5.37, which is approximately

18% lower than the MD result. In contrast, with our approach EOS is reproduced

very accurately.

Next, Veff(r) is used as the input for Eq. (2.28) and Eq. (2.29) to compute the

dissipative force term and the dynamic properties of the CG system are revisited.

As shown in Fig. 2.16, both the velocity correlation and mean square displacement

obtained from Veff(r) show smaller values than the MD results. No obvious improve-

ment is observed compared with the mean field results. This result is reasonable and

consistent with what we expect. Although the pairwise effective potential Veff(r)

can mimic the higher order interactions of the MD system and can reproduce the

second order correlation (radial distribution function) (as shown in Fig. 2.15), the

higher order correlations of the MD system may not be reproduced. The instanta-

neous random force δfQ
µν,‖(t) and δfQ

µν,⊥(t) in Eq. (2.28) and Eq. (2.29) may still be

far from the real value, depending on the strength of the higher order correlation of

the MD system.

Finally, we also checked the coarse-graining results with the Weeks-Chandler-

Andersen (WCA) potential as the input interaction between the MD particles. Both

static and dynamic properties show qualitively similar results with the previous

sections, e.g., we can represent the MD clusters by DPD particles and predict the

friction coefficient reasonably well in semi-dilute regime or Rg relatively small, which

indicates that the approach we use is quite general and may be extended to many

other systems.

2.6 Summary and Discussion

Starting from a microscopic simulation of LJ clusters in a canonical ensemble, we

conducted mesoscopic simulations of the system by coarse-graining clusters that we

constructed with fixed radius of gyration and represented them as point particles.
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The mean, dissipative and random forces needed for the motion of the CG particles

are extracted from the microscopic simulation. In particular, the mean force field

is approximated by the ensemble average of the pairwise atomistic force between

two clusters, and we find that its corresponding potential is proportional to the

number of particles per cluster. We also approximated the memory kernel of the

dissipative force with two different assumptions, leading to Langevin Dynamics and

Dissipative Particle Dynamics (DPD), the latter endowed with two thermostats.

While both models produce the same static properties, the Langevin model requires

extra hydrodynamic information as input to produce the correct dynamic properties.

On the other hand, DPD seems to be a good candidate for reproducing the correct

mass and momentum transport properties. Compared to the MD results, the DPD

results can approximate the dynamic properties reasonably well when the many-

body effect of microscopic system is not too strong (e.g., for small Rg or semi-dilute

system). However, the DPD model is not so successful when the many-body effect

is very strong, i.e., for large density and Rg. We note that we also tested DPD with

a single thermostat, i.e. neglecting the perpendicular contribution as it is typically

done in standard DPD simulations. In that case, we did not achieve as good in

accuracy for the dynamic properties for the small Rg cases as we did with the two-

thermostat DPD but the results for the high Rg cases were slightly better.

This work provides a general framework for constructing a “bottom-up” meso-

scopic simulation directly from the microscopic level, with explicit relationships be-

tween the two hierarchies. It can be extended to the mesoscopic description of com-

plex fluid systems in the dilute and semi-dilute regime, e.g., star polymers, flexible

polymer chains and mixture of polymer and colloid systems. The friction coefficients

can be extracted from microscopic sample systems in pilot simulations within afford-

able computation time. Hence, coarse-grained simulation of a large system at the

mesoscopic level can be conducted with the various dynamic properties evaluated

directly, i.e., without any scaling ambiguities.
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We note, however, that in the present study the friction coefficient was computed

with data from equilibrium MD simulations and this may affect the computation

of the dynamic viscosity, which was obtained here based on CG simulations of a

periodic Poiseuille or Couette flow. It will be interesting in the future to investigate

whether improved predictions of the dynamic viscosity can be achieved if the friction

coefficients are based on non-equilibrium MD simulations. We also note the similarity

of the “parallel-normal” thermostat in the current work with a similar thermostat

employed in the single-particle DPD version in [120, 38] where a shear drag coefficient

is imposed explicitly.

Another natural extension of this work is to construct friction force models, where

a more sophisticated mean force field is implemented in the coarse-grained system.

In the high density regime, the pairwise mean field in this study may not be ad-

equate to describe the full coarse-grained potential field UCG(RK), leading to the

overestimation of the memory kernel of the dissipative term. In these cases, a mean

field that incorporates the “many-body” information may lead to a more accurate

dissipative force and therefore more accurate prediction of the dynamic properties.

Finally, rather than a constrained microscopic system, it would be interesting to

coarse grain the unconstrained LJ fluid by the DPD model of this study, especially

with regards to the computation of the dissipative force term. In this direction,

some work has been done in this direction is by Eriksson et al. [35], and also Flekkoy

et al. [53]. It would be interesting to directly compute the dissipative force term

of the coarse-grained LJ fluid by the method of this study and compare the DPD

predictions of dynamic properties with those of the LJ fluid.



Chapter 3

No-slip and outflow boundary

conditions for Dissipative Particle

Dynamics

3.1 Introduction

As discussed in Chap. 2, Dissipative Particle Dynamics (DPD) is mesoscopic simula-

tion method stemming from the coarse-graining (CG) procedure of the atomistic sys-

tem. Compared with the MD method, the computation advantages of the DPD sim-

ulation originate from the soft potential field and the reduced number of simulation

particles. Due to these features, the DPD method is an effective approach to simulate

the hydrodynamics of the simple and complex fluid systems [60, 144, 43, 146, 129, 46]

at the mesoscopic level. In contrast to MD, the larger spatial and time scales enable

the DPD method to be used successfully in simulations of various soft matter sys-

tems, such as the polymer and DNA suspensions [144, 43, 146], platelet aggregation

[129], and red blood cells in shear flow [128, 46] and in tube flow [44].

One of the fundamental problems for these hydrodynamic systems is how to

impose proper boundary conditions (BCs) on non-periodic domains, e.g., on the fluid-

39
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wall and outflow boundaries. For bulk systems, the Lees-Edwards boundary method

[96] and the reverse Poiseuille flow method [10] have been proposed to simulate shear

and Poiseuille flows, respectively. These methods employ periodic BCs in order to

avoid explicit modeling of solid walls and to eliminate artificial density fluctuations.

For non-periodic systems, where solid boundaries play an important role, several

attempts have been made to simulate the wall-fluid interface. In general, there exist

two main approaches. The first approach is based on the representation of a wall by

frozen particles while the fluid-wall interactions are prescribed by the conservative

and dissipative forces between the fluid and the wall particles, e.g., simple fluid [126],

colloidal suspension [16] and a polymer solution between bounded walls [45]. In the

second approach, the fluid-wall interactions are represented by certain effective forces

with the combination of proper reflections to prevent particle penetration. In Ref.

[130], a continuum-based approximation of the uniformly distributed wall particles

is employed and combined with the bounce-back reflection to enforce no-slip BCs.

In Refs. [127] and [49] a boundary force is computed adaptively to eliminate density

fluctuations and excessive slip velocity near a solid wall, respectively.

However, to the best of our knowledge, little work has been done for the following

two boundary problems. The first problem is how to impose no-slip BCs for time-

dependent fluid flows using proper effective boundary forces rather than the wall

particle representation. An oscillatory Stokes flow was simulated in [126] using the

wall particle representation with adjusted force parameters. In Ref. [152], Couette

flow with a transient start-up was simulated by creating a dynamic wall layer, where

images of the DPD particles from the fluid layer next to the wall are inserted into

the wall layer with a random shift. Both methods explicitly employ wall particles

introducing additional computational cost and complexity. The second problem we

would like to address is how to impose the outflow BCs for a fully developed fluid

flow. Werder et al. [151] proposed an algorithm based on particle insertion/deletion,

which relies on the knowledge of the velocity profile at the outflow. However, as we
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know from continuum CFD, the outflow profiles are rarely known.

In this chapter, we focus on the two problems: (i) the no-slip BCs for unsteady

flows, and (ii) the outflow BCs. In Section 3.2 we briefly describe the DPD method.

In Section 3.3, we derive an effective boundary force from the total dissipative force on

a single DPD particle in homogeneous shear flow. We show that the effective force can

be implemented as the boundary force in the vicinity of the wall and is sufficient to

impose no-slip BCs for unsteady flows while maintaining thermodynamic consistency

near the boundary in contrast to an abnormal temperature profile in [131]. We

validate the method by comparing the numerical results of transient Couette and

oscillatory Stokes and Womersley flows with the corresponding analytical solutions.

In Section 3.4, we propose the outflow boundary method which is similar to the

Neumann BCs in CFD for fully developed flows. We validate this method through

simulations of the backward facing step and arterial bifurcation flows in combination

with the no-slip BCs introduced in Section 3.3. Furthermore, we test the outflow

method for the case of a time-dependent flow system by considering the unsteady

Womersley flow. We conclude with a brief summary in Section 3.5.

3.2 DPD method

In this chapter, we develop the boundary method within the framework of stan-

dard DPD system [71, 61]. In practice, different DPD force terms can be adopted

depending on the individual physical systems, e.g., see Ref. [119] and Chap. 2.

Nevertheless, the boundary method developed in the this chapter can be extended

to those systems governed by different potential fields. In standard DPD system,

the motion of each particle is governed by

dri = vidt

dvi = (FC
i dt + FD

i dt + FR
i

√
dt)/m,

(3.1)
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where ri, vi, m are the position, velocity, and mass of the particle i, and FC
i , FD

i ,

FR
i are the total conservative, dissipative and random forces acting on the particle

i, respectively. Under the assumption of pairwise interactions the DPD forces are

given by the sum of the pair interactions with the surrounding particles as follows

FC
ij =











a(1.0 − rij/rc)eij , rij < rc

0, rij > rc

(3.2)

FD
ij = −γwD(rij)(vij · eij)eij,

FR
ij = σwR(rij)ξijeij ,

(3.3)

where rij = ri − rj, rij = |rij|, eij = rij/rij , and vij = vi − vj . rc is the cut-off

radius beyond which all interactions vanish. The coefficients a, γ and σ represent

the strength of the conservative, dissipative and random force, respectively. The last

two coefficients are coupled with the temperature of the system by the fluctuation-

dissipation theorem [40] as σ2 = 2γkBT . Here, ξij are independent identically dis-

tributed (i.i.d.) Gaussian random variables with zero mean and unit variance. The

weight functions wD(r) and wR(r) are defined by

wD(rij) =
[

wR(rij)
]2

wR(rij) = (1.0 − rij/rc)
k,

(3.4)

where k = 1.0 in the standard DPD method; however, other values of k have been

used to increase the viscosity of the DPD fluid [43, 49]. In the current work we chose

k = 0.25, a = 25.0, σ = 3.0, γ = 4.5, and kBT = 1.0. The number density of the

fluid is n = 3.0.
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Figure 3.1: A sketch of the shear flow illustrated by DPD particles. The arrows
represent the magnitude and direction of the particles’ average velocities. The solid
line represents a reference plane for the target particle while the total interaction of
the target particle with the DPD particles below the reference plane (the gray area)
is calculated using Eq. (3.8).

3.3 No-slip boundary conditions

3.3.1 Boundary method

Generally, we need to impose a certain boundary force on the particles near the solid

wall to impose the no-slip boundary condition. In Ref. [68], the boundary force

is extracted from the fluid-solid interaction for Smoothed Particle Hydrodynamics

(SPH). Similarly, we use an effective force to represent the presence of solid-wall next

to DPD fluid. Rather than computing the force contribution from the wall directly,

let us start with a DPD particle in shear flow. We define the flow direction x̂ in

Fig. 3.1, and the shear rate γ̇ = du(z)/dz, where u(z) = 〈vx〉. We calculate the

force on the particle i exerted by the particles in the semi-spherical region satisfying

(zj−zi) > h, i.e, the particles in the gray area drawn in Fig. 3.1. Using the continuum
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approximation the total conservative force on the particle i can be evaluated as

Fc(h) =
∑

j

fC (rij) eij

∼ n

∫

Vs/ Vex(h)

fC (r) ê(r)g (r) dV

= fp(h)ẑ,

(3.5)

where g(r) is the radial distribution function of DPD particles, Vs/ Vex(h) represents

the spatial part of the fluid domain shown by the gray area in Fig. 3.1. The x

and y components of Fc(h) vanish due to spherical symmetry. We note that the z

component fp(h) is exactly the pressure force proposed in [151] to eliminate density

fluctuations in the vicinity of the wall boundary.

h

γ d(
h)

0 0.2 0.4 0.6 0.8 1

0

50
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200

Figure 3.2: The dissipative force coefficient for a single DPD particle in shear flow
with respect to the distance to the reference plane calculated by Eq. (3.10).
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Next, we calculate the total dissipative force on the particle i as follows

FD(h) = −
∑

j

γ(∆vij · eij)eij. (3.6)

This force depends on the instantaneous velocity difference between particle i and

j, but we notice that in the bulk shear flow the velocity difference satisfies 〈∆vij〉 =

(∆vx, 0, 0) =
(

γ̇h r cos θ
h

, 0, 0
)

. Thus, we can calculate the ensemble average of FD(h)

as

〈FD(h)〉 = −
∑

j

γ(∆vxx̂ · eij)w
R(rij)eij . (3.7)

We further simplify this term by taking the continuum limit of the force as follows

〈FD(h)〉 = −
∫

Vs/ Vex(h)

γ(∆vxx̂ · ê(r))wR(r)ê(r)dV

= Fd(h)x̂,

(3.8)

where the y and z components vanish due to spherical symmetry. After the inte-

gration over the angles in the spherical coordinates the x-component is simplified

as

Fd (h) = −πnγ∆v0

4h

∫ rc

h

r3g (r)wR (r)

[

1 −
(

h

r

)2
]2

dr

= −γd(h)∆v0,

(3.9)

where γd(h) is a function of the height from the particle i to the reference plane and

∆v0 = −γ̇h corresponds to the average velocity difference between the particle i and

the reference plane. The function γd(h) is shown in Fig. 3.2 and a best fit is given

by

γd(h) = C1(h + δh)−1 + C2(h + δh)−2 + C3(h + δh)−3, (3.10)

where C1 = 0.8504, C2 = 9.6 × 10−3, C3 = 4.0 × 10−4 and δh = 0.01.
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Now we consider fluid flow above the reference plane replaced by a solid wall.

Each fluid particle within the distance h < rc from the solid wall is subject to the

effective forces which compensate for the interactions with the “missing” particles

under the reference plane (solid wall). A natural choice of the effective shear force

is the ensemble average of the dissipative force as follows

feff = −γd(h)γ̇h = −γd(h)(vx − U) (3.11)

where vx and U are the velocities of the particle and the wall along the flow direction.

The main approximation we rely on is that the velocity profile near the solid boundary

remains linear with a quasi-constant shear rate γ̇. In addition, for thermodynamic

consistency a thermal random force is required to represent the fluctuation part of

interactions with the “missing” particles, i.e.,

frand = σd(h)ξ, (3.12)

where ξ is an i.i.d random variable with the Gaussian distribution and σd(h)2 =

2kBTγd(h). We note that the analytical solution of the effective force shown in Eq.

(3.9) and Eq. (3.11) applies only to the fluid near a planar surface, as these equations

are not valid for a fluid system with arbitrary curvilinear boundary geometry. In

principle, Eq. (3.9) should be replaced with integration over the corresponding

curvilinear boundary. However, for simplicity, we can still use a “piecewise-plane”

approximation even for complex geometries. The major assumption is that the near-

wall profile can be approximated linearly. The corresponding force equation is not

going to be “exact” for cases with arbitrary geometries, but it can be a very good

approximation as shown in our numerical tests.

In summary, under the assumption of the linear velocity profile near the solid wall,

no-slip BCs can be enforced through the three effective forces: the pressure force

defined in Eq. (3.5) acting in the normal direction to the wall, and the dissipative
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and random forces defined in Eqs. (3.11) and (3.12) acting along the flow direction.

Thus, we define the boundary force fnoslip for the no-slip BCs as follows

fnoslip = fpẑ + feff x̂ + frandx̂, (3.13)

where x̂ corresponds to the shear direction. Finally, to prevent penetration of the

solid wall by fluid particles, specular reflection [151] is imposed for each DPD particle

on the fluid-solid interface.

y/H

V
x

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y/H

D
en

si
ty

,T
em

pe
ra

tu
re

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

density, current work
temperature, current work
temperature, no random term
temperature, adaptive method

Figure 3.3: Left: velocity profile of the plane Couette flow. Right: density and tem-
perature profiles. The triangle symbols represent the numerical results by DPD using
Eq. (3.13). The circle symbols correspond to the numerical results by Eq. (3.13)
without the random force term. The diamond symbols show the numerical results
by the adaptive boundary method used in [49]. The solid lines are the analytical
solution.

3.3.2 Numerical verification

The proposed boundary method is verified through simulations of different prototype

flows. The first test is the steady plane Couette flow. The DPD fluid is confined

between two parallel plates placed at y = 0 and y = 10 with periodic BCs imposed
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along the other two directions. The velocity of the upper plate is U = 1.0 and that of

the lower plate is U = 0.0. The parameters of the DPD fluid are specified in section

3.2. Fluid particles near the two boundaries are subject to the velocity-dependent

force feff(vx − U) described in the previous section. The system is integrated over

5×104 time steps with the time step dt = 5×10−3. Statistical averaging is performed

over the second half of the simulation. Fig. 3.3 shows the velocity, density and

temperature profiles across the flow. The no-slip BCs are satisfied and the velocity

profile is in excellent agreement with the analytical solution. Moreover, the density

and temperature profiles are uniform across the computational domain showing no

density fluctuations and verifying the thermodynamic consistency of the boundary

method. The effective boundary forces mimic a system which can be viewed as a

part of the unbounded shear flow whose bulk properties are successfully recovered.

The boundary method was also tested for the case of steady Poiseuille flow, and the

numerical results agree well with the corresponding analytical solution.

Next, the no-slip BCs are tested for the three unsteady flows: (i) sudden start-up

of the Couette flow; (ii) Stokes flow over an oscillating plate; (iii) plane Womersley

flow. For the first test the DPD fluid is confined between two parallel plates placed

at y = 0 and y = 20. The size of the computational domain is 20 × 20 × 40 with

periodic BCs along the x and z directions. The viscosity of the DPD fluid is equal

to ν = 0.54 measured by the periodic Poiseuille flow method [10]. To improve the

statistical averages of the DPD results we run ten independent replicas of the DPD

system with different initial conditions. The initial state of each replica is obtained

by running them independently for several hundred time steps with the velocity

of both the upper and lower plates set to zero. Then, the velocity of the upper

plate is set to U = 1.0 at the time t = 0, while the velocity of the lower plane is

kept at U = 0.0. The velocity profile of each replica is recorded as a function of

time and the final result is obtained by taking the ensemble average of all replicas.

Figure 3.4 shows the simulation results and the corresponding analytical solution for
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the transient Couette flow at various times. The DPD results agree well with the

analytical solution for different times. As time increases the flow converges to the

steady case shown in Fig. 3.3. Note that the fluid velocity near the upper plate

(y = 20) is very sensitive to the BCs. Thus, even a small slip at the upper plate

would greatly affect the velocity profiles.
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Figure 3.4: Left: velocity profiles of the sudden start-up of Couette flow at different
times. The symbols correspond to the simulation results, while the solid lines rep-
resent the analytical solution of the Navier-Stokes equation. Right: instantaneous
temperature of the system at different times.

The second test case is the oscillatory Stokes flow over a flat plate, where the

velocity of the lower plate changes according to the time-dependent function U(t) =

sin(Ωt) with Ω = 2π/40. The upper plate has velocity U(t) = 0 and is placed at

y = 20 which is far enough from the lower plate to yield a good approximation for the

semi-bounded oscillatory Stokes flow. The DPD simulations are run over 80 periods

and the statistical average of velocity is accumulated over the last 40 periods at

different times. In Fig. 3.5 the simulation results are compared with the analytical

solution [121] given by

U = exp(−Y/
√

2) sin

(

T − Y√
2

)

, (3.14)
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Figure 3.5: Velocity profiles of the oscillatory Stokes flow at times t = k
10

T , where
k = 0, 1, 2, ..., 7 and T is the oscillation period. The symbols are the numerical
results, while the solid lines represent the analytical solution given in Eq. (3.14).

where Y = y(ν/Ω)−1/2 is the dimensionless distance, and T = Ωt is the oscillation

period. Note that Eq. (3.14) is derived for a semi-infinite system, however the

dimensionless height of the upper plate in simulations is H = 10.87 which is sufficient

to recover the analytical solution as illustrated in Fig. 3.5.

Finally, we apply the proposed boundary method to a time-dependent pressure-

driven flow. The computational domain assumes the same size as the plane Couette

flow, where DPD particles are confined between two plates placed at y = 0 and y = 20

with periodic BCs imposed along the x and z directions. The flow is driven by a

time-dependent body force on each particle in the x-direction fbody = f0 + f cos(Ωt),

which is equivalent to a pressure gradient dP/dx = nfbody, where n is the density

of the DPD fluid. The no-slip BCs are imposed on both plates. In the continuum
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Figure 3.6: Left: velocity profiles of the flow driven by an oscillating pressure gradi-
ent. The symbols, from the bottom to the top, correspond to the simulation results
obtained at t = k

4
T , where k equals to 1, 0, 2, 3. The solid lines represent the exact so-

lution for the Womersley flow given in Eq. (3.15). Right: instantaneous temperature
of the DPD system at different times.

limit, this flow is called the Womersley flow with the analytical solution given by

u(h, t) =
p0h

2

2µ
+

p⋆

Ωn
sin(Ωt) − p⋆

Ωn

1

x2
1 + x2

2

×

{[x1 cos(αh) cosh(αh) + x2 sin(αh) sinh(αh)] sin(Ωt)

− [x2 cos(αh) cosh(αh) − x1 sin(αh) sinh(αh)] cos(Ωt)} ,

(3.15)

where p0 = f0n, p⋆ = fn are the amplitude of the steady and oscillating pressure

gradient respectively; h, α, x1 and x2 are defined by h = 2y
H

− 1, α =
H
√

Ω/ν

2
√

2
,

x1 = cos α cosh α and x2 = sin α sinh α. For the DPD simulations we choose

f0 = 0.0167, f = 0.05 and Ω = 2π/80, and the statistical average is collected over

the last 40 periods. Figure 3.6 shows the velocity and temperature profiles of the

Womersley flow at different times. The numerical results are in good agreement with

the analytical solution.
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Figure 3.7: A sketch of the domain of an open flow system. The solid lines are the
wall boundaries. The plane P represents the inlet through which DPD particles enter
the domain with a specified velocity profile. The plane Q represents a pseudo-plane
where the flow is fully developed. A and B correspond to two regions adjacent to
the plane Q, where the flow is also fully developed.
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3.4 Outflow boundary conditions

In this section, we consider different flow systems with non-periodic BCs, where

inflow and outflow boundary conditions have to be imposed. Rather than imposing

the strong Dirichlet BCs with a velocity profile explicitly specified at the outflow

boundary [151], we explore the weak condition as in the standard CFD methods,

where the BCs are implicitly imposed under the assumption that the flow is fully

developed. Unlike the CFD methods, in DPD it is not straighforward to impose

explicitly pressure values at the outflow boundary. Instead, if the pressure value and

the flowrate at the outflow are approximately in-phase, we can impose the flowrate

at the outflow boundary.

3.4.1 Boundary method

For a particle fluid system with non-periodic open boundaries the two physical prop-

erties need to be controlled are: the flow rate at the inflow/outflow boundaries and

the velocity gradient at the outflow similarly to the fully developed condition in CFD.

Let us consider the open fluid system shown in Fig. 3.7. We place a pseudo-plane P

perpendicular to the flow direction. From the macroscopic perspective the flow flux

through the plane is determined by the velocity profile at the plane P . In practice,

this plane can be modeled as an inflow with a specified velocity profile. Inflow at

the plane P can be simulated by inserting DPD particles into a near boundary layer

according to the local particle flux. Without loss of generality, we consider a local

area dA on the plane, and define NA as the number of DPD particles to be inserted

into the plane P at the area dA according to the following equation:

N i
A = N i−1

A + nδtdAvn, (3.16a)

N i
A = N i

A − 1, if N i
A ≥ 1, (3.16b)
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where i is the timestep of the simulation, n is the number density of the DPD fluid,

and vn is the local normal velocity at the inflow plane. When Eq. (3.16b) is executed

(it can be executed several times if N i
A > 1), one DPD particle will be inserted next

to the plane P at the local area dA. The velocity of the inserted particle is generated

according to the Maxwellian distribution with known temperature of the system and

local boundary velocity. In general, the position of the inserted particle at dA has to

be generated by the USHER algorithm [28] to minimize the local thermal disturbance

due to the inserted DPD particle. However, we omit this procedure in practice since

we found that the system remains stable with random insertions due to the soft

interactions between DPD particles. The disturbances on the local number density

due to insertions is on the order of 5%.

Next, we consider the region of the fluid system where the flow is fully developed.

Let us place another plane Q in this region and consider the two regions A and

B adjacent to the plane, as shown in Fig. 3.7. Physically, there should be no

macroscopic difference between A and B since the flow is fully developed in this

region, i.e., the macroscopic velocity should be identical in the two regions. In

practice, we model this pseudo-plane as the outflow BCs. The DPD particles which

pass through this outflow plane are deleted from the system. To control the flow

rate at the outflow and eliminate any velocity differences between the two regions (A

and B) we apply an adaptive force on the DPD particles near the outflow as follows

fk
out(h) = βk(1 − h/r0)

p + γkfpress(h), (3.17a)

βk+1 =

q
∑

σ=0

βk−σ + ξ(vk
A − vk

B), (3.17b)

γk+1 = γk + κ(φk − φ0), (3.17c)

where the first term of the adaptive force eliminates the velocity difference between

the two regions and the second term imposes proper flow rate at the outflow bound-
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ary. The parameters k, ξ, and βk are the iteration number, the relaxation parameter,

and the adaptive coefficient, respectively. Also h is the distance from a particle to

the outflow plane, and r0 defines the total width of regions A and B together. In

this work, r0 is chosen to be the cutoff radius of the DPD particle interactions if

not specified otherwise; p defines the stiffness of the adaptive force and p is equal

to 6. We choose this value by considering a static single DPD particle in uniform

flow with the average velocity of un̂. We compute the dissipative force fnorm(h) on

the target particle from the particles located in a semi-spherical region behind the

pseudo-plane. The dissipative force scales as fnorm ∼ fnu, where fn is best fitted

by (1.0 − h/rc)
6. Moreover, vk

A and vk
B in equation above are the average normal

velocities in the regions A and B during the time between the (k − 1)th and kth

iterations. Also, q is the total number of the under-relaxation steps, which is coupled

to the number density of the system as follows

qk+1 =



























qk + 1, if nk < n − δn

qk, if n − δn < n < n + δn

qk − 1, if nk > n + δn

(3.18)

where nk is the average number density during the kth iteration, and δn is the

accepted deviation of the system’s number density.

The second adaptive force term in Eq. (3.17a) controls the flow rate at the

outflow, where φk represents the instantaneous flux at the outflow and φ0 corresponds

to the desired flux value; fpress(h) is the pressure force defined in Eq. (3.5). We note

that for fluid systems with a single outflow boundary, this term can be neglected.

However, for flows with multiple outflows (e.g., arterial bifurcations), this term is

necessary to impose the desired flux value at each outflow boundary. In addition

to fout the pressure force defined in Eq. (3.5) is applied on fluid particles near the

inflow and outflow planes, which compensates for the “missing” fluid part outside



56

the computational domain.

We note that our method of inserting particles is different from that in [151],

where each particle that left the system is re-inserted at the inflow boundary, and

hence the number density of the system is strictly conserved. In this work DPD

particles are inserted at the inflow plane with no dependence on the number of

particles removed. For the insertion method of [151] we found that the desired flux

prescribed by the velocity profile at the inflow depends strongly on the number of

particles leaving the system, and therefore the numerical system may be unstable.

In the current method the instantaneous number density is not strictly conserved,

however the converged density remains within the pre-specified tolerance (δn =

0.002n) as shown in the next section.

3.4.2 Simulation results

The first test of the described method is the plane Poiseuille flow in combination

with the no-slip method proposed in section 3.3.1. The computational domain is

similar to that shown in Fig. 3.7 with periodic BCs in the z direction. The fluid is

confined between two walls placed at y = 0 and y = 10 and the inflow and outflow

planes are placed at x = 0 and x = 20, respectively. DPD particles are inserted at

the inflow according to the parabolic velocity profile given by

vx(y) = v0

[

1.0 −
(

2y

H
− 1

)2
]

, (3.19)

where v0 = 1.0 and H = 10. To impose the no-slip BCs at the walls particles near

the walls are subject to the no-slip force defined in Eq. (3.13). In addition, particles

near the outflow plane (x = 20) are subjected to the adaptive outflow boundary

force. Specifically, the outflow region was divided into 20 bins across the flow in the

y-direction and each bin was further divided into two sub-volumes, labeled as A and

B. The velocity in each sub-volume vA and vB, as well as the number density of the
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Figure 3.8: Velocity profiles (left) and density profiles (right) of the fully developed
Poiseuille flow. The DPD results are shown for the planes x = 10.0 and x = 18.0.
The solid lines correspond to the analytical solution.

system, are sampled during the time between two consecutive iterations. The flow

converges within approximately 100 iterations, where one iteration corresponds to

100 time steps. Statistical averaging is performed during 1 × 104 time steps after

steady state is achieved.

Physically, this system represents a part of the fully developed Poiseuille flow

given by Eq. (3.19). Therefore, a parabolic velocity profile is expected in the down-

stream region as in upstream. Fig. 3.8 shows velocity and density profiles obtained

at the planes in the middle of the system at x = 10.0 and in the outflow region at

x = 18.0. The simulation results agree well with the prescribed inflow profile. The

fluid density at the outflow (x = 18.0) is slightly lower (ρ = 2.94) than the exact

number density due to a finite compressibility of the DPD fluid.

For a more quantitative analysis, we compute the pressure profile along the flow

direction shown in Fig. 3.9. The DPD results agree well with the analytical predic-

tion given by

vmax =
H2

8µ

d P

d x
, (3.20)
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where H = 10, µ = 1.62, and vmax = 1.0. The small fluctuation at the inlet/outlet

boundary is mainly due to the particle insertion and the superposition of the bound-

ary force.

The compressibility of the DPD fluid can be approximated [60] as follows

dP/dρ = kBT + 2αaρ, (3.21)

where α = 0.101 and therefore dP/dρ = 16. The density difference between x = 10

and x = 18 predicted by Eq. (3.21) is approximately ∆ρ = dρ/dP∆P = 0.065, which

agrees well with the simulation results. Moreover, the adaptive force fout applied at

the outflow serves as a perturbation term on the pressure force fp defined in Eq.

(3.5), which also contributes to the density fluctuations. Therefore, the proposed

boundary method is valid for nearly incompressible fluid flows since the boundary

forces are based on the global number density of a simulated system. Large density

fluctuations due to finite compressibility are likely to void the method’s applicability.

For the second test we consider the backward-facing step flow at different values

of Reynolds number (Re). The computational domain is illustrated in Fig. 3.10

where Re is defined as vmaxH/ν. A parabolic velocity profile defined by Eq. (3.19)

is imposed at the inflow with vmax = 1.08 and the height of the inlet channel is

H = 10, while the step height is chosen to be S = H
2
. For different Re numbers

the height of the inlet and the size of step is scaled accordingly while vmax is fixed.

The no-slip boundary condition is imposed by the dissipative force for all the DPD

particles near the solid wall defined by Eq. (3.10). We compare DPD results with

Navier-Stokes results obtained by the spectral element simulation solver NEKTAR

[79].

Fig. 3.10 presents the simulation results obtained with DPD and with the spectral

element method for Re = 20, 40 and 60. The streamlines agree well for the two

methods. In addition, we extract several velocity and pressure profiles at different

heights for a more detailed comparison with the NS solution shown in Figs. 3.10
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and 3.11. The DPD results are in good agreement with the NS solution with slight

deviations near the inlet and outflow boundaries within the distance of 4rc. This

appears to be due to the density fluctuations near those boundaries. At the inlet the

number density is approximately 5% larger than the global density due to particle

insertions. At the outflow region additional density fluctuations are introduced due

to the adaptive force serving as a perturbation term to the pressure force term. We

note that the velocity deviations at the outflow will not propagate upstream due to

a finite speed of sound [36] in the DPD system. Therefore, the outflow region can be

treated as a “buffer layer” region with perturbed number density, where the results

may not be accurate. Moreover, we note that the shear rate varies (even changes

sign) along the lower wall, which defines the recirculation length. In the inset plot

of Fig. 3.10 we show the recirculation length of the step flow normalized by the

step height S as a function of the Reynolds number. The values of the normalized

recirculation lengths scale linearly with Re number showing good agreement with

the spectral element method results. This further verifies that no-slip BCs are well

imposed locally for different shear rates.

Next, we consider several flow systems with multiple outflow boundaries such

as those encountered in the human arterial tree. Fig. 3.12 shows a bifurcated

channel flow with two symmetric outflow boundaries. The channel is divided into

two branches at L = 30 with the branch angle θ = π/3. The parabolic velocity profile

defined in Eq. (3.19) is imposed at the inlet with v0 = 0.72 and H = 20 and periodic

BCs are imposed along the z direction. The outflow BCs are imposed separately at

the two outflow boundaries with the adaptive force updated according to Eq. (3.17a).

Fig. 3.12 shows velocity contours in both x and y directions. For comparison we

also plot the numerical results of the NS equation with identical pressure values

imposed at the two outflow boundaries The DPD results show good agreement with

the continuum results apart from the regions near the outflow boundaries and near

the bifurcation point due to the density fluctuations. The fluctuations near the
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outflow are due to the adaptive force as discussed previously. The fluctuations near

the bifurcation point are mainly due to finite compressibility of the DPD fluid.

Furthermore, we consider a bifurcated system with prescribed flow rate at each

boundary as shown in Fig. 3.13. The planar channel is divided into two non-

symmetric channels at L = 30 with the bifurcation angle θ = π/2. The widths of the

two sub-channels scale as 1 :
√

3. A parabolic velocity profile defined in Eq. (3.19)

is imposed at the inlet with v0 = 0.54 and H = 20. This flow system resembles a

small part of the arterial network, where additional information downstream may

be unknown. To this end, we can prescribe the ratio of flow rates between the

two outlets. The specified flow rate at each of the outlet is imposed through the

force defined in Eq. (3.17a). The different ratio value corresponds to the different

pressure values imposed on the outlets. On the other hand, the total flow rate of

the two outlets is equal to the inflow rate to ensure mass conversation of the system.

We consider two cases where the flow rates at the two outflow boundaries are 1:2

and 1:3, respectively. For the reference Navier-Stokes results, we use the method

described in Ref. [59]. In both cases, the DPD results are in good agreement with

the corresponding Navier-Stokes results as shown in Figs. 3.13 and 3.14.

The different flow rates controlled by our method correspond to different pressure

values at the outflow boundaries. Therefore, we also look at the pressure distribution

for different flow ratios. Fig. 3.15 presents the pressure distributions along the

centerline of the channel marked as CC’ in Fig. 3.13. The pressure difference between

the two outflow boundaries is larger for the flow ratio of 1:2, since a larger flow rate

for the upper branch corresponds to a larger pressure drop along the branch. For

both cases the DPD results agree well with the NS solutions. The flow examples

used in this study show that the outflow boundary method usually converges within

a few thousand time steps. Therefore, we can extend this method to unsteady flows

with a time-dependent inflow velocity profile. For a test we consider the pulsatile

flow, where the fluid is confined between the plates at y = 0 and y = 20, and the
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inflow and outflow planes are placed at x = 0 and x = 20, respectively. The inflow

velocity profile is given by Eq. (3.15) with f0 = 0.06, f = 0.03 and Ω = 2π/200.

The corresponding Womersley number α is equal to 1.71, which is a typical value for

biological flow systems [104]. The DPD particles are inserted next to the inflow plane

using the instantaneous inflow velocity profile and the boundary force is updated

according to Eq. (3.17a). Statistical average is taken over the last four periods.

Fig. 3.16 (left) shows velocity profiles extracted at x = 10 and x = 18 at different

times. The DPD results are in good agreement with the theoretical predictions.

However, for flows with a higher Womersley number, the current method may not

be sufficient to track instantaneous velocity profile. As shown in Fig. 3.16 (right)

for the higher frequency Ω = 2π/50 (α = 3.42), the DPD results begin to deviate

from the theoretical predictions. This appears to be due to a finite compressibility

of the DPD fluid. Thus, the boundary information is not able to propagate through

the computational domain with such high frequency.
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3.5 Summary and Discussion

In this chapter two important issues on boundary conditions for particle simulations

of fluid systems have been addressed: the no-slip BCs at a wall-fluid interface and the

outflow BCs for non-periodic flow systems. We introduced two boundary methods

validated for various flow problems. Starting from a single DPD particle in shear

flow we computed the total dissipative interaction of this particle with surrounding

particles. The dissipative interaction is computed as a function of the distance from

the target particle to the pseudo-plane placed at different positions. For wall bounded

systems, no-slip BCs are modeled by imposing the effective boundary forces (Eq.

(3.13)) on DPD particles near the walls. Originated from the bulk shear flow, this

boundary method can effectively impose no-slip BCs without artificial density and

thermal fluctuations near the walls. The tested unsteady flows of the sudden start-

up Couette, oscillatory Stokes and Womersley flows further validate the proposed
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no-slip boundary method. The backward-facing step flow verifies that the method

works well locally for different shear rates. Moreover, this method is free of boundary

particles, and therefore it is more efficient in comparison with the method in [152].

We developed the outflow boundary method by considering a fully developed

flow region of the bulk system. The BCs are weakly imposed under the assump-

tion of the translational invariance of the velocity profile along the flow direction.

In a non-periodic system the outflow boundary is modeled by the boundary force,

which consists of two adaptive terms that control the flow rate at the boundary

and eliminate the velocity difference in the region adjacent to the outflow boundary.

Combined with the no-slip boundary method for fluid-wall interactions, the outflow

boundary method is verified for the backward-facing step flow at different Reynolds

numbers and for the bifurcated flow with different flow rates, which correspond to

different pressure values at the outlets. The simulation results show good agree-

ment with the corresponding analytical or reference solutions apart from the narrow

regions near the outflow boundaries, where the velocity fluctuations of maximum

10% are observed due to the perturbation of the boundary force in that region. For

quasi-steady flows where the pressure value and flow rate on the outlet boundary are

approximately in-phase, the prescribed flow rate corresponds to specified pressure

value on the outlet. This is obvious for a fluid system with a single outlet since the

flow rate at the outlet equals to the inflow rate for mass conservation. However,

for a fluid system with multiple outlets, the different flow ratio prescribed on the

outlets corresponds to the different pressure values imposed on the outlets since the

information farther downstream is unknown. Moreover, we test the current method

for a time-dependent non-periodic flow system. The simulation results agree well

with the analytical solution for the flow with Womersley number on the order O(1),

which is in the range of typical biological arterial flows [104]. The numerical results

begin to deviate from the analytical solution for higher Womersley number due to

finite compressibility (sound speed) as well as the out-of-phase condition between
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the pressure value and the outflow rate.

As a conclusion, this chapter provides a general framework to impose different

BCs. Even though we test the method for Newtonian fluids, our future goal is

to apply such BCs to complex fluid systems such as blood flow. In the practice,

the human blood vessels are far more complicated than a straight channel. Typical

models for a part of the blood vessels usually contains complex topological structures

such as bifurcations, which contains multiple outlets. To investigate these systems,

more sophisticated methods for inserting molecules or cells have to be developed.

Some related work has already been done in [14, 140]. It would be interesting to

further explore how to impose proper BCs for these systems such that the dynamic

flow and rheological properties can be correctly predicted.



Chapter 4

Mesoscopic simulation of blood

flow in small tubes

In Chap. 2, we discuss the intrinsic relationship between the DPD and the MD

method by constructing a mesoscopic system from the microscopic system. In this

chapter, we explore the application of the DPD method on the length scale near

the mesoscopic-macroscopic transition. By simulating the red blood cell (RBC)

suspensions in different tube systems, we identify a non-continuum to continuum

transition as the tube diameter increases to above 100µm.

4.1 Introduction

Due to the visco-elastic properties of the RBC membranes, blood suspensions exhibit

non-Newtonian behaviors under physiological conditions. In homogeneous shear flow

systems, blood suspensions show apparent shear thinning effect, which is well char-

acterized by Chien [111, 22, 139]et al.. In Poiseuille flow systems, the cross-stream

stress gradient drives the cells to migrate toward the centerline of the tube, leading

to the inhomogeneous cell density distribution. In blood rheology, this effect results

in the formation of a cell free layer (CFL) near wall, the Fahraeus-Lindquist ef-

71
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fect with respect to different tube diameters, the inhomogeneous cell transportation

(blood plasma skimming) at vessel junctions, etc.. Therefore, numerical modeling

of blood flow requires proper incorporation of these non-Newtonian characteristics.

Practically, this is often achieved by explicitly modeling of the RBCs as individ-

ual “capsules”, where proper visco-elastic properties are imposed on individual cell

membranes. Using this approach, the major rheological properties of blood suspen-

sions such as the bulk viscosity in shear flow, the apparent viscosity and CFL region

in tube flow can be accurately captured, see Ref. [54, 48, 50, 33]. However, we

note the scale of these simulation systems is often limited to O(103) RBCs. This is

mainly due to the expensive modeling of the individual cells. Remarkably, Freund et

al. [54] use a spectral boundary integral method to model the blood flow in a tube

with diameter D = 11.3µm. Dupin et al. [33] construct a RBC model by Lattice

Boltzman method and use this model to study blood flow of O(102) RBCs. Fedosov

and Karniadakis [48] study the blood flow in tubes with diameter 10 − 40µm using

a multi-scale RBC model by DPD method.

Alternatively, other theoretical approaches have modeled the blood flow in large

vessels by continuum methods [136, 116]. In these models, the blood flow is rep-

resented by separate cell-rich region and cell-depleted region, where different fluid

properties are imposed through the continuous equations for each region. While

it is widely believed that the blood flow can be treated by continuum Newtonian

fluid in tube flow with diameter larger than 200µm, the fidelity of the continuum

approximation for smaller tube system is unclear. A question arises naturally: is

the homogeneous continuum approximation just a simplification for continuum mod-

eling, or it is a natural result stemming from the length scale (macroscopic) limit

of the mesoscopic blood flow system. We address this issue in this chapter. In par-

ticular, we investigate whether the continuum assumptions built into such models

are supported by results from the our mesoscopic simulations of blood suspensions,

where individual RBCs are explicitly modeled. The tube flows of blood suspensions
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[48] are expensive to simulate, and therefore it is desirable to know when simplified

approaches are feasible. As the tube size is reduced toward the RBC diameter the

CFL becomes the dominant feature, and the assumption of a core of homogeneous

flow will become increasingly tenuous. Hence our goal is to determine the effective

range of such approximations.

This chapter is organized as follows. In section 4.2 we analyze the micro-sctructures

of the blood flow in different tube diameters. In section 4.3 we measure the local vis-

cosity of the blood flow to uncover the way in which these suspension flows change as

the tube diameter decreases. Using a continuum model with slip boundary velocity,

we explore the possibility to model the blood systems with continuum approxima-

tion. We conclude in section 4.4.

4.2 Microstructure of blood flow

In this section, we investigate the micro-structure of healthy blood flow in tube

systems with diameter ranging from 20µm to 150µm. The blood flow is modeled

as a suspension of the individual red blood cells (RBCs) in blood plasma solution,

whereas other components such as leukocytes and platelets are omitted in the present

studies. The RBCs are represented by the multi-scale model developed by by Pivkin

et al. [125] and Fedosov et al. [46]. The blood plasma is modeled by a simple DPD

fluid with dynamic viscosity µp = 1.2 × 10−3Pa · s.

4.2.1 Velocity and shear rate distribution

Fig. 4.1 shows the velocity distribution u(r) of the blood flow for tube flow with

D = 20µm and D = 100µm. The dash lines represent the quadratic fitting of the

numerical results. For D = 20µm, the velocity profile exhibits apparent deviation

from the quadratic fitting. However, the velocity profile for the case of D = 100µm

fits well with the parabolic profiles, except for the region of the cell-free layer near
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Figure 4.1: Velocity profiles for D = 20 (left) and 100µm (right) with HT = 0.3.
The blue dash curves represent the parabolic fitting to the simulation results. The
data is also fitted with parabolic curves (blue dashed lines) and the tangent lines at
the wall with slopes τw/µ, while the vertical dashed line indicates the cell-free layer
thickness.

the blood channel where the blood plasma dominates. In this region, the velocity

profile agrees well with the linear approximation du/dr = τw/µ, where τw is the wall

shear stress.

Using the velocity profiles, we compute the shear rate distribution of the blood

flow for D = 20µm and D = 100µm, as shown in Fig. 4.2. Similar to the velocity

profiles, the two systems exhibit different properties. For D = 20µm, the system

can be roughly divided into two regions: a nonlinear region representing the blood

core near the centerline and a linear region representing the cell free layer near

the tube wall. On the other hand, for large tube size (D = 100µm), the system

exhibits three different regions: (i) the non-Newtonian flow region with shear rate

smaller than 60s−1, (ii) the linear region between the centerline and the CFL with

shear rate between 60s−1 and 250s−1, and (iii) a linear region representing the CFL

region. The inset plot shows two snapshots of blood flow obtained at r/R = 0.1

and r/R = 0.85 for D = 100µm, respectively. Due to the different local shear rates,

the two snapshots exhibit different local configurations. For r/R = 0.1, the RBCs
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Figure 4.2: Shear rate distributions for blood flow in tubes of various diameters at
HT = 0.3. For D = 100 µm the vertical dashed lines indicate: the CFL thick-
ness near the wall, and the limit of the linear portion of the distribution near the
centerline.

exhibit close-packing state with near-spherical shape. For r/R = 0.85, the RBCs

exhibits large deformation due to the high shear rate near the CFL region. We

systematically investigate this issue in next section.

4.2.2 Cell density and local hematocrit distribution

Due to the hydrodynamic interaction, the deformable RBCs tend to migrate towards

the centerline of the channel, resulting in a inhomogeneous cell distribution along the

radial direction as well as a cell depletion layer near the tube wall. Fig. 4.3 shows

the snapshots of the blood flow cut through the center of the tube for D = 40µm

and D = 100µm with HT = 0.3. For both systems, the RBCs show close packing

state with parachute shape near the tube center. On the contrary, the RBCs align

with the flow direction at high shear rate region, followed by the CFL region near

the tube wall.



76

Figure 4.3: Central cut-plane snapshots along the tube axis for D = 40 µm ((a) and
(b)), and 100 µm ((c) and (d)) at HT = 0.3. (a) and (c) are the half-tube images,
while (b) and (d) are thin slices across the cut. CFL thickness is shown by dashed
lines parallel to the walls.

To quantify these local variations, we measure the normalized RBC center dis-

tribution along the radial direction, as shown in Fig. 4.4. Three interesting points

appear in this result. First, the cell densities exhibit maximum values near the tube

center, which is consistent with the flat plug-like velocity profile near the tube near

in Fig. 4.1. This feature is mainly due to the small local shear rate in that region,

resulting in a better close packing of the RBCs. As r increases, these quasi-steady

structures are gradually destroyed due to the stronger cell mixing effect induced by

the larger local shear rate, accompanied with a lower local cell density. Second, the

inhomogeneous distribution is more pronounced for small tubes (D = 20, 40µm): the

cell density exhibits nearly monotonic decrease along the radial direction. On the

contrary, a homogeneous region appears in large tube systems, which is reflected by

the flat cell density value as shown in Fig. 4.4. We note that this result is also con-

sistent with the linear shear rate distribution for D = 100µm as shown in Fig. 4.2.

Both results indicate that the blood flow exhibits isotropic properties in this region.
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Figure 4.4: Radial RBC-density distributions normalized by the mean prescribed
density for D = 20, 40 µm (left) and D = 100, 150µm (right) for HT = 0.3.

Finally, we note that the cell center distributions show limitation to characterize the

local density. This is because the local cell volume contribution is not counted in

the sampling process. This limitation is especially pronounced for small tubes with

diameters comparable to the size of individual RBC (see the abnormal high value of

the cell center density near r = 0 for D = 20µm.) .

To incorporate the local cell volume contribution, we define the local hematocrit

H(r) by

H(r) =
1

2πL

∫ L

0

∫ 2π

0

g(r, θ, x)dxdθ, (4.1)

where g(r, θ, x) is defined by

g(r, θ, x) =











1, if point(r, θ, x) is inside of a RBC,

0, if point(r, θ, x) is outside of RBCs.

(4.2)

Following this definition, we directly measure the local blood volume fraction

H(r) for the different tube flow systems, as shown in Fig. 4.5. For small tube

diameters, H(r) shows similar tendency with cell center distribution as r increases.
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(left) and D = 100, 150µm (right) for HT = 0.3.

However, the artificial peak near the tube center is absent in the H(r) distribution.

For large tube diameters, the variations between the H(r) and cell center distribution

become small, both featured by a wide range of homogeneous distribution. This

result is not surprising, since the RBC size effect becomes less important in the large

tube systems.

4.2.3 Cell deformation and orientation

Due to the different local shear rates, the RBCs undergo various stretching and

deformation along the flow direction. This is characterized by the different cell

shapes shown in Fig. 4.3. To quantify this effect, we analyze the gyration tensor of

the individual RBCs and compute the asphericity distributions (see Sec. 5.3.1 for

detail definition) along the radial direction, as shown in Fig. 4.6. The horizontal

dash line represents the asphericity value for the equilibrium biconcave shape. In

the blood core region, the asphericity values are smaller than the equilibrium value,

indicating that the RBCs in close packing structures keep a more spherical shape.

This result is also consistent with numerical simulations of single RBC in Poiseuille
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Figure 4.6: Asphericity (left) and cell orientation angle (right) distributions for differ-
ent tube diameters with HT = 0.3 The horizontal dashed line denotes the equilibrium
RBC asphericity equal to approximately 0.15.

flow by Fedosov and Karniadakis [46]. In that simulation, the smallest eigenvalue of

the cell gyration tensor undergoes a positive shift along the flow direction, resulting

in a transition into parachute shape with smaller asphericity.

As r increases, the RBC asphericity increases due to the larger local shear rate.

For large tube with D = 100µm and D = 150µm, the asphericity values show linear

increase in the homogeneous flow region 0.22 < r/R < 0.85, where the slope is

weakly dependent on the tube diameter. This is followed by a sharp increase near

the CFL region, where the RBCs are subjected to the largest shear rate, as shown

in Fig. 4.2.

To quantify the cell orientation distribution along the radial direction, we com-

pute the eigenvector V 1 for the smallest eigenvalue of the cell gyration tensor. The

orientation angle θ is defined by the angle between the flow direction and V 1 (see Sec.

5.3.3 for details). Fig. 4.6 shows the cell orientation angle distribution for different

tube diameters. Similar to the asphericity distribution, the blood flow systems can

be roughly divided into three regions. (i) In the blood core region, the orientation

angle shows small, scattered values, representing the “random” orientated cells near
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the tube center. (ii) In the region between the blood core and the CFL, the cell

orientation angles keep a near-constant value with very slow increase. We note that

the typical value is very close to the swinging angle for a single RBC in tank-treading

motion in shear flow system [2]. (iii) Near the CFL region, the cell orientation angles

increase sharply due to the abrupt increase of the local shear rate. As the tube size

increases to above 100µm, the orientation distributions converge into a single curve,

which is independent of the tube diameters. On the contrary, the cell orientation

distribution for D = 10µm differs from the other cases, indicating that blood core

region dominates for the small tube systems.

4.3 Continuum approximation

In Sec. 4.2, we demonstrate that the tube blood flow systems exhibit inhomogeneous

micro-structures for small tube diameters. As the tube diameter increase to above

100µm, the various micro-structures gradually converge into single states, indicating

the homogeneous flow region plays a dominant role. In this section, we further

explore the possibility to model the blood system using continuum approximation.

4.3.1 Local shear viscosity

For blood suspensions in shear flow, the local shear stress τ and shear rate γ̇ are

homogeneous through the domain. Therefore, the shear viscosity of the blood flow

only depends on the γ̇ and cell volume fraction H . However, for the blood suspensions

in Poiseuille flow, both τ and γ̇ are inhomogeneous along the radial direction, where

the dependence of the shear viscosity on the local hematocrit H(r) is unknown. To

explore the continuum limit of the blood system, we compute the local shear viscosity

as a function of r for the different tube diameters, as shown in Fig. 4.7 (a).

Unlike the homogeneous shear flow, the blood viscosity in tube flow shows a

general decrease along the radial direction. Near the tube center, the blood core
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is characterized by the largest viscosity values. As r increases, the blood viscosity

gradually decreases and jumps to the value of blood plasma within the CFL region.

Moreover, the viscosity distribution also depends on the tube size. For small tube

systems, the blood viscosity shows monotonic decrease across the tube. However, for

large tube systems, a homogeneous region characterized by near constant viscosity

appears. Recalling the linear shear rate and homogeneous cell density distribution in

this region (see Fig. 4.5), we suspect that this region resembles to the homogeneous

shear flow of blood suspension under high shear rate, where the individual RBCs

become largely deformed and the suspensions exhibit near constant, low viscosity

value. To verify this postulation, we plot the blood viscosity as a function of the

local shear rate, as shown in Fig. 4.7 (b). The large drop of the viscosity across the

whole domain is counter-intuitive in view of the homogeneous region in Fig. 4.7 (a).

However, we note that the main drop occurs within shear rate less than 60s−1, e.g.,

the blood core near the tube center. For shear rate larger than 60s−1, blood viscosity

keeps a near constant value.

In Fig. 4.7 (b), we also plot the blood viscosities measured by Chien et al. [22]

and Eckmann et al. [34] in shear flow systems. The experimental data is represented

by symbols at constant shear rate 5.2s−1, 52s−1, 100s−1, 200s−1. From the shear

rate and blood density distribution, the two lowest shear rates correspond to the

blood core region with H ≈ 0.5, H ≈ 0.4, respectively. The two larger shear rates

lie the linear shear rate region with H ≈ 0.34. For large tube diameters, the sim-

ulation results agree well with the experimental measurement, which suggests that

the local shear viscosity in Poiseuille flow is well characterized by the momentum

transportation properties of the blood suspensions in homogeneous shear flow. How-

ever, the deviation from the experimental measurements for small tubes indicates

that the continuum assumption may not be valid for tube diameter smaller than

100 µm. Therefore, by varying the tube diameters, we identify a transition from

non-continuum to continuum description for the blood systems. We quantify this
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effect by applying a continuum model to describe the blood systems, as discussed in

next subsection.

4.3.2 Continuum approximation with slip boundary velocity

For both shear rate and relative viscosity, we notice that the inhomogeneous “blood

core” region becomes small (within 5%) for large tube size. Therefore, we further

approximate the system into two regions: the linear shear rate region of blood flow

with relative constant value of viscosity with 0 < r < RA and Newtonian flow region

of blood plasma for RA < r < R. The viscosities for the two regions are µc = µµp

and µp, respectively. The RA defines the separation of the two phase flow and is

defined by RA = (1 − δ1)R, where δ1 is determined by the value of cell free layer.

With pressure drop ∆P/∆x, the velocity profiles are

Uc(r) =
∆P

∆x

1

4µc
(−r2 + µ(R2 − R2

A) + R2
A)

Up(r) =
∆P

∆x

1

4µp

(−r2 + R2),
(4.3)

where Uc(r) and Up(r) represent the velocity profiles in 0 < r < RA and RA < r < R,

respectively. In general, the blood viscosity is larger than plasma viscosity (µ > 1).

If we extend the velocity profile of blood flow Uc(r) to r = R, finite slip velocity

appears on the wall boundary. Therefore, there exists certain value RB between RA

and R such that the flow rate of blood plasma can be represented by the extension

of the velocity profile Uc(r) within RA < r < RB, e.g.,

∫ R

RA

2πrUp(r)dr =

∫ RB

RA

2πrUc(r)dr, (4.4)
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The Left-hand-side (LHS) and right-hand-side (RHS) of Eq. (4.4) is given by

∫ RB

RA

2πrUc(r)dr =
∆P

∆x

2π

4µc

{

[

µ(R2 − R2
A) + R2

A

] R2
B − R2

A

2
− R4

B − R4
A

4

}

∫ R

RA

2πrUp(r)dr =
∆P

∆x

2π

4µp

(R2 − R2
A)2

4
.

(4.5)

For simplicity, we define RB = (1 − δ2)R. With RA = (1 − δ1)R, Eq. (4.4) can be

simplified as

2 [(4µ − 2)δ1 + 2δ2] (δ1 − δ2) = µδ2
1(4 − 4δ1), (4.6)

where the high order terms O(δ3
1), O(δ3

2) have been neglected since δ1, δ2 ≪ 1 for

cases of large tube diameter. Solving the above equation yields the result δ = δ2/δ1

given by

δ = −(µ − 1) +
√

µ2 − µ

RB = (1 − δδ1)R
(4.7)

With µ ≥ 1, δ falls between 0 and 0.5. Specifically, µ = 1 leads to δ = 0 since the

blood flow and plasma have the same viscosity in this case, e.g., RB = R without

any slip length. On the other limit case, µ → ∞ leads to δ = 0.5 since the extension

of Uc(r) can be treated as flat line compared with Up(r). Numerically, δ approaches

0.5 given µ > 3.0.

With the continuum model given by Eq. (4.3) and Eq. (4.7), the velocity profile

has finite non-zero value at the boundary r = RB. The slip value is given by

Uc(r = RB)

Uslip =
∆P

∆x

1

4µc
(−R2

B + µ(R2 − R2
A) + R2

A)

=
∆P

∆x

R2

4µc
(1 − (1 − δ2)

2 + 2µδ1 − 2δ1)

≈ ∆P

∆x

R2

2µc
δ1

√

µ2 − µ.

(4.8)
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Figure 4.8: The velocity profile of the blood flow for D = 20, 100µm. The symbols
represent the numerical results obtained by the numerical simulation from the DPD
simulation. The dash lines represent the results from the continuum model with
slip boundary condition defined by Eq. (4.3) and Eq. (4.7). The dash dot lines
represent the results from the continuum model with no-slip boundary condition
defined by Eq. (4.11). The vertical dash line represents the position of the slip
boundary RB = (1 − δ2)R, where δ2 defined by Eq. (4.7).

Therefore, the continuum model can viewed as a pressure driven flow with specific

slip velocity as defined above, e.g.,

U(r) =
∆P

∆x

1

4µc
(−r2 + R2

B) + Uslip, (4.9)

and the corresponding flow rate is given by

Q =
π

8µc

∆P

∆x
R4

B + πR2
BUslip. (4.10)

Given the value of µ and δ1, the continuum system is fully determined for the

pressure drop ∆P/∆x by Eq. (4.8 - 4.10). µc is the characteristic value of the relative

viscosity in the linear shear region as the value. For smaller tube systems, Eq. (4.8 -

4.10) may not be valid due to the dominance of the blood core region. Nevertheless,

their continuum approximations are also computed for comparison reason.
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model D (µm) ∆P/∆x(Pa/m) Uslip(mm/s) Q (mm3/s) U(0)(mm/s)
DPD 20 1.31 ×105 N/A 2.92 × 10−4 1.32

NewtonianS 20 1.31 ×105 0.89 3.62 × 10−4 1.37
NewtonianN 20 1.31 ×105 N/A 2.92 × 10−4 1.859

DPD 40 6.78 ×104 N/A 1.97 × 10−3 2.41
NewtonianS 40 6.78 ×104 1.07 2.08 × 10−3 2.48
NewtonianN 40 6.78 ×104 N/A 1.97 × 10−3 3.15

DPD 100 3.41 ×104 N/A 3.24 × 10−2 7.03
NewtonianS 100 3.41 ×104 1.51 3.31 × 10−2 7.08
NewtonianN 100 3.41 ×104 N/A 3.24 × 10−2 8.83

DPD 150 2.65 ×104 N/A 0.124 12.44
NewtonianS 150 2.65 ×104 1.71 0.126 12.55
NewtonianN 150 2.65 ×104 N/A 0.124 14.18

Table 4.1: Flow rate Q and maximum flow velocity Um calculated in DPD simulations
and with the NewtonianS and NewtonianN models at HT = 0.3. The slip velocity
Uslip for the NewtonianS model is also shown. For each tube size D the pressure
gradient ∆P/∆x is fixed. The tabulated values for D = 20 and 100 µm correspond
to the velocity profiles of figure 4.8.

Fig. 4.8 and Tab. 4.1 present the velocity profiles and flow rates Q obtained from

the slip-velocity model as well as the DPD simulation. The continuum results in

general agree well with the DPD simulation. The discrepancy near the center line of

the blood channel is mainly due to the non-Newtonian blood core near the centerline

of the channel. The errors in Q and Um range from about 2% to 10% as the diameter

decreases. When only flow rate is considered, a no-slip boundary approximation will

yield the correct results. The velocity profile is defined by

Uns(r) =
∆P

∆x

1

4µapp

(−r2 + R2), (4.11)

where µapp is the apparent viscosity of the blood system. However, this approxima-

tion results in large over-estimation of Um, as shown in Fig. 4.8. For small tube

systems, improved accuracy calls for the incorporation of the inhomogeneous local

information, which is omitted in the continuum approximation.
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4.4 Conclusion

In this chapter, we present the DPD simulation results of blood suspensions in differ-

ent tubes with size-range 20 − 150 µm. Different from the homogeneous shear flow,

the blood suspensions in Poiseuille flow exhibit inhomogeneous shear stress across

the tube, resulting in the heterogeneous micro-structures along the radial directions.

This effect is especially pronounced in small tubes, where the blood flow can be

roughly divided into two regions: the non-Newtonian blood core and the Newtonian

blood plasma layer. The inhomogeneous cross stream stress gradient is reflected by

the cell density peak and flat plug-like velocity profile near the tube center. On

the contrary, in large tube systems, a homogeneous cell suspension region appears

between the blood core and the plasma layer, where the cell density distribution

keeps a near constant value. Analysis of the velocity profiles reveals that the large

tubes show a linear shear rate distribution in this region, whereas for the smaller

tubes, the shear rate profiles are non-linear over the whole domain. The response

of the suspended cells to the varying shear rates cross the tube is derived from the

gyration tensors of the individual cells, where the cell asphericity and orientation

angle are quantified for different tube systems. As the tube diameter increases to

above 100µm, the simulation results converge to single profiles.

The appearance of the homogeneous cell suspension region indicates that the

blood system approaches the continuum region as the tube diameter increases. This

postulation is investigated by measuring the local viscosity across the tube. In large

tube systems, the local viscosity of the blood flow approaches the value measured

in homogeneous shear flow systems, indicating the local properties can be described

by the shear viscosity defined on the macroscopic scale. As tube diameter decreases,

the local viscosity shows apparent deviation from the homogeneous value, indicating

the break down of the continuum approximation. Therefore, using the mesoscopic

DPD method, the present work identifies a non-continuum to continuum transition

for blood flow systems. For tube flow of D ≥ 100µm, the blood velocity profiles can
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be well characterized by a continuum description with slip velocity at the boundary.

However, this description shows poor approximation for smaller tube systems, where

the inhomogeneous local properties need to be specified.



Chapter 5

A multi-scale model for sickle red

blood cell

5.1 Introduction

Sickle cell anemia has been identified as the first “molecular disease” [123] where

the hemoglobin molecules inside the sickle red blood cell (SS-RBC) are different

from the healthy ones. Specifically, the difference results from the substitution of a

single amino acid in the β-chain of hemoglobin. In a deoxygenated state, the sickle

hemoglobin (HbS) molecules exhibit low solubility and tend to aggregate and form

a polymerized state [133] characterized by the double nucleation mechanism [52].

Due to the polymerized HbS, the SS-RBCs undergo various morphological changes

depending on the mean corpuscular hemoglobin concentration (MCHC) and the

deoxygenation procedure [84, 23]. With a slow deoxygenation procedure and low

MCHC value, the SS-RBCs tend to form into a classical sickle shape, where HbS

inside a single sickle cell tends to form into a single aligned polymerized domain. On

the other hand, fast deoxygenation and high MCHC conditions favor the mosaic or

granular shapes, where multiple polymerized domains are typically found inside the

cell.

89
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In addition to the various cell morphologies, the membrane mechanics of a SS-

RBC also exhibits different properties in both oxygenated and deoxygenated states.

In full oxygenated state, measurements of the effective cell membrane elasticity by

optical tweezers [17] reported 50% increase compared with the healthy cells. Mea-

surements by micropipette [41] reported that the effective shear modulus of the sickle

cell membrane is about two to three times the value of the healthy cell. On the con-

trary, the shear modulus of the SS-RBC increases sharply as the oxygen tension is

decreased below 60 mmHg [76]. Moreover, the rigidity of the full deoxygenated cell

depends on the MCHC value for each single cell. For a sickle cell with low value

of MCHC (e.g., 25.5 g/dL), the effective cell rigidity is about 100 times larger than

the healthy value, while for cells with higher value of MCHC (> 35 g/dL), the cell

rigidity shows further increases and could be even larger than the upper limit of the

instrument used in the experiment.

The intracellular polymerization and the stiffened cell membrane lead to an el-

evation in flow resistance of SS-RBC suspensions. Extensive experimental studies

on the dynamics of SS-RBC suspensions have been reported for both shear flow and

isolated vascular systems [148, 84, 87, 86]. Usami et al. measured the shear viscosity

of HbS cell suspensions in a Ringer’s solution with Hematocrit (Hct) 45%. While the

viscosity of the normal blood exhibits the shear-thinning behavior, the behavior of

the full-deoxygenated HbS blood is similar to Newtonian flow as the viscosity value

is nearly shear-independent. Kaul et al. [84, 87, 86] investigated the rheological

and hemodynamic properties of SS-RBC suspensions with various cell morphologies

obtained at different MCHC values and deoxygenation rates. It was found that the

dynamics of SS-RBC suspensions is heterogeneous with the various cell morpholo-

gies. More recently, Higgins et al. [69] studied SS-RBC suspensions in a microfluidic

network where the oxygen tension of the environment could be controlled. Vaso-

occlusion was observed as the oxygen was gradually removed while blood flow could

be resumed as the oxygen was refilled into the microfluidic device. The basis of
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the occlusion phenomenon was attributed to the stiffened cell membrane in deoxy-

genated state while the detailed biophysical mechanism for the occlusion event was

not explained.

Numerical simulations can be used for qualitative and quantitative understanding

of the behavior of blood flow with sickle cell anemia although much less numerical

work has been reported, probably due to the complexity of the sickling process and

also the heterogeneous characteristics of SS-RBCs. To this end, Dong et al. [30]

studied the effect of cell deformability and cytosol polymerization by a 2D model of

sickle cell in capillaries where a RBC was represented as a 2D cylinder shape. The

blood flow resistance for different values of the cell membrane shear modulus and

cytosol viscosity were investigated. Dupin et al. [33] studied a collection of SS-RBCs

passing through an aperture of diameter less than the size of a single cell.

To quantify the hemodynamics of blood flow with sickle cell anemia under var-

ious physiological conditions, we employed a multiscale model [125, 46] to simulate

healthy RBCs and SS-RBCs. A RBC is modeled as a network of viscoelastic bonds

combined with bending energy and constraints for surface area and volume con-

straints. The mechanical properties of the cell membrane are fully determined by

the microscopic parameters such that various cell membrane mechanical states can

be imposed without changing the model’s parameters. Different realistic 3D cell mor-

phologies are constructed according to the typical shapes observed in experiments

by SEM [84, 87]. Quantitative shape characteristics are analyzed by introducing

the asphericity and elliptical shape factors. The corresponding shear viscosity and

peripheral resistance are computed in shear and tube flow systems. Comparison

with experiment results is made where it is possible and physical mechanisms are

discussed. We show that the model can capture the heterogeneous hemodynamics

of SS-RBC suspensions with different cell morphologies. We also discuss the physio-

logical conditions for the occurrence of vaso-occlusion. Although the flow resistance

of diseased blood exhibits an apparent elevation compared with healthy blood, no
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occlusion events occur until proper adhesive interactions are introduced into the

system. Our simulation results indicate that the adhesive interactions between the

sickle cells and the vascular endothelium play a key role for the triggering of the

vaso-occlusion phenomenon in straight vessels.

The chapter is organized as follows. In Sec. 5.2, we explain the details of the

multiscale RBC model and the method of constructing SS-RBCs. In Sec. 5.3,

SS-RBCs with various 3D morphological states are constructed and quantified by

the asphericity and elliptical shape factors. The dynamic properties of SS-RBC

suspensions are studied in shear flow and tube flow with diameter of 9µm. The shear

viscosity and tube flow resistance are computed and compared with the available

experimental results. The effect of the blood cell-endothelium interaction on the

hemodynamics of SS-RBCs is further examined. We conclude in Sec. 5.4 with a

brief summary.

5.2 Multiscale model

5.2.1 RBC membrane

The sickle red blood cell model is based on a multi-scale model of healthy red blood

cell developed by Pivkin et al. [125] and Fedosov et al. [46]. Here we briefly review

this model. We refere to Ref. [44] for the details of this model.

In the equilibrium state, the RBC keeps a biconcave shape as described by [42].

In the present model, the RBC membrane is represented by a two-dimensional tri-

angulated network with Nv vertices where each vertex is represented by a DPD

particle. The vertices are connected by Ns visco-elastic bonds to impose proper

membrane mechanics [29, 46]. Specifically, the elastic part of bond is represented by

the potential

Vs =
∑

j∈1...Ns

[

kBT lm(3x2
j − 2x3

j )

4p(1 − xj)
+

kp

(n − 1)ln−1
j

]

, (5.1)



93

where lj is the length of the spring j, lm is the maximum spring extension, xj = lj/lm,

p is the persistence length, kBT is the energy unit, kp is the spring constant, and n

is a power. Physically, the above two terms represent the wormlike chain potential

and a repulsive potential, respectively.

The membrane viscosity is imposed by introducing a viscous force on each spring.

Following the general framework of the fluid particle model [38], we can define the

dissipative force FD
ij and random force FR

ij given by

FD
ij = −γTvij − γC(vij · eij)eij , (5.2)

FR
ijdt =

√

2kBT

(

√

2γT dWS
ij +

√

3γC − γT
tr[dWij]

3
1

)

· eij , (5.3)

where γT and γC are dissipative parameters, vij is the relative velocity of spring

ends, tr[dWij] is the trace of a random matrix of independent Wiener increments

dWij , and dWS
ij = dWS

ij − tr[dWS
ij]1/3 is the traceless symmetric part.

To uniquely relate the model parameters and elastic properties of the cell mem-

brane, we extend the linear analysis of [27] for a regular hexagonal network [46]; the

derived shear modulus of the membrane µ0 is given by

µ0 =

√
3kBT

4plmx0

(

x0

2(1 − x0)3
− 1

4(1 − x0)2
+

1

4

)

+

√
3kp(n + 1)

4ln+1
0

, (5.4)

where l0 is the equilibrium spring length and x0 = l0/lm.

The bending resistance of the RBC membrane is modeled by the potential

Vb =
∑

j∈1...Ns

kb [1 − cos(θj − θ0)] , (5.5)

where kb is the bending constant, θj is the instantaneous angle between two adjacent

triangles having the common edge j, and θ0 is the spontaneous angle. The relation

between the model bending coefficient kb and the macroscopic bending rigidity kc

of the Helfrich model [66] can be derived as kb = 2kc/
√

3 for a spherical membrane
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[46].

In addition, the RBC model includes the area and volume conservation con-

straints, which mimic the area-incompressibility of the lipid bilayer and the incom-

pressibility of the interior fluid, respectively. The corresponding energy is given by

Va+v =
∑

j∈1...Nt

kd(Aj − A0)
2

2A0

+
ka(A − Atot

0 )2

2Atot
0

+
kv(V − V tot

0 )2

2V tot
0

, (5.6)

where Nt is the number of triangles in the membrane network, A0 is the triangle area,

and kd, ka and kv are the local area, global area and volume constraint coefficients,

respectively. The terms A and V are the total RBC area and volume, while Atot
0 and

V tot
0 are the specified total area and volume, respectively.

5.2.2 Sickle cell membrane

Different from normal RBCs, the sickle cells exhibit various morphological states

due to the presence of the polymerized HbS inside the cell. In deoxygenated state,

the HbS molecules polymerize and grow into bundles of fiber. Consequently, the

sickle cell undergoes various degrees of distortion due to the interaction between

the growing fiber and the cell membrane. The final shape of the sickle cell depends

on the intracellular HbS polymer configuration. In general, classical “sickle” and

“holly leaf” shapes originate from a single HbS polymer domain growing along one

direction; granular and near biconcave shapes originate from multiple domains with

homogeneous growth directions. The configuration of the HbS polymer is determined

by several physiological conditions: the MCHC of the sickle cell, the rate of the

deoxygenation process, the final gas tension, temperature, PH level, etc.. (see Chap.

6 for further discussion on the effect of the HbS polymer configuration on the sickle

cell morphology.)

In this chapter, we directly consider the surface tension applied on the cell mem-

brane exerted by the growing HbS fibers, similar to the systems discussed in Ref.
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Figure 5.1: Left: triangulated mesh of the RBC membrane. The label “A”, “B”,
“C” and “D” represents the four anchor points where the stretching force is applied.
Right: Successive snapshots of a RBC during the morphological transition to the
“sickle” shape.

[25]. Fig. 5.1 shows the triangulated mesh of a healthy RBC with biconcave shape.

We define the direction along the thickness of RBC as z-direction while the plane

determined by the two long axes is defined as the x-y plane. The letters “A”, “B”,

“C” and “D” are the four points with the maximum/minimum values in the x/y

directions, representing the four anchor points where the intracellular growing fibers

can potentially approach the cell membrane. Each anchor point is represented by

ǫNv vertices, where ǫ = 0.016. Different surface tension is exerted on the cell mem-

brane depending on the configuration of the HbS fibers. For deoxygenated SS-RBCs

with low MCHC, the intracellular HbS polymer tend to grow into single domain

whereas the angular width is relatively small due to the limited heterogeneous nu-

cleation and branching rates, resulting to the classical sickle shape. Accordingly,

the surface tension is applied only on points “A” and “C” to represent the specific

direction of the polymer growth. For SS-RBCs with high MCHC, the intracellular

HbS polymers tend to form spherulitic configurations due to the explosive growth via

the high heterogeneous nucleation rate on the pre-existed HbS polymers, resulting
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in the granular shape. In this case, the growing HbS fibers may approach the cell

membrane from multiple directions. Therefore, the surface tension is applied on all

the four anchor points for this case. We note that the HbS polymer may interact

with the cell membrane at more than four positions, resulting in the multiple spicules

distributed in the cell membranes. However, this type of cells exhibits similar gran-

ular shape. Therefore, we use four anchor points in the current study to represent

the positions where the growing HbS fibers interact with the cell membrane.

Starting from the original biconcave shape, the cell membrane undergoes various

deformations until a certain new shape is achieved. We define the new shape as

the equilibrium state of the sickle cell and remove the surface tension applied at the

anchor points. To define the distorted shape as the stable state of the sickle cell

with minimum free energy, the local stress on the cell membrane generated by the

distortion has to be eliminated. To achieve this, we employ a “stress-free” model to

the new state of the sickle cell. The equilibrium length of li0 of each bond is set to

the edge length of the new state for i = 1, ..., Ns. This leads to individual maximum

extension for each bond as li0/x0, where x0 is a constant less than 1. This annealing

procedure provides a bond network free of local stress abnormalities. Finally, the

bond parameters are adjusted according to the shear modulus of the sickle cell.

5.2.3 Adhesion model

Besides the abnormal cell morphologies, the SS-RBCs also exhibit adhesive behavior

with the blood vessel wall as well as with leukocytes present in the blood systems;

in this chapter we omit the different cell adhesive dynamics among the various cell

fractions. (see Chap. 7 for detail discussion on this issue.) To investigate the effect

of the SS-RBC/wall adhesive mechanism on the hemodynamics of the sickle blood,

we employ a simple stochastic model [62, 47] to represent the multi-functional in-

teractions. Specifically, we assume that the sickle cell vertices can interact with the

endothelial ligands within interaction distance don. For each time step ∆t, transient
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bonds can be formed between the cell vertices and the endothelial ligands with prob-

ability Pon = 1− e−kon∆t, while the existing bonds can be ruptured with probability

Poff = 1 − e−koff∆t, where kon, koff are the reaction rates defined by

kon = k0
on exp

(

−σon(l − l0)
2

2kBT

)

koff = k0
off exp

(

σoff (l − l0)
2

2kBT

)

,

(5.7)

where σon and σoff are the effective formation/rupture strengths. For existing bonds,

the force between the receptors and ligands is defined by F (l) = 2ks(l − l0), where

ks is the spring constant and l0 is the equilibrium length.

During the simulation, the above stochastic process is executed at each time step.

First, all existing bonds between cell vertices and ligands are checked for a potential

dissociation. A bond is ruptured if the bond length is larger than doff , otherwise it is

determined according to the probability Poff . Second, a bond formation procedure

is looped through all the free ligands. For each free ligand, all the cell vertices

within the distance don are examined, and bond formation is accepted in a stochastic

way according to the probability Pon. Finally, the forces of all existing bonds are

calculated and applied.

5.2.4 Scaling of model and physical units

In the present work, the scaling between DPD model units (M) and physical units

(P ) adopts the following length and time scales

rM =
DP

0

DM
0

m, τ =

(

DP
0

DM
0

ηP

ηM

Y M

Y P

)

s, (5.8)

where rM is the model unit of length, D0 is the cell diameter, m stands for meters, η

is the characteristic viscosity (e.g., solvent viscosity) and Y P is the Young’s modulus

of the red blood cell. Moreover, we can define the scaling of the energy per unit mass
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(kBT ) and of the force unit (“N” denotes Newton) as follows

(kBT )M =
Y P

Y M

(

DP
0

DM
0

)2

(kBT )P ,

NM =
Y P

Y M

DP
0

DM
0

NP .

(5.9)

5.3 Results

In this section, three different types of sickle cell membranes typically observed in

experiments [87] are constructed. The various morphologies are further quantified by

the asphericity and ellipticity factors to represent the degree of distortion of the cell

membrane. The shear viscosity of SS-RBC suspensions with different morphologies

and hematocrit values are investigated and compared with experiment results. The

hemodynamics of SS-RBC suspensions is studied in a tube with diameter of 9.0µm.

Finally, we investigate the effect of the adhesive interaction between the SS-RBCs

and a modeled vascular endothelium on the vaso-occlusion phenomenon.

5.3.1 Morphology of sickle red blood cell

Kaul et al. studied the morphologic characteristics of sickle cells by SEM for differ-

ent intracellular MCHC values [84] and deoxygenation rates [87]. Sickle cells with

medium MCHC values exhibit sickle shape while cells with high MCHC values ex-

hibit granular shape. Similarly, slow deoxygenation rate results in sickle shape while

the fast deoxygenation rate favors granular shape. Remarkably, a third type of sickle

red blood cell is observed with prolonged 30-min incubation of the granular cell in

the deoxygenated condition. Different from the sickle and granular shape, the cell

exhibits extremely elongated shape in one direction with projection much longer

than the diameter of the cell. This type of cell is probably originated from further

polymerization of HbS in a certain direction during the prolonged deoxygenated

condition.
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A B C D
S (0.0, 55, 54) (0.0, 0.0, 0.0) (0.0,−55, 54) (0.0, 0.0, 0.0)
G (0.0, 23, 31) (−23, 0.0, 31) (0.0 − 23, 31) (23, 0.0, 31)
E (0, 55, 11) (0, 0, 0) (0,−55,−11) (0, 0, 0)

Table 5.1: Stretching force (pN) applied on the anchor points for each type of the
cell morphology.

To mimic the various distortion effects on the cell membrane, different forces

are applied at the anchor points as discussed in Sec. 5.2.2 and shown in Fig. 5.1.

An opposite force is applied uniformly on the rest of the vertices to keep the total

force on the cell as zero. The sickle shape is obtained from the aligned HbS polymer

growing along one direction. The stretching force is only applied on the anchor

points “A” and “C”. The z-component of the forces represent the deflection of the

HbS fiber widely observed in the experiment. The successive snapshots in Fig. 5.1

show the shape transition of a SS-RBC from the biconcave to the classical sickle

shape. Similarly, the granular shape is constructed by applying the stretching force

on all of the four anchor points. Detailed information of the stretching force is

presented in Tab. 5.1.

The distorted shape of the cell is defined as the equilibrium state for the sickle

cell through the procedure explained in Sec. 5.2.2. The degree of distortion can be

identified by eigenvalue analysis of the gyration tensor defined by

Gmn =
1

Nv

∑

i

(ri
m − rC

m)(ri
n − rC

n ), (5.10)

where ri are the RBC vertex coordinates, rC is the center-of-mass, and m, n can be

x, y, or z. The three eigenvalues obtained from the gyration tensor are denoted by

λ1, λ2 and λ3, where λ1 < λ2 < λ3. The asphericity and elliptical shape factors are
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defined by

ASF = ((λ1 − λ2)
2 + (λ2 − λ3)

2 + (λ3 − λ1)
2)/2R4

g,

ESF = λ3/λ2,
(5.11)

where Rg is the radius of gyration defined by R2
g = λ1 + λ2 + λ3.
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Figure 5.2: Asphericity and elliptical shape factors for the different shapes of the
sickle cells. The label “G”, “S” and “E” represents the granular, sickle and elon-
gated shape of the sickle cells respectively, and the inset sketches represent their
morphologic projections on the x-z and x-y planes; the inset images represent the
experimental observations on different morphologic states of deoxygentated SS-RBC
by scanning electron microscopy, reproduced from DK Kaul and H Xue, Blood, 1991
77:1353-1361, by permission. The label “B” corresponds to the original biconcave
shape, whose morphological projection is shown in Fig. 5.1.

The asphericity shape factor (ASF) measures the deviation of the RBC from

a perfect sphere shape while the elliptical shape factor (ESF) measures the degree

of distortion on the x-y plane as shown in Fig. 5.1. Fig. 5.2 plots both ASF

and ESF for the three types of cell constructed above. The granular cell shows

similar characteristics with a healthy cell while the elongated cell exhibits the largest
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deviation from the perfect biconcave shape. Similar morphological analysis has been

conducted on the medical image of different sickle cells on 2D plane, where the

circular and elliptical shape factors are computed for the granular and the sickle

shape cells [73, 9]. The different morphologies constructed by the present work show

consistent agreement with the results from medical image analysis [73, 9].

Besides the structural factors defined above, we also use a polynomial function

z = f(x, y) to fit the surface of the cell membrane for all the three types of cells,

similar to the approach in Ref. [42]. The polynomial function is defined by

f(x, y) = α0 + α1x
2 + α2y

2 + α3x
4 + α4y

4 + α5x
2y2, (5.12)

where α0, α1,..., α5 are fitting coefficients determined by the specific shape of the

cell and the boundary of the cell on the x-y plane is defined by

(x/b1)
p + (y/b2)

p = 1, (5.13)

where b1, b2 and p vary for different cell morphologies. Remarkably, we note that b1

and b2 defines the maximum extension along the x and y direction, which determines

the length and width of the cells respectively. The mean curvature CH of the fitting

surface is determined by α1,..., α5 and given by

CH(x, y) =

(

1 +
(

∂f
∂x

)2
)

∂2f
∂y2 − 2∂f

∂x
∂f
∂y

∂2f
∂x∂y

+

(

1 +
(

∂f
∂y

)2
)

∂2f
∂x2

2

(

1 +
(

∂f
∂x

)2
+

(

∂f
∂y

)2
)3/2

. (5.14)

Analytical solution can be obtained as f(x, y) defined by the polynomial function.

The L2 error of the polynomial fitting is defined by

ǫ =
1

Nv

√

√

√

√

Nv
∑

i=1

(f(xi, yi) − zi)2/ZT , (5.15)
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where xi, yi and zi are the coordinates of a discrete cell vertex, Nv is the total number

of vertices considered.
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Figure 5.3: Upper: fitted surface of cell membrane for the sickle shape of SS-RBC.
Lower: For illustration purposes, the upper and lower surface is shifted by 1 and
−1 in the z direction respectively. The blue dots represent the cell vertices obtained
from the procedure described in the current work.

For each cell, the membrane is divided into two parts according to the dual

values in z direction; each part is fitted by Eq. (5.12) separately as shown in Fig.

5.3. Similarly, the elongated and granular shape of cell membranes are fitted and

plotted in and Fig. 5.3.
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Figure 5.4: Cell vertices (blue dots) and the fitted surface of the cell membrane for
the elongated (upper) and granular (lower) shape of SS-RBC.

The fitting parameters and the basic cell morphological properties (length, width,

thickness, etc.) for each cell type are shown in Tab. 5.2 and Tab. 5.3.
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α0 α1 α2 α3 α4 α5

Sl −0.806 −0.1141 −0.00678 2.12 × 10−3 2.01 × 10−2 2.84 × 10−2

Su 1.36 −0.0403 0.306 −1.69 × 10−3 −3.60 × 10−2 −2.77 × 10−2

El −0.995 −0.0361 −0.092 1.11 × 10−3 2.21 × 10−2 2.17 × 10−2

Eu 1.04 0.00836 0.203 −1.09 × 10−3 −2.89 × 10−2 −2.22 × 10−2

Gl −0.237 −0.171 −0.180 6.35 × 10−3 6.84 × 10−3 4.40 × 10−2

Gu 1.701 −0.0123 −0.0245 −5.06 × 10−3 −4.86 × 10−3 −1.85 × 10−2

Table 5.2: The fitting parameters for the cell membranes with different morphologies.
The label “S”, “E” and “G” represent the sickle, elongated and granular shape
respectively. The upper label “u” and “l” represent the upper and lower part of the
cell surface. The unit of x, y and z is in micrometer.

b1 b2 p ZT Zm 〈CH〉 ǫ
S 5.80 3.05 1.54 1.58 3.87 0.22 0.0748
E 6.40 3.1 1.45 1.56 2.37 0.25 0.0581
G 4.58 4.58 1.25 1.52 2.75 0.21 0.0607

Table 5.3: The parameters of Eq. (5.13) representing the boundary of cell on the
x-y plane, where the surface of the cell membrane is defined. The label “S”, “E”
and “G” represent the sickle, elongated and granular shape, respectively. ZT and
Zm are the average/maximum cell thickness. 〈CH〉 is the average value of the mean
curvature over the cell surface. ǫ is the L2 error of the polynomial fitting.

5.3.2 Shear viscosity of SS-RBC suspensions

The abnormal rheological properties of SS-RBCs are correlated with the stiffened

cell membrane, which was measured by micropipette experiments in [76] at different

deoxygentaed stages. The shear modulus of the full deoxygentaed sickle cell falls

within a wide range of values depending on the intracellular HbS polymerization.

For the SS-RBC with low MCHC value (25.5 g/dL), the shear modulus is about

100 times the value of healthy cells. However, for the SS-RBC with high MCHC

value (> 35 g/dL), the ratio between the sickle and healthy cell varies from 300 to

∞, where ∞ represents a certain high value beyond the instrument measurement

range. For SS-RBCs studied in rheological experiments, the typical MCHC value

reported is between 32.2 g/dL and 41 g/dL. Therefore, the shear modulus of the full

deoxygenated sickle cell is chosen to be 2000 times the value of the healthy cells in
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the present study. The bending rigidity of sickle cell under different deoxygenated

stages is unknown. We set its value to be 200 times the value of the healthy RBC in

the present studies. With respect to the specific value of the shear modulus we used,

sensitivity studies reveal that the shear viscosities of SS-RBC suspensions show weak

dependence on shear rate until the ratio of SS-RBC shear modulus to the value of

healthy cell is on order of 1000; similarly, for bending rigidity, weak dependence on

shear rate is achieved with the value of SS-RBC about 200 times the value of healthy

cell.

Blood flow with sickle cell anemia is modeled by a suspension of SS-RBCs in a

solvent, which is represented by a collection of coarse-grained particles with DPD

interactions. The dissipative force coefficient γ for the vertex-solvent interaction

defines the RBC-solvent boundary conditions [46]. A short-range Lennard-Jones

repulsive interaction is imposed between the membrane vertices of different (both

healthy and diseased) cells for volume exclusion between the cells. The Lennard-

Jones potential is defined by

ULJ (r) =











4ǫ
[

(σLJ/r)12 − (σLJ/r)6
]

, if r <= rcut

ULJ(rcut), if r > rcut

(5.16)

where σLJ = 0.42, ǫ = 1.0, rcut = 21/6σLJ in the DPD unit. The repulsive interaction

vanishes for r > rcut.

With the SS-RBC suspension defined above, we first consider the shear flow

system with Hct = 45% following the experiment of Ref. [148]. The viscosity of

the solvent is chosen to be η0 = 1.2 cp. The specific morphological characteristics

of the SS-RBCs were not specified in the experiment. However, we note that the

reported MCHC value of the sickle cell is relatively high (37.7g/dL). Therefore,

the granular shape is adopted for the current simulation. Periodic Lees-Edwards

boundary [96] conditions are imposed on the fluid system where different shear rates
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Figure 5.5: Shear viscosity of the healthy blood and SS-RBC suspensions with Hct
= 45%. The dash lines represent the fitted curve to the simulation result by η =
be−a/γ0.5

+ c, where γ is the shear rate. a, b and c equal to 1.43,−6.04, 8.78 for
healthy blood and 1.08,−5.5, 23.9 for deoxygenated SS-RBC suspension. The inset
plot shows a snapshot of the “granular” SS-RBCs in shear flow.



106

can be obtained. The simulation domain has the size of 40 × 38 × 28 in DPD

units, with 182 cells placed in the system. Fig. 5.5 shows the viscosity computed

for both healthy and diseased blood with different shear rates. The dash lines are

the simulation results fitted by η = be−a/γ0.5

+ c, where γ is the shear rate while

a, b and c are fitting parameters specified in Fig. 5.5. Good agreement with the

experimental results is obtained for both types of blood. Healthy blood behaves as a

non-Newtonian fluid under normal conditions with a shear-dependent viscosity [50].

The blood cells are less deformed at low shear rate conditions and exhibit “solid”

like properties with relatively high viscosity. On the other hand, the blood cells

can be substantially deformed at high shear rate conditions with the fluid properties

more pronounced. Therefore, the viscosity of healthy blood decreases as the shear

rate increases as shown in Fig. 5.5. Different from the healthy RBC suspension, the

deoxygenated SS-RBC suspension shows elevated viscosity values nearly independent

of the shear rate. This difference arises from the significantly stiffened sickle cell

membrane, which is so rigid that the cell cannot be deformed even with the high

shear rate employed in the experiment [148]. Therefore, the sickle cell exhibits “solid”

behavior throughout the entire region of shear rate conducted in the present study.

The present model, consisting of only SS-RBCs in suspension, clearly captures this

transition from non-Newtonian to Newtonian flow.

To investigate the relationship between the rate of deoxygenation effect and the

rheology of SS-RBC suspensions, Kaul et al. examined the shear viscosity of SS-RBC

suspensions subjected to both fast and gradual deoxygenation procedures [87]. SS-

RBC suspensions subjected to gradual deoxygenation procedure showed monotonic

elevation of shear viscosity and the formation of the sickle shape of blood cells over

a period of 30 mins until the full deoxygenated state was achieved. On the contrary,

SS-RBC suspensions subjected to the fast deoxygenation procedure exhibits two

distinct phases. The shear viscosity of the SS-RBC suspensions showed fast elevation

within the first 7 mins of deoxygenation accompanied with the cell morphology
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Figure 5.6: Shear viscosity of the sickle blood flow with different cell morphologies
reported in Ref. [87], Hct = 40%.
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transition to granular shape. However, the shear viscosity decreased gradually during

further deoxygenation. A large portion of cells appears extremely elongated with

the intracellular HbS fibers aligned in one direction. To study the morphology effect

on the rheological behavior of the SS-RBC, we simulate the shear flow of SS-RBC

suspensions with the three distinct types of sickle cell reported in the experiment (Hct

= 40%). Fig. 5.6 plots the shear viscosity with shear rate from 25 to 75s−1; the shear

modulus of the cell membrane is the same for all the three types. Similar to Fig. 5.5,

the SS-RBC suspension shows elevated and shear-independent viscosity values for

all three types. Moreover, the SS-RBC suspensions exhibit different viscosity values

for the different cell shapes. Within the shear rate of the current simulation, the

viscosity of SS-RBC suspensions with granular, sickle and elongated shape is about

13.5, 12.2 and 9.4 cp, respectively. This result explains the progressive decrease of

the viscosity value with further deoxygenation, since a large portion of granular cell

transforms into the elongated shape during the procedure. This result is probably

due to the different effective volume for each type of the SS-RBC in the shear flow

system [87], which affects the momentum transport ability between the cells.

5.3.3 SS-RBC suspensions in tube flow

The hemodynamics of SS-RBCs was studied in an isolated vasculature in [84] with

subpopulations of different MCHC values. While the oxygenated SS-RBCs exhibit

hemodynamics similar to healthy blood flow, the deoxygenated SS-RBCs show dis-

tinctive dynamic properties for each type of subpopulation. In the simulation, we

consider SS-RBC suspensions in a tube flow system with Hct = 30% similar to the

experiment. However, the detailed size and topology information of the microvas-

culature for the experiment is unknown. To this end, we set the diameter of the

tube to be 9.0µm, which is a typical size for capillary flow. In this sense, we do not

expect the apparent viscosity obtained from the simulation to match exactly with

the experiment results. Instead, we explore the effect of different types of SS-RBCs
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on the flow resistance in the microcirculation.

Deoxygenated blood flow is represented by a suspension of RBCs with sickle and

granular shapes. The membrane shear modulus and bending rigidity are similar with

the values adopted in the simulation of shear flow system. Blood plasma and cytosol

are explicitly represented by DPD, and they are separated by the cell membrane

through the bounce-back reflection on membrane surface. The viscosity of the cytosol

is set to 4η0 and 50η0 for the healthy and deoxygenated blood flow, where η0 is the

viscosity of the blood plasma 1.

Fig. 5.7 plots the increase of the flow resistance with different oxygen tension

for the sickle and granular shapes. While both types of blood flow show further

increase in flow resistance at deoxygenated state, the granular type of blood flow

shows a more pronounced elevation compared with the sickle shape. One possible

explanation proposed by the Kaul et al. is the different distribution of SS-RBCs

in the capillary. The inset plot of Fig. 5.7 shows the snapshots of the sickle and

granular cells in the tube flow. The cells of sickle shape tend to flow along the axis of

the tube as observed by La Celle et al. in experimental studies in [94]. To quantify

this phenomenon, we computed the cell orientation angle distribution in the tube

flow, as shown in Fig. 5.8. The cell orientation is defined by the angle θ between the

flow direction and the eigenvector V1 of the gyration tensor defined by Eq. (5.10).

For each type of the cell, the simulated orientation angle distribution f(θ) is fitted by

superimposed gaussian wave functions. Detailed fitted functions and parameters are

presented in the Fig. 5.8. Compared with the granular cells, the orientation angle

of the sickle shape blood shows a wider distribution for large value of θ, indicating

that the sickle shape SS-RBCs are more likely to orient along the flow direction 2.

This configuration results in a lower flow resistance as compared with the granular

1We note that the viscosity of the cytosol under deoxygenated conditions could be much larger
than 50η0. On the other hand, a sensitivity study we performed with cytosol viscosity ηinner =
100η0 shows that the blood dynamics is nearly independent of ηinner with ηinner > 50η0.

2This is also supported by unpublished data at MIT. (Ming Dao and Sarah E Du, private
communication.)
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Figure 5.7: Increase of the flow resistance induced by the sickle blood flow for both
granular (a) and sickle (b) shapes. The inset plot shows a snapshot of the sickle cells
in the tube flow.
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Figure 5.8: Cell orientation angle distribution f(θ) for healthy, sickle and granular
cells in pipe flow. The cell orientation is defined by the angle θ between the flow
direction (x) and the eigenvector V 1 of the gyration tensor, as shown in the inset plot.
The dash lines represent the fitted curves to the simulated results by superimposed
gaussian wave functions. For the healthy cell, f(θ) = aθe−bθp

+c, where a = 0.014, b =
0.047, p = 1.4, c = 0.002. For the granular cell, f(θ) = a1e

−c1(θ−b1)2 + a2e
−c2(θ−b2)2 ,

where a1 = 0.0315, b1 = 29.42, c1 = 0.012, a2 = 0.033, b2 = 44.75, c2 = 0.018. For the
elongated cell, f(θ) = a1e

−c1(θ−b1)2 + a2e
−c2(θ−b2)2 + a3(90 − θ)e−c3(90−θ), where a1 =

0.024, b1 = 53.2, c1 = 0.021, a2 = 0.015, b2 = 70.3, c2 = 0.015, a3 = 0.025, c3 = 0.2.
The fitting parameters are subject to the constraint

∫

f(θ)dθ = 1.
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cells, which exhibit scattered distribution near the centerline of the tube. Finally,

we note that the elevation of the flow resistance is underestimated by the simulation

as compared with the experiment results. This discrepancy is probably due to the

entrapment of certain cells to the microvascular endothelium, which may further

increase the flow resistance of the blood flow. We discuss this mechanism in the

following section.

5.3.4 Effect of the adhesive interaction: a simplified example

The hemodynamic results presented in Sec. 5.3.3 show elevated flow resistance for

deoxygenated SS-RBC suspensions. However, no full flow occlusion was observed

in the present study with a straight tube of diameter D = 9µm under different

parametric variations 3. This result is in contrast with the in vitro experimental

results reported by Higgins et al. [69], where it is reported that SS-RBC suspensions

may result in full flow occlusion in microchannels under deoxygenated conditions,

i.e., without any adhesion with the wall. We suspect that the occlusion reported

in the experiment is due to the complex geometry of the microchannel used in the

experiment. Some deoxygenated cells with stiffened membrane may get stuck at the

corner of certain channels with size smaller than a single cell, which is similar to

microchannel experiment with malaria-infected RBC reported in [137].

Alternatively, recent studies on the SS-RBC occlusion indicate that the adhesive

interaction between SS-RBCs and vascular endothelium plays a key role in the vicious

“occlusion-and-sickle” cycle [81, 13]. The mechanism of the adhesive interaction is

relatively complicated with several inter-related factors playing important role during

the procedure. In addition to the interactions between SS-RBC and endothelium,

an in vivo experiment indicates that SS-RBCs can also interact with the leukocytes

adherent to inflamed postcapillaries [147].

3We performed 16 sets of simulations with different combinations of cell membrane rigidities
and inner viscosity; however, no full occlusion was observed in any of these simulations.
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Figure 5.9: Sickle blood flow with adhesive dynamics. The green dots represent the
ligands coated on the vessel wall. The blue cells represent the “active” group of sickle
cell exhibiting adhesive interaction with the coated ligands. The red cells represent
the “non-active” group of cells. Upper: a snapshot showing “active” group of cells
flowing into the region coated with “ligands”. Lower: a snapshot of the SS-RBCs
with local occlusion state.
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Parameters Simulations Physical
spring constant (ks) 400 1.85 × 10−5 N/m
equilibrium spring length (l0) 0.0 0.0 m
reactive distance (don) 0.5 4.8 × 10−7 m
rupture distance (doff ) 0.5 4.8 × 10−7 m
on strength (σon) 0.22 1.02 × 10−8 N/m
off strength (σoff ) 0.33 1.52 × 10−8 N/m
unstressed on rate (k0

on) 600.0 6.0 × 105 s−1

unstressed off rate (k0
off) 0.25 250 s−1

Table 5.4: Simulation (in DPD units) and physical (in SI units) parameters for blood
flow with adhesive interaction with vascular endothelium.

In this chapter, we present a simple toy example to highlight the effect of the

adhesive interaction on the hemodynamics of sickle blood flow. The stiff bioconcave

shape is adopted in this example. A systematically investigation of the cell adhesive

interaction among the different cell groups is presented in Chap. 7. In this work, we

simply assume that there exist certain types of endothelial ligands coated on the wall

of the tube referring to the relevant adhesive proteins that we model indirectly, as

shown in Fig. 5.9. The ligands are uniformly distributed with density 4µm−2. Bond

interaction can be formed and ruptured between the cell vertices and the ligands

with a stochastic model described in Sec. 5.2.3, where the simulation parameters are

presented in Tab. 5.4.

With the simplified adhesive model defined above, we reconsider blood flow in a

tube similar to Sec. 5.3.3. For comparison study, steady flow is first achieved with

the adhesive interaction being turned off. The measured relative apparent viscosity

is about 1.52 and no blood occlusion is observed in the simulation. Next, we consider

blood flow with the adhesive interaction incorporated. As shown in Fig. 5.9, the

blood cells are divided into two groups. Each SS-RBC in the “active” group (labeled

by blue) expresses the adhesive receptors with the average adherent force about

68pN , whereas the “non-active” group (labeled by red) does not interact with the

ligands. The “active” group of cells, once it flows into the region coated with the
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Figure 5.10: Mean velocity of the sickle blood at different stages of the adhesive
dynamics. The red and blue curve correspond to different pressure drop of 8.3 ×
104Pa/m and 1.35 × 105Pa/m respectively.
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ligands, shows firm attachment to the wall of the channel, which results in substantial

decrease in the effective tube diameter and the shear rate near the trapped cells.

Moreover, the entrapped cells result in a secondary trapping of the “non-active”

cells in the adhesion area due to the largely increased membrane stiffness. This

procedure is accompanied with further decrease of the shear rate, which eventually

leads to the partial or full occlusion of the tube flow.

Fig. 5.10 presents the mean velocity of the blood flow as a function of time

corresponding to the procedure described above. For the case without adhesion, the

steady flow state is reached with average velocity about 180µm/s and 115µm/s, re-

spectively. With the adhesive dynamics turned on, blood flow exhibits a transition

from steady flow to partial/full occluded state, which can be roughly divided into

three stages according to the velocity values shown in Fig. 5.10. The first stage

(t < 6.9s) represents the steady flow state before the “active” cells arriving at the

region coated with ligands. The velocity value is similar to the case without adhe-

sion. However, the average velocity undergoes a sharp decrease to 40µm/s during

the second stage (6.9s < t < 7.3s), representing the adhesion procedure between the

“active” cells and the coated ligands with decreased effective tube diameter. In the

third stage, the blood flow (blue curve) with larger pressure drop exhibits a partial

occluded state with average velocity of 50µm/s due to persistently adherent cells

on the wall of channel. Moreover, the velocity of the blood flow with smaller pres-

sure drop (red curve) decreases slowly to about 10µm/s, representing the secondary

entrapment of the “non-active” cells and the full occluded state.

5.4 Discussion

A validated multiscale model is employed to quantify the morphology and dynamic

properties of sickle red blood cells. To the best of our knowledge, this is the first work

on multiscale 3D modeling of sickle red blood cell which captures the heterogeneous
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nature of both realistic single cell shape and corresponding collective hemodynamics.

Specifically, three typical shapes of distorted sickle cell are constructed according to

the experimental observations by SEM with different deoxygenation rates and MCHC

values. The different degrees of distortion are quantified by the asphericity and the

elliptical shape factors of each different cell shape, and our results are consistent with

the medical image observations. We note that the modeling procedure provides a

general framework to link the experimental results in macro-scale with the numerical

modeling of blood cells at the meso-scale level, which can be further extended to

general modeling of diseased cells with other specific shapes characterized by optical

techniques.

With regards to the rheological properties, the simulated results are in good

agreement with the experimental results for both healthy and deoxygenated SS-

RBC suspensions. Compared with the healthy blood, the shear viscosity of the

deoxygenated SS-RBC suspensions shows a general elevation for different shear rate

conditions. Two main points emerge from the shear viscosity results of SS-RBC sus-

pensions. First, the transition from the shear-thinning flow to the shear-independent

flow reveals the profound effect of the cell membrane stiffening during the deoxy-

genation procedure as reported by Ref. [76]. Second, the simulated results of shear

flow with different cell shapes indicate that the cell morphology further influences

the shear viscosity values. While the blood with granular shape exhibits the largest

viscosity, the elongated shape originated from the granular cell with further deoxy-

genation results in the least viscous state. Our simulation results further validate

the dependence of SS-RBC rheology on the cell morphology as reported by Ref. [87].

Besides the shear flow system, the heterogeneous nature of the SS-RBC is also

observed in the microtube flow system. The change of the flow resistance induced by

granular RBCs shows a greater increase than the resistance of blood with sickle shape

RBCs as the latter may align along the flow directions resulting in a wider plasma

layer. Compared with the experiments conducted in isolated micro-vasculature, our
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simulations indicate a general underestimation of the blood flow resistance induced

by SS-RBC. This discrepancy is mainly due to the two simplifications in the current

model: (i) the isolated vasculature is modeled as a simple tube flow, whereas the

detailed wall topological information is omitted. (ii) The erythrocyte-endothelium

interaction is not considered. Remarkably, the perfusion of the Ringer’s solution after

the deoxygenated SS-RBC suspensions only results in partial recovery of pressure and

flow rate [84], indicating persistent adhesion events and local vascular obstruction.

Using a toy example, we show that the adhesive interactions have a profound

effect on the hemodynamics of the sickle blood flow. The adhesive cells attaching to

the vessel wall reduce the effective diameter of blood vessel, which results in further

elevation of the flow resistance. Moreover, the adhesive cells attached on the vessel

wall can further entrap those non-adhesive, less-deformable cells, leading to a sec-

ondary elevation of the flow resistance, or even the full occlusion of the channel. The

“adhesion - trapping” procedure predicted by the present work resembles the essen-

tial stages of the “two-step” model for SS-RBC occlusion in the postcapillary venules

proposed by Kaul et al. [81, 82]. However, we note that the present toy example fails

to capture the heterogeneous adhesive capabilities among the different cell groups.

In fact, recent experimental studies show the various cell fractions exhibit different

adhesive dynamics under similar physiological conditions. These discrepancies are

mainly due to the different cell morphologies and membrane rigidities among the

different cell groups. Therefore, numerical characterization of the heterogeneous cell

morphologies and adhesive responses would be of great interest. We address these

two issues in Chap. 6 and Chap. 7, respectively.



Chapter 6

Predicting the heterogeneous

morphologies of sickle red blood

cells

In chapter 5, we constructed three typical cell morphological states for sickle red

blood cells by applying artificial stretching forces at the selected anchor points on

cell membrane. The stretching forces represent the surface tension exerted on the cell

membrane due to the growth of intracellular sickle hemoglobin (HbS) polymers. In

this chapter, we conduct a systematical investigation on the sickle cell morphological

transition process by explicitly using a coarse-grained (CG) model of intracellular

aligned hemoglobin polymers. It is found that the final shape of SS-RBCs is primarily

determined by the angular width of the aligned hemoglobin polymer domain, but it

also depends, to a lesser degree, on the polymer growth rate and the cell membrane

rigidity. The heterogeneous sickle cell morphologies observed in experiments are

successfully predicted without introducing any further ad hoc assumptions.

119
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6.1 Introduction

Sickle red blood cells (SS-RBCs) exhibit heterogeneous morphological states under

hypoxia conditions. This is mainly due to the polymerization of the abnormal sickle

hemoglobin molecules inside the erythrocyte membranes. Specifically, the glutamic

acid residues at the sixth position of the two β-subchains are replaced by valine

in sickle hemoglobin, which results in low solubility in hypoxic conditions. As the

oxygen of a SS-RBC is removed, sickle hemoglobin tends to aggregate in the bulk

solution through a homogeneous nucleation and further grows into polymer states

via a heterogeneous nucleation on the surface of the pre-existed polymers, according

to the double nucleation model [51, 52]. Due to the intracellular sickle hemoglobin

polymers, SS-RBCs exhibit substantial increase in the cell rigidity [76], elevating

the blood flow resistance and potentially triggering vaso-occlusion in the microcir-

culation. Besides altering the cell rigidity, the growing sickle hemoglobin polymers

domain inside the SS-RBC can potentially distort (“sickle”) the cell membrane, and

therefore change the cell morphology under certain conditions.

However, unlike the elevation of cell rigidity, only some types of the deoxygenated

SS-RBCs undergo apparent morphologic changes. Kaul et al. [84] investigated the

deoxygenated SS-RBC morphology by categorizing the SS-RBCs into four groups

according to the mean corpuscular hemoglobin concentration values. While the

cell groups with medium mean corpuscular hemoglobin concentration (< 35 g/dL)

exhibit apparent cell deformation in deoxygenated conditions, most of the cells with

high mean corpuscular hemoglobin concentration values exhibit granular or near

biconcave shapes. Moreover, it is found that the SS-RBC morphology also depends

on the rate of the deoxygenation procedure [87, 86]. SS-RBC suspensions following

fast deoxygenation exhibit a large portion of cells with granular shape. In contrast,

most of the SS-RBCs undergo large shape transition to “sickle” or “holly leaf” cells

after gradual deoxygenation, see Fig. 6.1. To explore the mechanism of the cell

distortion, the intracellular sickle hemoglobin polymers configuration were visualized
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by optical birefrigence [23] and differential polarization microscopy [24] with different

cell morphologies and mean corpuscular hemoglobin concentration concentration. It

was revealed that the wide variety of SS-RBC morphologies has a close relationship

with the intracellular aligned hemoglobin polymer. Although the aligned hemoglobin

polymer occupies only about 5% of the total sickle hemoglobin polymer [112], the

cell morphology is mainly determined by the total number of the aligned hemoglobin

polymer domains and the configuration of each domain in the cell [23, 24].

Figure 6.1: Sketches of typical cell shapes for deoxygenated SS-RBCs observed in
experiments [24]. From left to right, the three sketches represent the “sickle”, “holly
leaf” and “granular” shape of SS-RBCs. The various cell morphologic states are
mainly determined by the specific intracellular aligned hemoglobin polymer config-
urations, represented by the solid lines. The dots represent the post-homogeneous
nucleus.

According to the double nucleation theory [51, 52], the formation of a single poly-

mer domain is initialized by the homogeneous nucleation of the sickle hemoglobin

molecules in bulk solution and proceeds with explosive growth via polymer elonga-

tion and heterogeneous nucleation on the pre-existed polymers. The homogeneous

nucleation rate is reported to be concentration dependent with power of 60 ± 10

[77]. Such extremely high concentration dependence explains the prevalence of sin-
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gle polymer domains in low mean corpuscular hemoglobin concentration cells, and

that multiple sickle hemoglobin domains are usually found in high mean corpuscu-

lar hemoglobin concentration cells. On the other hand, the structure and amount

of aligned hemoglobin polymer for individual domains are mainly controlled by the

heterogeneous nucleation and the fiber growth rates [132, 57, 18]. With high con-

centration and fast growth rate, a post-nucleation aggregate of twofold symmetry

develops into spherulitic domain through the growth of heterogeneously nucleated

fibers and further deflection from the parent fibers. On the contrary, the angular

widening of the polymer domain, originated from the fiber branching, is largely sup-

pressed for smaller heterogeneous nucleation rate as observed in both experiments

[18] and numerical simulations [31]. Remarkably, this tendency is also consistent

with the inverse relationship between the amount of intracellular aligned hemoglobin

polymer and the mean corpuscular hemoglobin concentration values for each class

of cells (categorized by the total number of polymer domains) reported in Ref. [24].

To study the physical basis of the various SS-RBC shapes observed in experi-

ment, we conducted numerical simulations to systematically investigate the effect of

the sickle hemoglobin polymer configurations and SS-RBC membrane rigidity on the

final morphologic states. The primary goal of this work is to examine if the various

types of distorted cell shapes can be obtained from the different intracellular aligned

hemoglobin polymer configurations determined by the different cell mean corpuscular

hemoglobin concentration values and deoxygenation rates observed in experiments.

Specifically, we employed a previously developed RBC model [46] in combination

with a new coarse-grained (CG) stochastic model to represent the growth of the

aligned hemoglobin polymer domain inside the cells. We studied the distortion of

the cell membrane with aligned hemoglobin polymer domains of different angular

width. The classical elongated cell with “sickle” and “holly leaf” shapes appear to

be originated from the single aligned hemoglobin polymer domain with relatively lim-

ited angular width, whereas the “mosaic” or the near-biconcave shapes are favored
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with the near spherulitic configurations. Moreover, for each type of the cell shapes,

individual SS-RBCs exhibit various morphologic states as shown in Ref. [73, 9].

Therefore, the second goal of this work is to examine if, for each type of the SS-

RBC (elongated, sickle, holly leaf, etc.), the various degrees of membrane distortion

observed in experiments [73] can be obtained as a result of the typical intracellular

sickle hemoglobin growth rates and the cell rigidities without introducing any fur-

ther ad hoc assumptions. We note that the heterogeneous nucleation events are not

explicitly modeled in the present work; instead, we directly consider the different

aligned hemoglobin polymers originated from the various heterogeneous nucleation

conditions and we investigate the subsequent cell morphological transition with those

typical aligned hemoglobin polymer configurations observed in Ref. [24, 112]. We

note that the current CG modeling may yield limited new physical insight into the

details of sickle hemoglobin polymerization; however, it allows us to quantify the

complex relationships among the fiber growth rate, cell membrane-polymer interac-

tion and aligned hemoglobin polymer configurations, and identify their effects on the

distortion of cell membranes.

This chapter is organized as follows. In Sec. 6.2, we explain the details of the

intracellular aligned hemoglobin polymer. In Sec. 6.3, we study the final shapes

of SS-RBC with different intracellular aligned hemoglobin polymer configurations.

For each type of the SS-RBC, we study the effect of the cell rigidity on the final

morphologic states. Moreover, the various cell morphologies are quantified by both

3D and 2D structure factors and compared with the results obtained from medical

images. We conclude in Sec. 6.4 with a brief discussion.

6.2 Numerical model

The physical model for the red blood cell (RBC) membrane and the aligned hemoglobin

polymer is developed in the framework of the Dissipative Particle Dynamics (DPD)
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method [71, 40]. As discussed in Chap. 2, it is a particle-based method widely used

for simulation of soft matter systems such as polymer solutions [100] and red blood

cell suspensions [118]. We refer to Sec. 3.2 for details of the DPD method and Sec.

5.2.1 for the model of the RBC membrane.

6.2.1 Aligned Hemoglobin Polymer

In the deoxygenated state, the post-homogeneous aggregates grow into polymer state

and further form into bundles of sickle hemoglobin fibers and cross-linked gel through

heterogeneous nucleation and branching. A single sickle hemoglobin fiber is com-

posed of seven double strands in the style of twisted rope with diameter of about

d0 = 21 nm; fully representing the detailed structure of a single sickle hemoglobin

fiber is too expensive in the scale of a single RBC (∼ 10µm). Instead, we employ

a CG model to represent a bundle of sickle hemoglobin fibers where the detailed

structure of a single fiber is omitted. Each bundle is represented by single DPD

particles connected by elastic bond interactions defined by

Vbond =
kb(3x

2
ij − 2x3

ij)

(1 − xij)
+

kp

lij
, (6.1)

where xij = lij/lm, lij is the bond length between particle i and j, lm is the maximum

extension of the bond. kb and kp are the spring constants of the attractive and repul-

sive terms, respectively. The coupling of the two terms determines the equilibrium

length l0.

The bending rigidity of the aligned hemoglobin polymer bundle is modeled by

Vangle = ka(θ − θ0)
2, (6.2)

where ka is the bending coefficient and θ0 is the spontaneous angle representing

the deflection of the aligned hemoglobin polymer. Finally, the aligned hemoglobin

polymer model includes an in-plane dihedral potential to represent the fixed growth
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direction in global scale; the corresponding potential is given by

Vdihedral = kd [1 + cos(φijkl)] , (6.3)

where i, j, k and l are four adjacent DPD particles on the modeled aligned hemoglobin

polymer, φijkl is the instantaneous angle between the triangle ∆ijk and ∆lkj, and kd

is the constraint coefficient such that the growing fiber is in the same plane.

The development of the aligned hemoglobin polymer domain is modeled by the

addition of single beads to the end of the polymer as “Brownian Ratchets” [124].

The growth rate kt is represented by

kt = kone
−(fs·ê)δ/kBT − koff , (6.4)

where kon, koff are the polymerization and depolymerization rate, respectively, fs is

the instantaneous stall force exerted on the end of the polymer bead, and ê is the

polymer growth direction. We emphasize that δ represents the unit length increase

upon the addition of a single sickle hemoglobin monomer rather than the equilibrium

length between the CG beads, which is independent of the length scale of the CG

model. This is because the sickle hemoglobin polymer growth is driven by monomer

addition rather than obligomer addition. A single sickle hemoglobin monomer can

join the pre-existing polymers when the energy cost of this reaction overwhelms the

energy gain due to the entropy loss. This result is also validated by experimental

measurements [8]. On the other hand, kon and koff represent the growth and disso-

ciation rates in terms of the CG polymer beads and should be adjusted according to

the choice of the length scale of the CG model, as discussed in the following section.

For each time step ∆t, a single DPD particle is added to the polymer end according

to the probability Pt = 1 − e−kt∆t. Specifically, a random number η is generated

between [0 1], and a DPD particle is added if η < Pt. Details on the choice of the

model parameters are discussed in the next section.
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6.2.2 Simulation setup and physical parameters

The unperturbed RBC membrane keeping the biconcave shape in equilibrium is

represented by a stress-free triangulated mesh [46] composed of Nv = 1000 vertices.

The shear modulus of the healthy RBC membrane is µ0 = 6.8µN/m and the bending

rigidity is kc = 3.7 × 10−19J according to the experimental measurements [42, 74,

113]. On the contrary, the membrane shear modulus of SS-RBC increases sharply

in deoxygenated states. Experimental measurements by micropipette [76] revealed

that the cell rigidity depends on the mean corpuscular hemoglobin concentration

values. For SS-RBC with low value of mean corpuscular hemoglobin concentration,

the effective cell rigidity is between 20µ0 and 100µ0, while for cells with higher value

of mean corpuscular hemoglobin concentration (> 35 g/dL), the cell rigidity is on

order of O(102)µ0. In the current work, we choose the cell shear modulus as described

above. Values of the bending rigidity of SS-RBC under different deoxygenated states

are unknown; we set its value to be 20kc in the current study. Sensitivity studies

show that the final cell morphologies depend weakly on the bending rigidity within

the range from 10kc to 30kc.

The growth rate of the sickle hemoglobin polymer was measured by Aprelev et

al. in Ref. [8] as a function of monomer activity in bulk solution, given by

J = k+γcc − k−, (6.5)

where γc is the activity coefficient, and c is the monomer concentration; k+ and k−

are the monomer addition and subtraction rate. The linear relationship between J

and γcc reveals that the growth occurs by monomer addition instead of obligomer ad-

dition. While k+ and k− are nearly constant for different sickle hemoglobin solution,

γcc depends strongly on the intracellular mean corpuscular hemoglobin concentra-

tion value. On the other hand, the development of the aligned hemoglobin polymer

domain is modeled in a coarse-grained manner in the this work, where each single
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DPD particle is added to the end of the sickle hemoglobin polymer, forming elastic

bonds with its adjacent particles with equilibrium length l0 = 0.15µm. Moreover,

the modeled polymer represents an aligned hemoglobin polymer bundle composed

of multiple sickle hemoglobin fibers. Therefore, the unit increase length per bundle

δ scales as

δ = δ0/Nf , (6.6)

where δ0 ≈ 0.45 nm is a unit increase length per single fiber, and Nf is number

of the sickle hemoglobin fiber of the bundle. In the present coarse-grained model,

we consider the interaction between the aligned polymer and a local area of cell

membrane with finite size. The polymer beads interact with the cell membrane

vertices within a range of 0.2 ∼ 0.4µm. Accordingly, it models a bundle of aligned

polymers on the order of O(102). To this end, we choose Nf = 100, and the effective

fiber bundle radius scales as 1
2

√

Nf × 21 nm ≈ l0. Accordingly, the polymerization

and depolymerization rates scale as

kon =
Nfk+γccδ

l0
; koff =

Nfk−δ

l0
. (6.7)

The bending rigidity and Young’s modulus of the aligned hemoglobin polymer

bundle scale as κ = N2
f κ0 and Y = Y0, where κ0 and Y0 are the bending modulus

and the Young’s modulus of a single sickle hemoglobin fiber. According to the

measurements in Ref. [150], we choose κ0 = 1.0 × 10−24Nm2 and Y0 = 0.1GPa. In

the present model, the parameters of elastic bond interaction Vbond between the CG

polymer beads is determined by

Y =
4l0

Nfπd2
0

∂2Vbond

∂r2
|r=l0, (6.8)

to match the experimental value of Young’s modulus. Fig. 6.2 shows the ∂2Vbond/∂r2

near the equilibrium length l0 for the bond interaction. The effective Young’s mod-
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ulus is approximately 21.1N/m×0.15×10−6m/100×π× (10×10−9m)2 ≈ 0.1 GPa.

Similarly, the parameters of the angle potential Vangle are determined by matching

the bending rigidities of the aligned hemoglobin polymer bundle using the thermal

fluctuation method discussed in Ref. [150, 99].
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Figure 6.2: ∂2Vbond/∂r2 near the equilibrium length l0.

Starting from an intracellular homogeneous nucleation, the sickle hemoglobin

polymers grow toward the cell membrane with growth rate determined by Eq. (6.4)

and Eq. (6.7). As the polymer approaches the cell membrane, the polymer end

undergoes a repulsive force exerted by the cell membrane, originated from the entropy

loss of the cell membrane due to the presence of the underneath polymer end. To

model this effect, we employ a short range repulsive interaction between the polymer

end and the cell vertex, as defined by

ULJ(r) = 4

[

(σLJ

r

)12

−
(σLJ

r

)6
]

, (6.9)

where σLJ = 0.4µm and the repulsive interaction vanishes for r > 21/6σLJ . This

repulsive force, in turn, results in various distorted cell membranes, as we discussed

in the following section.
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6.3 Results

6.3.1 Sickle cell morphology

Sickle red blood cells exhibit heterogeneous shapes in deoxygenated conditions due

to the variable stress exerted by the growing sickle hemoglobin polymer on the cell

membrane. The final cell shape is mainly determined by two factors: (i) the effective

sickle hemoglobin polymer growth rate kt (ii) the intracellular aligned hemoglobin

polymer domain configuration.

The sickle hemoglobin polymer growth rate in bulk solution J depends mainly

on the sickle hemoglobin concentrations as shown in Eq. (6.5). In the present

work, we consider the polymer growth of SS-RBCs with typical mean corpuscular

hemoglobin concentration value from 32 g/dL to 38 g/dL. The corresponding bulk

growth rates vary from 1.2 × 104 molecules/s to 5.3 × 104 molecules/s. However,

the effective growth rate kt, different from the bulk value, also depends on the stall

force fs exerted on the polymer ends according to Eq. (6.4). Since fs depends on

the cell membrane rigidity, the effective growth rate kt is determined by both the

cell membrane rigidity and the mean corpuscular hemoglobin concentration values.

As the growing fibers approach and distort the cell membrane, kt decreases due to

the increasing stall force. For individual SS-RBCs with specific mean corpuscular

hemoglobin concentration value, we can define a threshold for the coarse-grained

polymer bead number Nm such that the effective growth rate kt vanishes as the

number of polymer beads exceeds Nm, whereas Nm, in turn, depends on the cell

rigidity and the intracellular polymer configuration.

Different from the effective sickle hemoglobin polymer growth rate, the intra-

cellular aligned hemoglobin polymer configuration depends on several inter-related

conditions: the mean corpuscular hemoglobin concentration of the sickle cell, the

rate of the deoxygenation process, the final gas tension, temperature, etc., which are

difficult to be explicitly incorporated into the current model. Instead, we construct
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four different types of post-homogeneous nucleation in cell populations of different

mean corpuscular hemoglobin concentration values, from which the various aligned

hemoglobin polymer configurations typically observed in experiment can be obtained

[24]. In the current section, the SS-RBC morphology is investigated for a specific

value of Nm (determined by a specific cell membrane shear modulus) for each type

of SS-RBC. The influence of the cell rigidity on Nm and final cell morphology will

be discussed in Sec. 6.3.2

First, we consider a post-homogeneous nucleation in linear style, where the free

monomers can only be added to the “active” beads at both ends of the polymer,

as shown in Fig. 6.3. This configuration implies that the polymer domain develops

along a specific direction in the x-y plane as represented by the growth of a single

polymer branch, whereas the angular span of the aligned hemoglobin polymer domain

is relatively small. This configuration prevails with the physiological conditions of

low mean corpuscular hemoglobin concentration value and slow deoxygenation rate,

where the sickle hemoglobin heterogeneous nucleation is largely suppressed, as ob-

served in experiments [24] and predicted by simulations [31]. Accordingly, we choose

the mean corpuscular hemoglobin concentration value as 32 g/dL, where the bulk

growth rate is 1.2×104 molecules/s. Moreover, we note that the aligned hemoglobin

polymer domain may deflect along the z direction due to the heterogeneous growth

[31]. To incorporate this effect, we set the polymer spontaneous angle θ0 to be

179◦ and 180◦ respectively, where the former represents a deflection and the latter

corresponds to a straight bundle.

Fig. 6.3 shows successive snapshots of the cell morphology at different stages

of the aligned hemoglobin polymer development. The polymer growth threshold

Nm is 80 and 93, respectively. Starting from the post-homogeneous nucleation, the

aligned hemoglobin polymer domain develops towards the cell membrane. As the

sickle hemoglobin polymer approaches the membrane, two spicules appear on the

cell membrane near the interaction points. Moreover, as the length of the aligned
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Figure 6.3: Upper: successive snapshots of the sickle cell membrane in the dif-
ferent development stages of the intracellular aligned hemoglobin polymer domain
with “linear” growth in x-direction. The left sketch demonstrates the coarse-
grained model for the aligned hemoglobin polymer domain development: free sickle
hemoglobin monomers (green color), represented by the DPD particles, can poten-
tially join with the pre-existed polymers (red color) with probability defined by Eq.
(6.4). A linear polymer configuration is adopted in the current case to represent the
specific growth direction. Different polymer configurations are adopted to represent
the various aligned hemoglobin polymer domains, as shown in Fig. 6.4 and Fig.
6.5. Lower: successive snapshots of the sickle cell with growing aligned hemoglobin
polymer domain deflected in the z-direction (normal to the cell), resulting in the
classical “sickle” shape.
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hemoglobin polymer domain continuously increases and exceeds the size of the orig-

inal cell, the cell membrane undergoes subsequent distortion. For a straight sickle

hemoglobin bundle free of deflection in the z direction, the distorted membrane ex-

hibits largely distortion along the growth direction. In the x-y plane, the original

“discocyte” shape transits into the oval shape where the prolonged diameter is al-

most twice the value of the original cell. This configuration resembles the sickle cells

widely observed in deoxygenated SS-RBCs with low mean corpuscular hemoglobin

concentration values [9]. Moreover, for a polymer model with spontaneous angle

θ0 = 179◦, the developed sickle hemoglobin fibers exhibit skewed morphology in the

y-z plane as well as an elongated state in the x-y plane. Accordingly, the elongated

cell membrane follows the spontaneous curvature of the aligned hemoglobin polymer

domain, resulting in the classical “sickle” shape of SS-RBC as widely observed under

slow deoxygenation.

Figure 6.4: Successive snapshots of a SS-RBC with intracellular aligned hemoglobin
polymer domain of finite angular width. Two polymer branches are used to represent
the angular spanning during the domain development. The final cell morphology
resembles a “holly leaf” shape.

Next, we consider the aligned hemoglobin polymer domain with finite angular

span in the x-y plane. This configuration can be derived from post-homogeneous
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nucleation composed of multiple sickle hemoglobin fiber branches, as shown in Fig.

6.4. The angular width of the aligned hemoglobin polymer domain quantified by

the angle between the two main polymer branches, varies from 45◦ to 60◦. Free

sickle hemoglobin monomers can join the aligned hemoglobin polymer domain at

each of the four polymer ends. This configuration corresponds to another type of

widely observed aligned hemoglobin polymer domain in SS-RBCs named “central-

constriction” according to Ref. [24]. The polymer domain resembles a dumbbell

shape; limited amount of aligned hemoglobin polymer is observed near the center

of the nucleation while large amount of aligned hemoglobin polymer is found in

the outer regions. As this type of aligned hemoglobin polymer domain is widely

found in SS-RBC with medium mean corpuscular hemoglobin concentration value,

we choose the mean corpuscular hemoglobin concentration value as 34 g/dL in the

present work, and the corresponding bulk growth rate is 1.97 × 104 molecules/s.

Successive snapshots of a SS-RBC with this type of aligned hemoglobin polymer

domain are shown in Fig. 6.4, where the polymer growth threshold Nm and the

value of the spontaneous angle θ0 are set to 120 and 180◦, respectively. The growing

sickle hemoglobin fiber not only expands the cell along the growth direction but also

results in multiple spicules on the cell membrane. The final cell morphology resembles

the “holly leaf” shape as widely observed in the SS-RBC with low/medium mean

corpuscular hemoglobin concentration value [84, 87, 73].

Finally, we consider SS-RBCs with spherulite shape of the aligned hemoglobin

polymer domain with the corresponding homogeneous nucleation shown in Fig. 6.5.

In the present work, this configuration represents the polymer domain with spherulite

configuration, similar to the polymer configuration observed in sickle hemoglobin so-

lution (Ref. [18]), individual cells (Ref. [24]), and through simulation (Ref. [31]). It

can be viewed as an extreme case of the four arm structure: for a sickle cell with high

value of mean corpuscular hemoglobin concentration, the heterogeneous nucleation

rate is large and the polymer domain can transform into spherulite configuration
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Figure 6.5: Successive snapshots of a SS-RBC with intracellular aligned hemoglobin
polymer domain of spherulite configuration, where the full domain is filled with
sickle hemoglobin polymers due to the high heterogeneous nucleation rate during
the growth procedure. The final cell morphology resembles a “granular” shape.

and subsequently develop a radial symmetry. We note that this “radial symmetry”

configuration is not the initial configuration of homogeneous nucleus, but results

from the subsequent heterogeneous nucleation events. The development of the poly-

mer network topologies is not considered in the present model. To incorporate the

properties of this polymer domain, we start with the post-homogeneous state where

the spherulite configuration has already formed, and we study the subsequent de-

velopment of the polymer domain to explore the effect of the polymer domain on

the cell morphologies. The value of “six” arm is kind of arbitrary. This value rep-

resents the number of sites where the Hbs polymer can potentially interact with the

cell membrane where multiple “spicules” formed. We notice that this type of poly-

mer configuration prevails in cells with high value of mean corpuscular hemoglobin

concentration [24]. Accordingly, we choose the mean corpuscular hemoglobin con-

centration value as 38 g/dL with the bulk growth rate 5.3 × 104 molecules/s. The

polymer growth threshold Nm and the spontaneous angle θ0 are 160 and 180◦, re-

spectively. With isotropic distribution of sickle hemoglobin polymer branches, free
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sickle hemoglobin monomers are added to the aligned hemoglobin polymer domain

with full angular symmetry. As the sickle hemoglobin fiber approaches the cell mem-

brane, multiple spicules appear on the cell membrane. However, different from the

“sickle” and “holly leaf” cells, this type of SS-RBC does not bear further distortion.

This is mainly due to two reasons: i) the growth of the individual sickle hemoglobin

arm can be limited due to the depletion of the free sickle hemoglobin monomers.

For the spherulite polymer domain, the inner polymer density is relatively high due

to the large heterogeneous rate. The polymer domain may run out of free sickle

hemoglobin monomer as the domain develops towards the cell membrane. ii) For de-

oxygenated SS-RBCs with high mean corpuscular hemoglobin concentration value,

the membrane shear modulus exhibits much larger value than the cells with low

mean corpuscular hemoglobin concentration, resulting in much larger stall force on

the growing polymer ends. Moreover, the growth of the spherulite sickle hemoglobin

domain expands the cell membrane isotropically. However, the total area of the cell

membrane is constrained due to the incompressibility of the lipid bilayer. There-

fore, the effective growth rate of the individual sickle hemoglobin fiber is largely

suppressed due to the large force exerted on the polymer end. The final stage of the

cell resembles the near-biconcave shape with multiple spicules on the cell surface,

which corresponds to the granular shape of deoxygenated SS-RBC widely observed

in the cells of high mean corpuscular hemoglobin concentration value or with fast

deoxygenation procedure.

6.3.2 Quantifying the cell membrane distortion

In the previous section, the final morphology of the sickle cell is obtained for a specific

threshold value Nm for the growth of each aligned hemoglobin polymer domain to

represent the effect of the stall force exerted on the polymer ends as shown in Eq.

(6.4). However, we note that the stall forces on the polymer end depend on the

specific cell rigidity, which varies for individual deoxygenated SS-RBCs [76]. For each
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Figure 6.6: Final morphologies of the “sickle” (top) and “holly leaf” (bottom) shape
of deoxygenated SS-RBC for different values of cell membrane shear modulus. The
“sickle” shape of SS-RBC corresponds to low mean corpuscular hemoglobin concen-
tration value (32 g/dL) and the shear modulus of the cells shown above is set to
20µ0, 40µ0 and 70µ0 according to experimental measurements [76]. The “holly leaf”
shape of SS-RBC corresponds to medium mean corpuscular hemoglobin concentra-
tion and the shear modulus is set to 30µ0, 60µ0 and 120µ0. We have also included
a non-symmetric case in the fourth plot representing a cell morphology with the
post-homogeneous nucleus off the cell center with shear modulus 60µ0.



137

Time (s)

A
S

F
,E

S
F

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

Figure 6.7: Instantaneous values of the Asphericity (solid lines) and Elliptical shape
factor (dash lines) of the “sickle” SS-RBC as the aligned hemoglobin polymer domain
develops. The red curves correspond to SS-RBC with membrane shear modulus
µ = 30µ0 and deflection angle θ0 = 179◦. The blue curves represent the SS-RBC
with shear modulus µ = 60µ0 and θ0 = 178.5◦.
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type of the SS-RBC discussed above, the bulk growth rate of the intracellular sickle

hemoglobin polymer is similar and is determined mainly by the mean corpuscular

hemoglobin concentration values [8]. However, the deoxygenated cells with different

cell rigidities may still end up with different extent of membrane distortion, where

the growth rate kt = kone
−fδ/kBT − koff approaches zero. To investigate the effect

of cell rigidity on the final cell morphology, we simulate the development of the

intracellular aligned hemoglobin polymer domain with different cell membrane shear

modulus according to the experimental measurements [76]. The detailed choices of

the simulation parameters are shown in Tab. 6.1.

MCHC µ θ0 w
E 32 g/dL [20µ0, 80µ0] 180◦ 0◦

S 32 g/dL [20µ0, 80µ0] [178.5◦, 179◦] 0◦

H 34 g/dL [30µ0, 120µ0] 180◦ [45◦, 60◦]
G 38 g/dL [40µ0, 2000µ0] 180◦ 180◦

Table 6.1: Simulation parameters for each type of SS-RBC. The symbol “MCHC”
represents mean corpuscular hemoglobin concentration values. The symbol “E”, “S”,
“H” and “G” represents the elongated, sickle, holly leaf and granular shape of the
SS-RBC. µ and µ0 represent the shear modulus of the deoxygenated SS-RBC and
healthy RBC respectively. θ0 and w represent the spontaneous deflection angle and
the angular width of the aligned hemoglobin polymer domains, respectively.

For each type of the post-homogeneous nucleus discussed above, the development

of the aligned hemoglobin polymer domain is simulated with shear modulus shown

in Tab. 6.1. Instead of terminating the polymer growth with pre-determined threshold

value Nm, the development of the aligned hemoglobin polymer domain is terminated

automatically as the effective growth rate kt approaches 0, therefore defining the final

cell morphological states without any ad hoc threshold parameters. Fig. 6.6 shows

the final morphological state of the “sickle” and “holly leaf” cells with different shear

modulus values. For low shear modulus value, both types of SS-RBCs exhibit large

membrane distortion; however, the cell shape approaches the undisturbed state as the

cell rigidity increases. Sensitivity studies have also been conducted on the elongated
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and granular types of SS-RBCs, where similar tendency has been observed.

To further quantify the membrane distortion, we introduce both 3D and 2D

structural factors to characterize the individual SS-RBC as discussed above. The 3D

structural factors can be identified by the eigenvalue analysis of the gyration tensor

defined by Eq. (5.10). Basing on the eigenvalues of the gyration tensor, we define the

asphericity shape factor (ASF) and the elliptical shape factor (ESF) by Eq. (5.11).
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Figure 6.8: ASF and ESF for the various cell morphologies obtained. The label “B”,
“G”, “S”, “H” and “E” represents the biconcave, granular, sickle, holly leaf and
elongated shape, respectively. The snapshots show the typical cell shapes for each
type of SS-RBC morphology obtained in the present study.

Fig. 6.7 shows the instantaneous ASF and ESF for the “sickle” SS-RBC as

a function of the development of the aligned hemoglobin polymer domain for two

different values of cell rigidity. Starting from the biconcave shape, the structural

factors for both cases show rapid changes within the first 0.4 ∼ 0.5s, representing
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the initial fast development of the aligned hemoglobin polymer domain. However,

the structural factors show slower change after 0.5s and converge to specific values

due to the decrease of the effective growth rate kt. The more rigid the cell membrane,

the sooner the structural factors begin to converge. Moreover, the asymptotic values

of ASF and ESF are larger for less rigid cells. These results are consistent with the

theoretical studies in Ref. [26] and can be understood by Eq. (6.4). For the same

degree of cell distortion, the polymer ends approaching the cell membrane of larger

rigidity bear with larger stall (entropy) force [26], resulting in faster decay of the

growth rate kt.

To systematically quantify the different cell distortions, the structural shape fac-

tors are evaluated for each type of SS-RBC within the physiological region of the

cell shear modulus listed in Tab. 6.1. As shown in Fig. 6.8, the granular cells show

similar characteristics with a healthy cell for both ASF and ESF. On the contrary,

the elongated cells exhibit the largest deviation from the perfect biconcave shape.

Compared with the elongated cells, the sickle cells exhibit smaller ASF due to the

curvature membrane surface while the holly leaf cells exhibit smaller ESF due to the

larger angular width of the intracellular aligned hemoglobin polymer domain.

Similar to the 3D structural shape factors, 2D morphological analysis has also

been conducted on medical images of different sickle cells, where the circular shape

factor (CSF) and 2D elliptical shape factors (ELSF) are used to quantify the various

SS-RBC morphologies [73, 9]. Accordingly, we analyze the 2D structural properties

of the SS-RBC by defining CSF and ELSF as

CSF = 4π area/(perimeter)2

ELSF = Db/Da,
(6.10)

where area and perimeter are the in-plane area and perimeter of the close curve

defined by the cell. Da and Db are the long and short diameter, respectively. CSF

and ELSF characterize the deviation of a curve from the circular shape. These two
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Figure 6.9: Circular (CSF) and 2D elliptical shape factors (ELSF) for different cell
morphologies obtained from both medical image process [73] (red) and present sim-
ulations (blue). The circle and square symbols represent the shape factors of the
granular and holly leaf SS-RBC. The red inverted triangle symbols represent both
the “sickle” and the “elongated” SS-RBC obtained from experiment as they are
unclassified in the experiment. The blue inverted triangle symbols represent the
simulated “elongated” cells while the blue triangle symbols represent the simulated
“sickle” cells.
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factors are unit for a perfect circle and close to zero for a “line” shape. Similarly,

the structural factors are analyzed for each type of the SS-RBC with shear modulus

values shown in Tab. 6.1. Fig. 6.9 plots both CSF and ELSF for the various cell

membranes obtained from the above simulations. As a comparison, we also show

the experimental results of the sickle red blood cells from medical images [73]. The

sickle red blood cells are classified into the “sickle”, “holly leaf” and “granular” types

according to the cell morphologies under deoxygenated states [73]. As shown in Fig.

6.9, while the structural factors of sickle red blood cell obtained from the simulation

fall within the region of the experimental observations, the simulated results do not

cover the entire range of experimental results. The quantitative difference is probably

due to the limited knowledge of the physiological conditions for the SS-RBCs in the

experiment as the mean corpuscular hemoglobin concentration, rate of deoxygenation

and cell membrane deformability are not specified for the individual cell groups of

the experiments. Therefore, the physiological conditions specified in Tab. 6.1 may

not cover the exact region of physiological values adopted in the experiment. This

issue requires further experimental and numerical investigations.

6.4 Discussion

Starting from a single post-homogeneous nucleation proposed in Ref. [52], we in-

vestigated the effect of the intracellular growing sickle hemoglobin fiber on the final

morphological properties of SS-RBCs. Based on the different sickle hemoglobin con-

figurations typically observed by polarization imaging microscopy, the growth rate

of sickle hemoglobin polymer and the mechanical properties of sickle hemoglobin

fibers, we constructed a coarse-grained model for the development of the aligned

hemoglobin polymer (aligned hemoglobin polymer). For individual SS-RBCs, the

final morphological state is obtained through the following three steps:

• We choose a specific type of post-homogeneous nucleus according to experimental
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observations.

• We simulate the development of the aligned hemoglobin polymer domain with the

bulk growth rate of the sickle hemoglobin bundles determined by the intracellular

mean corpuscular hemoglobin concentration value.

• As the sickle hemoglobin fibers approach the cell membrane, the effective growth

rate of the aligned hemoglobin polymer domain decreases with the stall force de-

pending on the cell membrane rigidities. The final morphological state is obtained

when the effective growth rate tends to zero.

Using this model, we explored the extent to which the heterogeneous morphologies

of deoxygenated SS-RBCs can be obtained without any further knowledge of the

detailed structure of the polymer domain at the molecular level. Our simulation

results indicate that the various shapes of deoxygenated SS-RBCs are mainly deter-

mined by the aligned hemoglobin polymer configuration, which is consistent with the

results of Ref. [112]. Specifically, the polymer domain in SS-RBCs with low mean

corpuscular hemoglobin concentration value tends to form aligned configuration with

limited angular width, resulting in the typical “sickle” or “holly leaf” shape. On the

other hand, the spherulite polymer domain is favored in SS-RBCs with high mean

corpuscular hemoglobin concentration values, resulting in a near-biconcave shape

with multiple spicules on the cell surface. This tendency is also consistent with the

experimental observation on cell morphology in in vitro blood suspensions in Ref.

[84, 87]. Within each type of SS-RBC, the cells further show scattered morphologi-

cal states depending on the individual cell membrane rigidity. Given the membrane

shear modulus in the range of physiologic values measured by micropipette [76], the

simulated cell morphological states, quantified by the structural factors CSF and

ELSF, fall within the range of the experimental results from medical images.

However, we note that several other physical conditions omitted in the current

model can potentially also contribute to the heterogeneous distributions of cell mor-

phologies. First, we have assumed that the bulk growth rate is the same at each
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Figure 6.10: Elongated shapes: with further aligned polymerization along the spe-
cific direction, the granular cell (left) transforms into an “elongated” cell with the
cell center keeping the granular shape (upper right), resembling the non-traditional
“elongated” cell observed in Ref. [24]. The lower right plot represents the final cell
morphology with the high growth rate imposed only on the upper right direction.

of the polymer ends. The implicit assumption here is that the rate-limiting pro-

cess for the aligned hemoglobin polymer domain development is the stall force on

the sickle hemoglobin polymers instead of sickle hemoglobin density changes during

the polymerization process. Incorporation of the anisotropic/time-dependent fiber

growth rates and time-dependent cell rigidity may result in further heterogeneous

morphological states. In Ref. [87], a non-traditional type of “elongated” cells is

obtained after further deoxygenation treatment on the granular cells. They are

characterized by elongated projection along certain direction while the center part

keeps the granular shape. It was postulated [87] that this type of “elongated” cell

originates from the further growth of aligned polymer along the elongated direction

during the prolonged deoxygenation process. In the present work, we test this idea

by imposing anisotropic growth rate for intracellular polymer domain. Starting from

a granular shape of cell, we impose the polymer growth rate twenty times the origi-

nal value along the other direction. At the new equilibrium state, as shown in Fig.
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6.10, the cell transforms into an “elongated” shape along that direction while the

cell center keeps the granular shape, resembling the non-traditional “elongated” cell

observed in Ref. [87]. We note that the high growth rate value along the specific

direction is chosen arbitrarily in this simulation, representing the prolonged incu-

bation of deoxygenation condition. A complete understanding of the above process

requires further investigation. Second, the intracellular post-homogeneous nucleus

is assumed to be near the center of the cell. Although this assumption is similar to

the experimental observation in Ref. [24, 112] for the “central constriction” cells, the

basis of the assumption needs further validation. As a sensitivity study, we have also

considered one case for the “holly leaf” cell where the post-homogeneous nucleus is

off the cell center, which results in further asymmetry and irregularity on the final

cell morphology, as shown in Fig. 6.6. To the best of our knowledge, there are

no experimental results reported on the spatial distribution of the intracellular post-

homogeneous nucleus inside a sickle red blood cell. Therefore, it would be interesting

to explore if there exist specific spatial preferences/distributions of the intracellular

post-homogeneous nucleus by experimental measurements. This information would

be important for further systematic exploration of the morphologic transition pro-

cedure discussed in the current work. Also, we have assumed that there is only

one single post-homogeneous nucleation and polymer domain inside each cell in the

present work. In reality, multiple sickle hemoglobin polymer domains can be formed

in a single SS-RBC with high mean corpuscular hemoglobin concentration values

[24, 23], resulting in multiple irregular spicules on the “granular” cell membrane.

Moreover, we note that the intracellular CG polymer model in the present study

represents bundles of aligned sickle hemoglobin polymers on length scale of O(1) µm

whereas the detailed configuration of single sickle hemoglobin polymers, which may

affect the local cell membrane distortion, is omitted. Finally, we note that the cell

morphology transition is a complex procedure where many different physiological

factors play important roles, resulting in the well-known “heterogeneous” properties
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of the sickle cell morphology. While the cell deformability, intracellular polymer con-

figuration and growth rate depend on the intracellular mean corpuscular hemoglobin

concentration values, the cell preparation process such as deoxygenation rate can

also affect the intracellular polymer configuration and therefore affect the cell mor-

phologies. For the experimental data set used for comparison in the current work,

the sickle cells are collected from blood suspension and classified by the different

morphologic characteristics while the mean corpuscular hemoglobin concentration

and deoxygenation rate for each cell type are not specified. In the present work,

we studied sickle cells with different mean corpuscular hemoglobin concentration

values and chose the polymer configuration according to experimental observation

[24] that cells with low mean corpuscular hemoglobin concentration favor elongated

type of polymer and low membrane rigidity while cells with high mean corpuscular

hemoglobin concentration favor spherulite type of polymer and high membrane rigid-

ity. There is no direct mapping between experimental data set and the simulation of

the present work on the specific physiological conditions. This is a limitation of the

present work. Systematic investigation with these effects incorporated would further

help to elucidate the cell morphologic transition process.

The typical time scale of the aligned hemoglobin polymer domain formation in

the present work is of the order O(1)s, consistent with the prediction in Ref. [8].

This process is relatively short as compared to the total time of the “sickling” proce-

dure (O(10) to O(100) s). In microcirculation, we note that the typical time for cell

transition in capillaries is around 1− 2s [134]. The widespread blood vaso-occlusion

originated from the distorted cell membrane is avoided in typical in vivo environ-

ments. This is mainly because the homogeneous nucleus formation is omitted in the

current work. This procedure is well characterized by a “delay time” before which no

sickle hemoglobin polymer can be detected [145]. On the other hand, deoxygenated

SS-RBCs can get trapped in the post-capillaries due to adhesive interaction with the

vessel endothelium [82]. This procedure may seriously increase the transit time for
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a SS-RBC to get re-oxygenated, and result in the vaso-occlusion crisis. We discuss

this process in Chap. 7.



Chapter 7

Effects of Adhesion

In the simplified example of Chap. 5 (see Sec. 5.3.4), we demonstrate that the vaso-

occlusion crisis is initialized by the abnormal cell adhesion to the vessel wall. How-

ever, the heterogeneous cell morphologies and adhesive capabilities are not incorpo-

rated in that example. In this chapter, we conduct a systematic investigation on the

vaso-occlusion crisis induced by the sickle red blood cells. The adhesive dynamics of

different sickle cell groups are studied in a shear flow and their specific contribution

to the vaso-occlusion crisis is identified.

7.1 Introduction

Sickle cell anemia is a genetic disease originating from the abnormal sickle hemoglobin

molecules (HbS). In hypoxia conditions, the intracellular HbS solution transit into

a polymerized state and results in a series of alterations in the cell membrane func-

tions. Consequently, sickle cell exhibits heterogeneous properties on both cell mor-

phology and membrane rigidity under different physiological conditions. According

to the seminal study by Kaul [84], sickle blood suspensions contain heterogeneous

cell density classes, which can be roughly divided into four groups by the intracellular

mean corpuscular hemoglobin concentration (MCHC) values. Fraction I (SS1) and

148
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II (SS2) are mainly composed of reticulocyte and discocytes with MCHC similar to

the healthy cells (30 g/dL). On the other hand, the fraction IV (SS4) group is mainly

composed of the irreversible sickle cells (ISC) with high MCHC (> 45 g/dL). Mi-

cropipette experiments show that the cell rigidity of this fraction is six to ten times

larger than the healthy cells in oxygenated conditions. Associated with the hetero-

geneous cell morphology is the abnormal rheology and hemodynamics of the sickle

blood suspensions. Compared with the healthy blood, the sickle blood suspensions

exhibit a general elevation in the flow resistance in shear flow [87, 86], micro-fluidic

channel [69] and isolated vascular systems [83], where the hemodynamic properties

further depend on the cell morphology, MCHC values, oxygen tension, etc..

Among the multiple hematologic disorders associated with this disease, one of

the most important clinical features is the painful vaso-occlusive crisis, as this is the

major cause of the morbidity in patients with sickle cell anemia. The mechanism of

the vaso-occlusion crisis has been studied extensively for more than 30 years. Since

this disease was first described and characterized by the “elongated sickle shape of

cells” [67], early studies suspected that the major cause of the vaso-occlusive is the

sickling process of the dense SS4 cells during their circulation in capillaries. However,

subsequent studies show that vaso-occlusion mainly occurs in post-capillaries rather

than in capillaries. Moreover, clinical investigations indicate that there is no direct

correlation between the percentage of the dense SS-RBC with the disease severity

[11]. An alternative pathology was proposed by Hebbel etc. [65] and Hoover etc.

[72] in 1980’s. They revealed that there exist abnormal adhesive interactions between

the sickle cells and cultivated endothelium cells and suspected that this abnormal

interaction can potentially contribute to this crisis. This postulation was further

investigated by Kaul [84] in the ex vivo microvasculatures. It is found that vaso-

occlusion is a complex process triggered by multiple cell interactions in multiple

steps [21]. While single SS4 cells do occasionally get stuck in the capillaries, most of

the vaso-occlusion events are initialized by cell adhesion to the endothelium cells in
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post-capillaries, and those adherent cells can further trap the other cells, resulting

in transient or permanent vaso-occlusions. Moreover, further studies indicate that

the heterogeneous cell groups contribute differently to the occlusion crisis. While the

deformable SS2 cell group showed preferential adherence to the vascular wall, a large

number of rigid and elongated ISCs accumulated at the occlusion sites, indicating a

preferred pattern of SS-RBC suspension mixture for blood occlusion. In addition, it

is found that the occlusion events exhibit a preferred distribution in post-capillaries

with diameter between 7 and 10 µm, where maximum adherent cells are found [83].

Currently hydroxyurea (HU) is the only FDA-approved drug used for patients

with sickle cell anemia. The major mechanism of this drug is that it can induce

the production of the fetal hemoglobin (HbF), which can effectively decrease the

polymerization rate of HbS molecules and increase the delay time required for cell

sickling under hypoxia conditions. However, the clinical observations discussed above

indicate that the predominant stimuli for this type of disease in in vivo conditions is

the vaso-occlusion crisis, which is a complex multi-step process involving multiple cell

interactions. Therefore, quantitative investigation of this process may facilitate our

understanding of this crisis and potentially provide new paradigm for the therapeutic

treatments on this disease by targeting the individual physiological conditions that

trigger the vaso-occlusion crisis.

To investigate the abnormal hemodynamic characteristics of the vaso-occlusion

process under different physiological conditions, we employed a previously devel-

oped multi-scale model of sickle red blood cells [98] (see Chap. 5). That is based

on a coarse-grained particle method [71, 40]. This model successfully captures the

heterogeneous cell morphological and rheological properties. Using this model, ad-

hesive dynamics of single sickle red blood cell was investigated in simple shear flow

conditions. Our simulation results indicate that heterogeneous adhesive behaviors

among the different cell groups are mainly due to the different cell morphologies and

membrane properties. To further identify the specific contributions of the individ-
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ual cell groups to the vaso-occlusion process, we investigate the hemodynamics of

sickle blood suspensions mixed with different cell fractions. Our simulation results

indicate that both SS2 and SS4 cell groups are the participants rather than the sole

“causative” of the occlusive crisis. The interplay of the two cell groups results in

the final occlusion events in a tube flow with diameter and shear rate similar to the

blood flow in post-capillaries under physiological conditions.

This chapter is organized as follow. In the next section, the adhesive dynamics of

single sickle red blood cell with different cell morphologies and membrane rigidities

is investigated under shear flow condition. The effects of the cell morphology and

membrane rigidity on shear flow responses are discussed. In section 7.3, the hemo-

dynamics of the sickle blood flow is investigated in tube flow systems coated with

adhesive ligand particles. Sickle cell mixtures with different cell groups are perfused

into the tube and their contribution to the vaso-occlusion are identified. We conclude

in section 7.4 with a brief discussion.

7.2 Adhesive dynamics of single sickle red blood

cell

7.2.1 Shear flow system

Different from the healthy red blood cell, the sickle red blood cell membrane ex-

presses multiple types of abnormal protein epitopes due to the membrane injury

by the intracellular HbS polymerization. Moreover, the sickle red blood cell may

damage the endothelium cells, resulting in the activation and up-regulation of the

adhesive molecules expressed on the endothelium cells. As a result, the sickle red

blood cells exhibit adhesive interaction with endothelium cells through multiple path-

ways. For example, the adhesive receptor VLA-4 expressed on the cell membrane

can directly interact with the ligand VCAM-1 expressed on the endothelium. And
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their interaction can be further elevated by cytokines in blood plasma such as tumor

necrosis factor (TNF-α), platelet activating factor (PAF) and interleukin-1(IL-1).

In addition, other adhesive receptors such as CD36 expressed on the cell membrane

can interact with endothelium ligands such as αvβ3 through the extracellular matrix

proteins such as TSP. A thorough review of the adhesive interaction mediated by

the multiple proteins expressed on the cell membrane and their responses on the

different inflammation level are discussed in Ref. [64].

Due to the physiological complexity and multiple-function characteristics of the

adhesive interaction between the sickle red blood cell and the endothelium cell, ex-

plicit modeling of the individual receptor/ligand interactions is out of the scope of

the current work. Instead, the adhesive proteins are represented by the effective

receptor particles expressed on the cell membrane and the effective ligand particles

on the vascular wall, respectively. The adhesive interaction is modeled by the tran-

sient bond formation and dissociation between the receptor and ligand particles in a

stochastic way. This model can be viewed by a coarse-grained version of the adhesive

model for leukocyte dynamics developed by Hammer et al. [62], where the multiple

adhesive proteins are coarse-grained and represented by single DPD particles. We

refer to Sec. 5.2.3 and Ref. [47] for details of the model and algorithms.

Adhesive dynamics of the individual sickle red cells was investigated in in vitro

shear flow system by Barabino et al. [12] using a parallel-plate flow chamber. It

was found that the SS-RBCs with different cell density show different dynamic re-

sponses under similar shear flow conditions. The cell fractions with the least MCHC

value (SS1, SS2) exhibit the largest adhesion while the densest irreversible sickle

cell (ISC) exhibits the least adhesion. Basing on this experimental observation, one

question arises naturally: is the different adhesive responses originated from the dif-

ferent adhesive proteins expressed on the cell membrane, or the different behavior is

mainly due to the heterogeneous bio-mechanical properties among the cell subpopu-

lations. Numerical modeling and simulation provide a convenient tool to elucidate
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this problem, as the different cell rigidity and morphologies can be easily imposed

on individual cells.

Figure 7.1: Successive snapshots of sickle red blood cells in shear flow. Labels (a),
(b) and (c) represent a deformable SS2 cell, rigid SS3 cell and ISC, respectively. The
arrow represents the flow direction.

As shown in Fig. 7.1, we consider three different types of the sickle red blood

cells under shear flow conditions. The cell (a) represents a deformable discocyte

cell from the SS2 subpopulation. The shear modulus µ and bending rigidity kc

are similar to the value of healthy RBC. In the present work, we set the value

µ = µ0 = 6.8µN/m and kc = kc0 = 3.7 × 10−19J , where µ0 and kc0 represent the

shear modulus and bending rigidity of the healthy red blood cell according to the

experimental measurements [42, 74, 113]. The cell (c) represents a ISC from the

densest SS4 cell group. (The “sickled” shape of cell is constructed by applying local

stress - annealing process on the cell membrane. For details of the construction

process, see Chap. 5 and Ref. [98].) Experimental measurements show scattered

results on the cell rigidity of this cell type. Evans et al. reported that the ratio of the
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cell rigidity between the densest sickle cell and healthy RBC varies from 4 to 11.5.

Itoh et al. reported that this ratio is round 2.0 before the deoxygenation. However,

the value increases up to 20 after one deoxygenation-reoxygenation cycle. These

results indicate that the cell rigidity further depends on the cell sickling process

since the cell membrane function can be altered during this procedure. To this end,

we set the shear modulus µ = 10µ0 and kc = 10kc0. Finally, the cell (b) represent a

rigid discocyte cell with medium MCHC value (SS3), the cell rigidity is between the

SS2 and SS4 cell group. We set µ = 3µ0 and kc = 3kc0 for the comparative study.

According to the experimental set up in Ref. [12], the three cells are placed

between two parallel plates as show in Fig. 7.1. The simulation domain is 60×30×15

in DPD unit, and periodic boundary condition is imposed along the x and y direction.

The lower plate is coated with effective ligand particles with density 4µm−2. Same

adhesive interaction is applied between the ligand particles and the three types of

sickle red blood cells. Detail simulation parameters are shown in Tab. 7.1.

Parameters Simulations Physical
spring constant (ks) 50 2.41 × 10−5 N/m
equilibrium spring length (l0) 0.0 0.0 m
reactive distance (don) 0.15 1.44 × 10−7 m
rupture distance (doff ) 0.15 1.44 × 10−7 m
on strength (σon) 0.1 4.83 × 10−8 N/m
off strength (σoff ) 0.033 1.59 × 10−8 N/m
unstressed on rate (k0

on) 100.0 3.49 × 105 s−1

unstressed off rate (k0
off) 0.1 349 s−1

shear rate (γ̇) 0.067 231 s−1

Table 7.1: Simulation (in DPD units) and physical (in SI units) parameters for blood
flow with adhesive interaction with coated ligand particles.

Three cells are initially placed at a distance of 0.12µm from the lower plate.

Shear flow is generated by imposing constant moving velocity on the upper plate

while the lower plate is kept stationary. Detail simulation parameters among the

external solvent (So), cell vertices (V ), cytosol (Si) and wall particles(W ) is shown

in Tab. 7.2.
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Interaction a γ rc k
So − So, So − W 2.5 30 1.0 0.25

Si − Si 2.0 30 1.2 0.25
So − V , W − V 0.5 10 1.0 0.25

Si − V 0.5 25 1.0 0.25
V − V 20 30 0.5 0.25

Table 7.2: DPD simulation parameters for the adhesive dynamics of single sickle red
blood cells.

Fig. 7.1 shows successive snapshots for each of the three sickle red blood cells

along the flow direction. Starting from the similar initial conditions, the three cells

exhibit different adhesive dynamics. The deformable discocyte cell (a) moves to-

ward the lower plate due to the bond formation with the ligand particles and shows

firm adhesion to lower plate thereafter. Similarly, the rigid discocyte cell (b) show

transient adhesion to the lower plate initially. However, the cell shows periodic flip

movement along the flow direction thereafter, indicating that the adhesive inter-

action is weaker than the case of cell (a), and the cell can overcome the adhesive

constraint with certain probability. This result is similar to the adhesive behavior of

another type of disease red blood cell named as malaria-infected RBC [47, 7], where

the cell membrane is about 3 to 9 times more rigid than the healthy RBC depending

on the parasite development stage. Different from cell (a) and (b), cell (c) does not

show apparent firm/transient adhesion to the plate. Following the start of the shear

flow, the cell shows direct attachment from the lower plate due to the hydrodynamic

force and moves freely thereafter, indicating the least adhesive interaction between

the cell and the plate.

To further quantify this heterogeneous adhesive behavior, we measure the instan-

taneous velocity and the contact area for the three different cells. The instantaneous

velocity vi
c is define by

vi
c = (xi+1 − xi−1)/2δt, (7.1)

where xi+1 and xi−1 represent the position of the cell center of mass at snapshot
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i + 1 and i − 1. δt is the time interval between the two successive snapshots. The

instantaneous contact area is evaluated as

ai
c =

A0

Nv

Nv
∑

j=1

Ai
j, (7.2)

where Nv is the total number of the cell vertices. A0 is the total area of the cell. Ai
j

is defined by

Ai
j =











1, if zi
j < don

0, if zi
j ≥ don,

(7.3)

where zi
j is the instantaneous position of cell vertex j on z direction at snapshot i,

don is the reactive distance defined in Tab. 7.1.

Fig. 7.2 shows the instantaneous cell velocity and the contact area for the three

cells as a function of time. The subplot Fig. 7.2(a) corresponds to the simulation

results of cell a. The initial peak value of the cell velocity is mainly due to the

limited bond formation during the starting stage. At the later stage, more adhesive

bonds are formed between the cell vertices and the ligand particles, the cell velocity

decreases and fluctuates around zero, where the negative velocity values are mainly

due to the thermal fluctuation. Accordingly, the contact area increases from zero to

48µm2 at the later stage. Fig. 7.2(b) shows the simulation results for cell b. The

occasional flip movement is characterized by the peak values of the instantaneous

cell velocity at 0.38, 0.64, 1.12 s. Accordingly, the contact area shows minimum

value at those times. The average velocity during the simulation period is 46µm/s,

which falls within the velocity region of the adherent SS-RBCs in Ref. [12]. Fig.

7.2(c) shows the simulation results for the ISC. In the initial stage, the small cell

velocity and the peak value of the cell contact area represent the adhesive interaction

during which the ISC undergoes one half cycle of flip movement on the plate. After

that, the cell shows full detachment from the plate indicating that the adhesive

constraint is not sufficient to counter the hydrodynamic force on the cell. The cell
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Figure 7.2: Instantaneous velocity (left) and contact area (right) for the sickle cells
in shear flow conditions. Labels (a), (b) and (c) represent the simulation results of
deformable discocyte, rigid discocyte and ISC cell, respectively.
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moves freely thereafter with velocity on the order of O(103)µm/s and no adhesive

bond is established during the later stage.

Besides the in vitro experiment by Barabino et al., we note that the current

simulation results are also consistent with several other experimental observations

[141, 80]. In Ref. [141], the adhesive dynamics of a neutrophil and a rigid bead

coated with same ligands are investigated under the similar shear flow conditions.

It was reported that the neutrophil exhibits different shear responses from the rigid

bead due to the cell deformation under shear flow condition. Similar experimental

work is also conducted by Kaul et al. on the effect of dehydration/rehydration pro-

cesses on the adhesive properties among the different cell populations [80]. Using

the Nystatin-sucrose method, the cell rigidity and the MCHC value of the individ-

ual cells can be elevated/decreased through the dehydration/rehydration process.

It was reported that the deformable discocyte group (SS2), after the dehydration

procedure, results in larger flow resistance and less adherent sites, while those cell

can completely recover the cell adhesive properties after the rehydration treatment.

Similarly, the rehydration treatment on the densest cell group (SS4) can significantly

improve the cell deformability, resulting in enhanced cell adhesion and elevated num-

ber of adherent SS4 cells in post-capillaries.

These experimental results indicate that the deformable SS2 cell group and the

rigid SS4 cell group share similar adhesive attribute; the different adhesive dynamics

exhibited in shear flow conditions is mainly due to the different cell rigidity. This

result is also consistent with present work. Since the same adhesive parameters

are adopted for the different cells, our simulation results suggest that the different

mechanical properties of the individual cell groups impose a profound influence on

adhesive properties. Moreover, in Ref. [80], it is reported that the different cell types

among the rehydrated SS4 cell population also exhibit heterogeneous cell adhesion.

Although the ISCs outnumber the rigid discocytes by 2 to 1 in the SS4 cell suspension,

80% of the adherent SS4 cells are the discocytes. This result indicates that the cell
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Figure 7.3: Instantaneous contact area between the sickle cell and the plate coated
with adhesive ligands. Labels (a), (b) and (c) represent the simulation results of
discocyte with shear modulus µ0, 4.0µ0 and 10.0µ0, respectively. Label (d) represents
the case of ISC with shear modulus of 10.0µ0.
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morphological characteristics may also contribute to the cell adhesive properties,

and it was proposed that the peculiar cell morphology of ISC may further prevent

the effective adhesive interaction and bond formation with endothelium cells. To

investigate this postulation, we simulate the adhesive incubation process of sickle

cells in a static condition.

7.2.2 Static incubation

Similar to the shear flow system, four different sickle cells are initially placed at a

distance of 0.12µm from a plate coated with ligand particles. The same adhesive

parameters are adopted, as given in Tab. 7.1. The instantaneous contact area is

computed for each cell until a steady state is achieved, as shown in Fig. 7.3. The

subplot Fig. 7.3(a), Fig. 7.3(b) and Fig. 7.3(c) represent the incubation process

of the discocytes with shear modulus µ0, 4µ0 and 10µ0, respectively. Fig. 7.3(d)

represents the result of a ISC with shear modulus µ = 10µ0. Three major points

emerge from the simulation results.

First, we note that the contact area measured after the static incubation exhibits

an inverse relationship with the cell rigidity. While the contact area for all of the

cells increases sharply to 25µm2 within the initial stage, the contact area the between

the deformable SS2 and the plate shows a further increase and reaches 43µm2 at the

final stage. In contrast, the contact area between the SS4 cell and the plate does

not show further changes and keeps the value of 26.5µm2 at the final stage. This

inverse relationship is consistent with the different cell adhesive dynamics in shear

flow system, and it can be understood by a qualitative analysis of the the change

of free energy during the incubation process. If we define the cell and the ligand

particles as a single system, the change of total free energy ∆E during the process

can be written as

∆E = ∆Edeform − ∆Eadhesion, (7.4)
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where ∆Edeform represents the increase of the cell free energy due to the deviation of

cell shape from the equilibrium state during the incubation process. ∆Eadhesion rep-

resents the absolute value of the energy decrease due to the adhesive bond formation

between the cell membrane and the ligand particles. The final state is determined

by the counter-balance between the two free energy terms. A deformable SS2 cell

is prone to form larger contact area than the rigid cell can be understood as fol-

lows. For a SS2 cell with smaller cell rigidity, the energy barrier induced by the

cell deformation is relatively small, and the decrease of free energy induced by the

adhesive interaction plays a dominant role. After the initial incubation stage, the

adhesive interaction forces the cell membrane to further deform and extend on the

plate, resulting in the further increase of the contact area. In contrast, the rigid SS4

cell exhibits a “solid” like properties with a larger energy barrier for cell deforma-

tion. The adhesive interaction between the cell and plate is more like the attraction

between two solid objects (two magnets, as a example of the extreme case), where

the cell deformation plays a less important role. After the initial incubation stage,

the adhesive interaction driven by the bond formation can not overcome the free

energy increase induced by the cell deformation. Therefore, further increase of the

contact area is avoided.

Second, for the deformable SS2 cell, we note that the equilibrium contact area

obtained from the static incubation is smaller than the contact area obtained from

the shear flow conditions. In contrast, the time required for static incubation to

reach the equilibrium state is longer than the value of the shear flow condition.

These discrepancies are mainly due to the further cell deformation under the shear

flow condition, e.g., part of the deformation free energy ∆Edeform discussed above

is balanced by the hydrodynamic force exerted on the cell membrane under shear

flow condition. The extended cell membrane facilitates the bond formation with

the ligand particles and results in larger contact area. This result also provides a

reasonable explanation for the experimental observations that the cell adhesion of
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the deformable SS2 cell is more pronounced under flow conditions [12, 114].

Third, compared with the dense discocyte, the ISC shows smaller contact area

with the plate although similar cell rigidities are applied on the two cells. This result

validates that the cell morphology may also influence the cell adhesive properties.

Compared with the biconcave shape, the peculiar elongated and curved character-

istics of the ISC can further prevent the membrane receptors from interacting with

the ligand particles, resulting in the different adhesive behavior among the SS4 cell

groups, as reported in Ref. [80].
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Figure 7.4: Adhesive force between a sickle cells and the wall as a function of the
membrane rigidity for two cell morphologies. The subplot shows a sketch of the
simulation set up, where a uniform lift force is applied on the upper part of an ISC.

To quantify the effect of the cell rigidity and morphology discussed above, we

measure the adhesive force between the cell and the plate. Starting from the steady

state obtained from the static incubation, lift force along the z direction is uniformly
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applied to the upper part of cell membrane (40%, 200 vertices in total). A sketch

of the simulation set up is shown in the inset plot of Fig. 7.4. The adhesive force is

determined as the lift force that drives the cell detaching from the plate in the quasi-

static state, as shown in Fig. 7.4. Similar to the contact area, the adhesive force also

exhibits an inverse relationship with the cell rigidity. The adhesive force between

the deformable SS2 cell and the plate is 58.6pN . In contrast, the value decreases to

23.0pN for the rigid SS4 cell. Moreover, the ISC exhibits smaller adhesive force than

the discocyte within a wide range of cell rigidity, indicating a less adhesive property

induced by the peculiar cell morphology.

The above result, combined with the heterogeneous cell adhesive dynamics under

shear flow conditions, suggest that the deformable discocytes are the most adhesive

cell group among the different sickle cell classes. The ISC group, on the contrary,

is the least adhesive cell group. In microcirculation, the multiple cell groups play

different role in the hematological disorders such as vaso-occlusion. We discuss this

in the next section.

7.3 Sickle blood in tube flow

Sickle blood suspension is characterized by elevated flow resistance in microcir-

culation, which can lead to vaso-occlusion in in vivo venule [81], ex vivo micro-

vasculatures [83] and micro-channels [69]. In a simplified example presented in Sec.

5.3.4, we showed that for sickle cell suspension in a tube flow with diameter 9µm,

vaso-occlusion is avoided unless certain adhesive interaction between the sickle cell

and the tube wall is introduced. While this simplified example revealed the pre-

dominant role of cell adhesion to initialize the occlusion events, homogeneous cell

morphology and membrane rigidity are adopted. The heterogeneous adhesive prop-

erties among the different cell classes were not incorporated in that simulation. In

this section, we further investigate the abnormal hemodynamics of sickle blood sus-
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pensions mixed with different cell density groups. Blood suspensions composed of

different cell fractions are perfused into a tube system and the resultant hemody-

namics is studied. Using this method, we want to identify the specific contributions

of individual cell groups to the vaso-occlusion crisis.

This simulation work is motivated by the experimental study by Kaul et al. [83],

who conducted a microcirculatory study in an isolated ex vivo mesocecum vasculature

of rat. Following this experiment [83], we consider a sickle blood suspension of

hematocrit Ht = 30% in a tube with diameter of 10µm, which is a typical value for

post-capillaries. The set up of the system in shown in Fig. 7.5. The post-capillary

is modeled by a cylinder tube with diameter of 10µm and length 40µm. Periodic

boundary condition is applied along the flow direction. The cells are divided into two

groups. The green particles represent the adhesive ligand particles coated on the tube

wall within the region 15µm < x < 25µm. The arrow represents the flow direction

where a pressure gradient ∆P/∆x = 8.7 × 104 Pa/m is applied. Blood suspension

of different cell groups are perfused into the cylinder tube and the simulation results

are discussed as below.

• SS2 + ISC

Five SS2 cells (labeled by blue color) and five ISCs (labeled by red color) are placed

in the tube. Steady flow is achieved by turning off the adhesive interaction, as shown

in Fig. 7.5 (a). The mean flow across the tube is about 150µm/s. Starting from this

state (t = 0), the cell-ligand interaction is applied to both the SS2 cells and ISCs

where adhesive parameters are similar to the cases of single cell (see Tab. 7.1). Fig.

7.6 shows the following instantaneous mean velocity across the tube. Steady flow is

maintained until one of the SS2 cells get attached to the tube wall in the region coated

with ligand particles, triggering a sharp decrease of the flow rate at (t = 0.3s), as

shown in Fig. 7.5 (b). As a positive feedback, the decreased blood flow rate induces

more SS2 cells to adhere to the tube wall, leading to a further decrease of the flow

rate at t = 0.4s and t = 0.53s. Moreover, these adherent cells decrease the effective
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Figure 7.5: Snapshots of blood cells in a cylinder tube of D = 10µm with Ht = 30%.
The blue and red cells represent the SS2 cells and the ISCs, respectively. The
subplot (a) represents the steady flow state free of adhesive interaction. Subplots
(b-d) represent the snapshots of the blood flow where adhesive interaction is applied
to both the SS2 cells and the ISCs. Specifically, (b) represents a snapshot where one
SS2 cell adhere to the tube wall; (c) represents a snapshot where more cells adhere
to the tube wall; (d) represents a snapshot of the blood occlusion state at the final
stage of the simulation. The subplots (e-g) represent the snapshots of the blood
flow where adhesive interaction is only applied to the ISCs. The subplot (f) shows a
transient adhesion between ISC and the tube wall. Steady flow is recovered as the
cell detaches from the tube wall, as shown in (g).

tube diameter near the adhesive sites, resulting in a secondary trapping of the other

ISCs, as shown in Fig. 7.5(c). Full occlusion is achieved round t = 0.8s, as also

shown in Fig. 7.5(d). The above simulation results show that, under physiological

conditions similar to the blood flow in post-capillaries, the adhesive cell-endothelium

interaction can potentially trigger the full blood occlusion state. Moreover, the final

occlusion state exhibits a specific pattern similar to the experimental observations

[83, 80]: the rigid, elongated ISCs trapped by the adherent SS2. To verify this unique

phenomenon, three more identical independent simulations have been performed for

this case. All of the final occlusion states exhibit this featured pattern. Although

same adhesive parameters are applied to the two cell groups, no adherent ISC is

observed in the present simulations.

• Non-adhesive SS2 + ISC

To explore if the above pattern is mainly due to the limited number of free ligands,
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Figure 7.6: Instantaneous mean velocity of the blood flow in a cylinder tube of
D = 10µm containing SS2 cells and ISCs. Adhesive interaction is applied to both cell
groups. The inset plots show several snapshots of the blood flow in the simulation.

or the less adhesive feature of the ISCs, we’ve performed a similar simulation of the

blood flow where the SS2-ligand interaction is turned off. Starting from the steady

state shown in Fig. 7.5(a), the blood flow is simulated for 6s. The snapshots of the

following states are shown in Fig. 7.5(e), Fig. 7.5(f) and Fig. 7.5(g). Due to the

ISC-ligand interaction, occasional transient adhesion/contact can be formed between

the ISC and the tube wall as shown in Fig. 7.5(f). The transient adhesion results in

the decrease of the flow rate at t ≈ 2s and t ≈ 4s, as shown in Fig. 7.7. However, no

firm adhesion has been observed; the blood flow can recover the initial flow rate when

the adherent ISCs detach from the tube wall. Blood occlusion is avoided during the

simulation. This result reveals the distinct role of the SS2 cell in vaso-occlusion: it

is the major cell group that initializes the cell adhesion in post-capillaries. This is

also consistent with the positive correlation between the red cell deformability index

and the severity of the disease reported by clinical observation [11]. The ISC group,

on the contrary, contribute differently to the occlusion process, as discussed in the
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Figure 7.7: Instantaneous mean velocity of the blood flow in a cylinder tube of
D = 10µm containing SS2 cells and ISCs. Adhesive interaction is only applied
to the ISC group. The inset plots show two snapshots of the blood flow in the
simulation.

Figure 7.8: Snapshots of the red blood cells in a cylinder tube of D = 10µm with
Ht = 30%. The blue and red cells represent the SS2 cells and healthy cells, respec-
tively. The subplot (a) represents the steady flow state free of adhesive interaction.
The subplots (b-d) represent snapshots of the blood flow where adhesive interaction
is applied to the SS2 cell group. The SS2 cells adhere to the tube wall, as shown in
the (b) and (c). Healthy cells can squeeze through the adherent sites as shown in
(d).
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Figure 7.9: Instantaneous mean velocity of the blood flow in a cylinder tube of
D = 10µm containing SS2 and healthy cells. Adhesive interaction is applied to
the SS2 cell group. The inset plots show several snapshots of the blood flow in the
simulation.
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next simulation.

Figure 7.10: Instantaneous mean velocity of the blood flow in a cylinder tube of
D = 12µm, Ht = 30%. Simulation parameters are similar to the case shown in Fig.
7.6.

• SS2 + Healthy

Equal amounts of healthy (labeled by red color) and SS2 (labeled by blue color)

cells are mixed and perfused into the cylinder tube. The initial state (Fig. 7.8(a))

represents a steady flow free of adhesive interaction. Starting from this state, blood

flow is simulated with adhesive interaction applied between the SS2 cells and the

coated ligands. Fig. 7.8(b), Fig. 7.8(c) and Fig. 7.8(d) represent typical snapshots

of the following flow states. Similar to the SS2 + ISC case, the SS2 cells show firm

adhesion to the tube wall, resulting in the decrease of the flow rate at t = 0.25

and t = 0.48. While blood flow exhibits sluggish characteristics, full occlusion is

avoided as the adherent SS2 cells fails to trap the healthy cells, as shown in Fig. 7.8.

This discrepancy is mainly due to the high deformability of the healthy red cells,
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which enables the healthy cells to squeeze through the tube where large number

of adherent SS2 cells accumulated. The result, in turn, reveals the distinct role of

the ISC group in the vaso-occlusion process. Although the least adhesive, the ISC,

due to this high membrane rigidity and elongated cell shape, serve as the particular

cell group trapped by the adherent cells in the post-capillaries. This result explains

the experimental observation that large number of dense cells accumulate in the

occlusion region and disappear in the peripheral blood [83].
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Figure 7.11: (a) Instantaneous mean velocity of the blood flow in a cylinder tube of
D = 12µm, Ht = 45%. Simulation parameters are similar to the case shown in Fig.
7.10. (b) a snapshot of the blood occlusion at the final stage of the simulation.

• Effect of the tube size

Seven SS2 cells and seven ISCs are mixed and perfused into a cylinder tube with

diameter of D = 12µm, where same pressure gradient and adhesive interaction are

applied. Different from the case of D = 10µm, blood occlusion is avoided in the

present simulation. The sieve-like pattern formed by the adherent SS2 cells do not

fully trap the ISCs due to the larger spatial accommodation near the adhesion sites.

The blood flow maintains a mean flow velocity round 35µm/s at the final stage, as
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show in Fig. 7.10.
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Figure 7.12: (a) Instantaneous mean velocity of the blood flow in a cylinder tube of
D = 13.4µm, Ht = 45%. Simulation parameters are similar to the case shown in
Fig. 7.10. (b) a snapshot of the blood flow at the final stage of the simulation.

• Effect of the hematocrit

Up to this point, the hematocrit of the blood flow is chosen as 30% according to the

ex vivo experiments [83, 80]. As a sensitivity study, we have also conducted several

simulations of blood flow with Ht = 45%. Fig. 7.11 shows the instantaneous mean

velocity of the blood flow in a tube of diameter of D = 12µm, where the pressure

gradient and adhesive parameters are similar to the previous case. Different from

the Ht = 30% case, blood flow exhibits full occlusion state at the final stages. This is

mainly due to the lower flow rate and smaller spatial accommodation at the adhesion

sites, both induced by the high cell volume fraction in the tube system. However,

as the tube diameter further increases, the blood flow systems exhibit similar trend

to the cases of Ht = 30%. As the tube diameter increases to D = 13.4µm, our

simulation suggests that the full occlusion can be avoided, as shown in Fig. 7.12.

• Effect of the inflammation stimulated leukocytes
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In the previous cases, we discuss the microcirculation of blood flow under normal

physiological conditions. Simulation results indicate that the vaso-occlusion sites

mainly distribute in blood vessels with diameter smaller than 12µm. However, we

note that in clinical, the vaso-occlusion crisis is not limited in post-capillaries. Re-

cent studies [85] indicate that the sickle disease is often accompanied with an in-

flammatory endothelial phenotype, which results in elevated leukocyte recruitment.

Further more, studies by Turhan et al. [147] in transgenic-knockout mice show that

the inflammaton stimulated (by cytokine TNF-α) adherent leukocytes interact with

the sickle red blood cells, resulting in the vaso-occlusion crisis in blood vessels with

larger diamter. Here, we briefly discuss this effect by imposing an ad hoc attractive

interaction between the sickle cell and leukocyte.

Leukocyte recruitment on vascular endothelium is induced by the interaction

of the adhesive moelcules on Leukocytes such as L-selectin, αMβ2 inegrin, et al.

with endothelial adhesion molecules, including ICAM-1, VACAM-1, E-selectin and

P-selectin. These adhesive interactions are further influenced by the inflammation

stimuli such as IL-1, TNF-α, CXCL8. Under similar physilogical conditions, a leuko-

cyte may exhibits various adhesive dynamics. For systematic investigation on the

phase diagram of the adhesive dynamics, see Ref. [20]. In the present work, the

leukocyte-endothelium adhesive interaction is modeled by the stochastic bond for-

mation/dissociation between leukocyte cell vertices and the ligand particles, as de-

fined by Eq. (5.7). Simulation parameters are similar to the ones for sickle cell-

endothelium interaction presented Tab. 7.1 except for ks, which is chosen between

100 and 3000 to represent the bond affinity under different inflammation stages.

Fig. 7.13 shows the instantaneous cell velocity of a single leukocytes in tube flow

of diamter D = 13.4µm with pressure gradient ∆P/∆x = 8.7 × 104 Pa/m. Fig.

7.13(a) corresponds to the free motion state, where the leukocyte detaches from the

tube wall due to the low bond afinity (ks = 100). Fig. 7.13(b) represents the stable

rolling on the tube wall with medium bond afinity (ks = 300). This is characterized
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Figure 7.13: Instantaneous velocity of a single leukocyte with adhesive bond coeffi-
cient ks = 100(a), 300(b), and 1000(c), respectively.
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by the velocity oscillating between 20µm/s and 100µm/s. Fig. 7.13(c) represents the

firm adhesion state with high bond afinity (ks = 1000). The cell velocity fluctuates

around zero except few peaks representing the transient movement along the flow

direction.

The adhesive interaction between the sickle red blood cells and the leukocytes

are modeled by the Morse potential

UM(r) = De[e
2β(r0−r) − 2eβ(r0−r)], (7.5)

where r is the distance between cell-membrane vertices of adjacent cells, r0 and De

are the zero force distance and well-depth of UM(r), respectively. β determines the

range of interaction. In the present work, we choose r0 = 0.3, β = 1.5, De = 80 with

cut-off distance rM = 0.45. This yields adhesive forces between two cells in range

55 − 63pN .

With the cell interaction defined above, we reconsider the blood flow circulation in

larger tube flow. First, we consider blood flow in a tube with diameter D = 13.4µm

with one leukocyte. Steady flow shown in Fig. 7.14(b) is achieved by turning off

the adhesive interactions. To represent inflammation-induced cell adhesion, we turn

on the adhesive interaction between the leukocyte and the adhesive ligands with

ks = 1000 at t = 0s. Due to the cell margination effect, the leukocyte touches with

the tube wall at t = 0.47s and shows stable adhesion as shown in Fig. 7.14(c).

The adherent leukocyte decreases the effective tube diameter and the mean velocity

drops from 150µm to 45µm during this stage. Finally, to represent the stimulated

inflammation state in clinical (induced by various cytokine), we further turn on the

sickle cell-leukocyte interaction defined by Eq. (7.5) at t = 1.47s. Multiple sickle

cells get trapped on the adherent leukocyte as shown in Fig. 7.14(d). This results

in the further decrease of the flow rate. Full occlusion state is achieved at t ≈ 2.2s.

Finally, we note that for venular flow, multiple leukocytes may accumulate at

the inflammation activated region, which may also result in vaso-occlusion. Here
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Figure 7.14: (a) Instantaneous mean velocity of the blood flow in a cylinder tube of
D = 13.4µm with one leukocyte. (b-d) represent the blood cells in free motion, firm
adhesion and flow occlusion states, respectively.
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Figure 7.15: (a) Instantaneous mean velocity of the blood flow in a cylinder tube of
D = 20.2µm with three leukocytes. (b-d) represent the blood cells in free motion,
firm adhesion and flow occlusion states, respectively.
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we consider a blood flow with diameter D = 20.2µm with multiple leukocytes as

shown in Fig. 7.15. Starting from the steady flow at t = 0s, we turn on the adhesive

interaction between the leukocytes and the ligands coated on the tube wall. In

physiological aspect, this refers to the inflammation state (stimulated by cytokine

such as TNF-α). The blood flow can be roughly divided into three stages. During the

first stage, the leukocytes adhere to the tube wall, resulting in the decrease of flow

rate at t = 0.40, 0.71, 0.88s. During the second stage, the blood flow shows sluggish

characteristics due to the adherent leukocytes. The mean flow velocity drops to

162µm/s. At the end of the second stage, we further turn on the interaction between

the leukocytes and the sickle red blood cells. This results in the further entrapment

of the sicke red blood cells in the inflammation region and vaso-occlusion at t ≈
3.2s. Therefore, for vaso-occlusion induced by leukocytes, the key mechanism is the

recruitment of adherent leukocytes. In a blood vessel deficient of the inflammation

activated endothelium, vaso-occlusion can be successfully protected.

7.4 Summary

In this chapter, we employed a validated multi-scale model of sickle red blood de-

veloped in Chap. 5 to investigate the adhesive dynamics of individual cells as well

as the abnormal hemodynamics of sickle blood flow in a cylinder tube. Under the

same shear flow conditions, the sickle cells of different density groups exhibit differ-

ent dynamic behaviors (firm adhesion, flipping movement, free motion, etc.), which

is consistent with the experimental observations reported in Ref. [12, 114]. The

different cell contact area and adhesive force measured from the static incubation

and quasi-static detachment simulations illustrate that the cell adhesion is further

influenced by both the cell morphology and membrane rigidity. The SS2 cell group,

due to its high deformability characteristics, is the most adhesive cell group while

the ISC group, due to the high membrane rigidity and peculiar elongated cell shape,
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is the least adhesive cell group.

With regards to the abnormal hemodynamics of sickle blood suspension, the

simulation results agree well with experimental measurements conducted in isolated

vasculatures . The dynamic responses obtained from the different cell suspensions

reveal that the SS2 cells and ISCs contribute differently to the vaso-occlusion pro-

cess. The specific cell patterns (ISCs trapped by adherent SS2 cells) observed in the

occlusion region indicate that the SS2 cells are the major cell group that initializes

the cell adhesion in the post-capillaries, while the ISCs are the major cell group

that induces the secondary cell entrapment in the adhesive regions. Sensitivity stud-

ies on the tube size and hematocrit value reveal that the blood flow rate and the

venule diameter can further influence the pre-condition for the vaso-occlusion cri-

sis. Given the typical physiological conditions of blood flow in post-capillaries, the

present simulations suggest that most of the vaso-occlusion events occur in venules

with diameter smaller than 12µm. This result is also consistent with the experi-

mental observation [83] that the blood occlusion sites concentrate in post-capillaries

with diameter between 7 and 10µm. (Ht = 30% is adopted in that experiment.) For

blood flow with larger vessel diameter, the present work validates that the adherent

leukocytes may also results in vaso-occlusion crisis in venular flow by introducing the

adhesive interaction between the leukocytes and the sickle red blood cells.

While the present work provides reasonable explanations for the heterogeneous

cell adhesion and consistent simulation results with the experimental observation,

we are cautious to claim that the present model can capture the whole features of

the abnormal hemodynamics of the sickle blood flow. We note that the in vivo

blood occlusion is a complex process involving the interplay of multiple physiological

factors; several physical conditions simplified in the present work can potentially

contribute to the abnormal hemodynamics. First, the proportion of the SS2 and SS4

cells is kept as a constant ratio (1:1) in the present work. However, different cell

proportion may further influence the local cell entrapment in the microcirculation.
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In this sense, the threshold value D = 12µm obtained from the present work should

not be treated as the criterion of the vaso-occlusion in post-capillaries. Second, we

assume that both the SS2 and the ISC cell membranes express the same “effective”

protein receptors. However, the cell-endothelium interaction is actually composed

of multiple ligand-receptor interactions. Further investigation is needed to identify

the individual ligand-receptor interaction and the contribution to the cell adhesion

among the different cell density groups. Third, we note that the rigid SS4 cells can

contribute to the vaso-occlusion through two pathways. Although most of the occlu-

sion events concentrate in the post-capillaries as an interplay of the SS2 and SS4 cell

groups, a single SS4 cell may also contribute to vaso-occlusion by blocking the blood

flow at the pre-capillary sites, which exhibits stochastic behavior and the occurrence

can not be predicted in a given microvascular environment, as suggested by Kaul

et al. [83, 84, 102]. Finally, we note that the blood occlusion is a dynamic process

where the local oxygen saturation may further influence the blood flow circulation.

This results in a dilemma competition between the extreme conditions of local cell

concentration. On one hand, high local Ht can provide high oxygen saturation en-

vironment and prevent the cell sickling process. However, it results in lower blood

flow rate which favors the cell adhesion process. On the other hand, the lower local

Ht may facilitate the local blood flow circulation. However, the hypoxia condition

may cause more cells involving in the “deoxygenation-sickling” process, as suggested

by Kaul et al. [13]. Systematic investigation of these effects may further facilitate

our understanding on this abnormal hematological disorder.

With regards to the therapeutic treatments, the present work suggests that vaso-

occlusion, the major cause of clinical morbidity, is triggered by the adhesion of the

deformable SS2 cells and propagated by the selective secondary entrapment of the

rigid SS4 cells. While the present medical treatment by hydroxyurea can effectively

prolong the delay time of cell sickling procedure, medical treatment on the target and

blockage of the other procedures such as the vessel endothelium activation and cell-
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endothelium adhesion may provide new paradigms on the treatment of this disease,

which requires further experimental and numerical investigation.



Chapter 8

Summary and Perspective

8.1 Concluding remarks

In this dissertation, we have achieved the following goals:

• By constructing a coarse-grained particle system directly from the atomistic

system governed by Lennard-Jones potential, we demonstrated that the Dissipative

Particle Dynamics is originated from a further simplification of the Mori-Zwanzig

theory applied to the coarse-grained molecular dynamics (MD). The dissipative and

random forces appear naturally if the coarse-grained force field is approximated by

the pairwise decomposition. When the many-body effect is not pronounced (e.g.,

low density, smaller cluster state), the pairwise DPD force terms provide a good

approximation of the atomistic interactions, and the structural and dynamic proper-

ties of the atomistic systems can be successfully reproduced from the coarse-grained

system.

• We demonstrated that the no-slip boundary condition in DPD fluid can be

achieved by imposing an effective dissipative force on the DPD particles adjacent

to the bounded wall, where the freezing wall particle discussed in Ref. [127] can be

removed. We also developed an adaptive method that allows to target the prescribed

outflow rate for open fluid systems. This method is examined in bifurcated flow where
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different flow rate is prescribed on each outlet. The DPD simulation results agree

well with the numerical results by Navier-Stokes Equation.

• We explored the fidelity of the continuum approximation for blood flow systems

on mesoscopic level. By analyzing the simulation results of the blood flow in different

tube size, we identify a non-continuum to continuum transition as the tube diameter

increases to above 100µm.

• We constructed a multi-scale model of the sickle red blood cell to represent

different sickle cell morphologies based on a simulated annealing procedure and ex-

perimental observations. Cell distortion is quantified by the asphericity and the

elliptical shape factors and agree with the medical image analysis. This model is

examined in both homogeneous shear flow and tube flow systems. The shear viscos-

ity and flow resistance obtained from the present work show reasonable agreement

with the experimental measurements. The transition from shear-thinning to shear-

independent flow reveals the profound effect of the cell membrane stiffening during

deoxygenation.

• We developed a coarse-grained (CG) stochastic model to represent the growth

of the intracellular aligned hemoglobin polymer domain. The CG model is calibrated

based on the mechanical properties (Young’s modulus, bending rigidity) of the sickle

hemoglobin fibers reported in experiments. The process of the cell membrane transi-

tion is simulated for physiologic aligned hemoglobin polymer configurations and mean

corpuscular hemoglobin concentration. Typical SS-RBC morphologies observed in

experiments can be obtained from this model as a result of the intracellular aligned

hemoglobin polymer development without introducing any further ad hoc assump-

tions.

• We examined the effect of the cell-endothelium interaction on the abnormal

hemodynamics of the sickle blood suspensions. The heterogeneous sickle cell groups

exhibit different adhesive dynamics due to the various cell morphologies and mem-

brane rigidities. We demonstrated that the typical SS2 and SS4 cell groups contribute
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differently to the vaso-occlusion crisis. This result explains the specific cell patterns

widely observed at the occluded sites (SS4 cells trapped by adherent SS2 cells) as

reported by in vivo and ex vivo experiments.

8.2 Future research

We conclude this thesis by providing some areas of future research which follow from

some of the work presented herein.

• Systematic investigation of the many-body effect in the coarse-graining pro-

cedure. Construct more sophisticated coarse-grained force fields to incorporate the

“many-body” information that lead to a more accurate prediction of the structural

and dynamic properties of the atomistic system.

• Develop the outflow boundary method for complex fluid systems such blood

suspensions.

• Develop proper models for the sickle hemoglobin (HbS) molecule/solution to

capture the HbS polymerization process. This work may provide new insight to

the polymerization kinetics and quantify the physical conditions that control the

homogeneous/heterogeneous nucleation, polymer growth rate and final configuration

of the polymer domain.

• Numerical simulation of diffusion of chemicals (e.g., hydroxyurea, decitibine,

erythropoietin) to quantify the therapeutic effects of drug treatments on the micro-

circulation of the sickle blood flow.

• Modeling of other types of disease cells such as HIV and diabetic red blood

cell.
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