
Topics in Ultrascale Scientific Computing with Application

in Biomedical Modeling

by

Leopold Grinberg

Sc.M., Applied Mathematics, Brown University, USA, 2007
Sc.M., Mechanical Engineering, Ben-Gurin University of the Negev, Israel, 2003
B.S., Mechanical Engineering, Ben-Gurin University of the Negev, Israel, 2001

Physician Assistant, Kamensk-Uralsky Medical College, Russia, 1991

Thesis

Submitted in partial fulfillment of the requirements for
the Degree of Doctor of Philosophy

in the Division of Applied Mathematics at Brown University

May 2009

Abstract of “Topics in Ultrascale Scientific Computing with Application in Biomedical
Modeling,” by Leopold Grinberg, Ph.D., Brown University, May 2009

In this Thesis we focus on simulations of blood flow in three-dimensional patient-specific

arterial networks. We employ high-order spectral/hp-element spatial discretization and con-

centrate on computational efficiency in solving multi-million degrees of freedom (DOF) flow

problems on petaflop computers. We develop new two-level domain decomposition method

and multilevel communicating interface for ultra-parallel flow simulations. Specifically, at

the coarse level the computational domain is subdivided into several big patches. Within

each patch a spectral element discretization (fine level) is employed. New interface condi-

tions for the Navier-Stokes equations are developed. The proposed numerical approach has

been tested in arterial flow simulations with up to 147 arteries. Solution of 2.87B DOF

problem was computed on 18,576 processors in less than one second at each time step.

A scalable and fast parallel low-energy bases preconditioner (LEBP) in conjunction with

coarse-space linear vertex solver is developed. We provide details on optimization, parallel

performance and implementation of the coarse-space solver and show scalability of LEBP

on thousands processors of the IBM BlueGene/L and the Cray XT3. An embarrassingly

parallel but extremely efficient accelerator for iterative solver has been proposed. The new

approach reduces the number of conjugate gradient iterations and exhibits grid independent

scaling, while the computational overhead is negligible. A new type of outflow boundary

condition for networks with multiple outlets has been developed. The method is based on a

time-dependent resistance-capacitance model, where the resistance values are related to the

measured flowrates. The aforementioned methods have been employed to study unsteady

flow in patient-specific intracranial arterial trees. Results of a comparative study of 3D

rigid wall and 1D flexible wall modeling of flow in complex arterial networks are presented.

Transient turbulent flow in a carotid arterial bifurcation with a stenosed internal carotid

artery has been studied in details. To analyze the intermittent in time and space laminar-

turbulent flow a new methodology based on time- and space-window Proper Orthogonal

Decomposition (POD) is proposed. A simplified version of the POD analysis that utilizes

2D slices only - more appropriate in the clinical setting - is also investigated.

c© Copyright 2009

by

Leopold Grinberg

This dissertation by Leopold Grinberg is accepted in its present form
by the Division of Applied Mathematics as satisfying the

dissertation requirement for the degree of Doctor of Philosophy

Date .
George Em Karniadakis, Director

Recommended to the Graduate Council

Date .
Jan Sickmann Hesthaven, Reader

Date .
Peter Damian Richardson, Reader

Approved by the Graduate Council

Date .
Sheila Bonde
Dean of the Graduate School

iii

The Vita of Leopold Grinberg

Education

• Sc. M. Applied Mathematics, Brown University, USA, 2007.

• M. Sc. Department of Mechanical Engineering Ben-Gurion University of the Negev,

Israel. 2003, Cum Laude.

• Physician Assistant, Kamensk-Uralsky Medical College, Russia, 1991, Cum Laude.

Publications

1. L. Grinberg, A. Yakhot and G. E. Karniadakis, Analyzing Transient Turbulence in a

Stenosed Carotid Artery by Proper Orthogonal Decomposition, Annals of Biomedical

Engineering (provisionally accepted, 2009).

2. L. Grinberg, T. Anor, E. Cheever, J. R. Madsen and G. E. Karniadakis, Simulation of

the Human Intracranial Arterial Tree, Philosophical Transactions of the Royal Society

A, (special issue, accepted, Dec. 2008).

3. L. Grinberg, D. Pekurovsky, S. Sherwin and G. E. Karniadakis, Parallel Performance

of the Coarse Space Linear Vertex Solver and Low Energy Basis Preconditioner for

Spectral/hp Elements, Parallel Computing, http://dx.doi.org/10.1016/j.parco.2008.12.002

(2008).

4. L. Grinberg and G. E. Karniadakis, A Scalable Domain Decomposition Method for

Ultra-Parallel Arterial Flow Simulations, Communications in Computational Physics;

(special issue) 4, 1151-1169 (2008).

5. L. Grinberg and G. E. Karniadakis, Outflow Boundary Conditions for Arterial Net-

works with Multiple Outlets, Annals of Biomedical Engineering, 36(9), 1496-1514

(2008).

6. L. Grinberg, T. Anor, J. R. Madsen, A. Yakhot and G. E. Karniadakis, Large-

Scale Simulation of the Human Arterial Tree, Clinical and Experimental Pharma-

cology and Physiology, 36(2), 194-205 (2009). (special issue; doi: 10.1111/j.1440-

1681.2008.05010.x).

iv

7. L. Grinberg and G. E. Karniadakis, Hierarchical spectral basis and Galerkin formula-

tion using barycentric quadrature grids in triangular elements, Journal of Engineering

Mathematics, 56(3), 289-306 (2007).

8. G. Lin, L. Grinberg and G. E. Karniadakis, Numerical studies of the stochastic

Korteweg-de Vries equation, Journal of Computational Physics, 213(2), 676-703 (2006).

9. A. Yakhot, L. Grinberg and N. Nikitin, Modeling rough stenoses by an immersed-

boundary method, Journal of Biomechanics 38(5), 1115-1127 (2005).

10. A. Yakhot, L. Grinberg and N. Nikitin, Simulating pulsatile flows through a pipe

orifice by an immersed-boundary method, Journal of Fluids Engineering 126(6), 911-

918 (2004).

11. A. Yakhot and L. Grinberg, Phase shift ellipses for pulsating flows, Physics of fluids

77(15), 2081-2083 (2003).

Conferences

1. L. Grinberg and G. E. Karniadakis, Unsteady 3D flow simulations in cranial arte-

rial tree, SIAM Conference on Computational Science and Engineering(CSE09), FL

(Miami 2009).

2. L. Grinberg and G. E. Karniadakis, Unsteady 3D flow simulations in cranial arterial

tree, 61st Annual Meeting of the APS Division of Fluid Dynamics, San Antonio, TX

(November 2008).

3. L. Grinberg and G. E. Karniadakis, Large scale 3D Arterial Flow Simulation with

Hierarchical Domain Decomposition Method, 16th Congress of the European Society

of Biomechanics, Lucerne, Switzerland (July, 2008).

4. L. Grinberg, B. Toonen, N. Karonis and G. E. Karniadakis, A Multilayer Approach

to Simulate Large Multiscale Computational Mechanics Problems Using Grids, Open

Source Grid and Cluster Software, Oakland, CA (May 2008).

5. L. Grinberg, A. Yakhot and G. E. Karniadakis, Onset of Turbulence in a Stenosed

Carotid Artery, Inaugural International Conference of the Engineering Mechanics In-

stitute, Minneapolis, MN (May 2008)

v

6. L. Grinberg and G. E. Karniadakis, A Multiscale Model for the Brain Vascular Net-

work, 60th Annual Meeting of the APS Division of Fluid Dynamics, Salt Lake City

(2007).

7. L. Grinberg and G. E. Karniadakis, Spectral/hp Element Simulation of the Human

Arterial Tree on the TeraGrid, USNCCM9 , San Francisco, CA (2007).

8. L. Grinberg, B. Toonen, N. Karonis and G. E. Karniadakis, A New Domain Decom-

position Technique for TeraGrid Simulations, TeraGrid ’07 , Madison, WI, (2007).

9. L. Grinberg and G. E. Karniadakis, Decomposition of the Spectral Element Mesh

in TeraGrid Simulation of the Human Arterial Tree, ICOSAHOM, Beijing, China,

(2007).

10. S. Dong, L. Grinberg, A. Yakhot, S. Sherwin and G. E. Karniadakis, Simulation of

Blood Flow in Human Arterial Tree on the TeraGrid, SIAM Conference on Parallel

Processing for Scientific Computing, San Francisco, CA, Feb. (2006).

11. L. Grinberg, A. Yakhot and G. E. Karniadakis, DNS of Flow in Stenosed Carotid

Artery, 59th Annual Meeting of the APS Division of Fluid Dynamics, Tampa, FL,

(2006).

12. L. Grinberg and G. E. Karniadakis, The Tale of Two Spectral Bases on the Triangle,

USNCCM8, Austin, TX (2005).

13. S. Dong, L. Grinberg, A. Yakhot, S. Sherwin and G. E. Karniadakis, TeraGrid Sim-

ulations of Blood Flow in Human Arterial Tree, 58th Annual Meeting of the APS

Division of Fluid Dynamics, Chicago, IL, (2005).

Presentations

1. (seminar) L. Grinberg, Large Scale Simulation of the Human Arterial Tree, Boston

University, Mechanical Engineering Department, January 23, (2009).

2. L. Grinberg, Ultrascale Simulation of the Human Intracranial Arterial Tree, SC08,

Austin, TX (2008).

vi

3. (seminar) L. Grinberg, Large scale 3d arterial flow simulation with hierarchical domain

decomposition method, Institut Jean le Rond d’Alembert, Universit Paris 6 July 17,

(2008).

4. L. Grinberg and G. E. Karniadakis, Terascale Simulation of Arterial Blood Flow on

the TeraGrid, SC07, Reno, NV (2007) (invited talk).

5. L. Grinberg, K. Eschenberg and N. Stone, Real-Time Visualization for Terascale Sim-

ulations with Spectral/hp Element Methods, SC07, Reno, NV (2007).

6. L. Grinberg and G. E. Karniadakis, Multi-Level Parallel Paradigm and Domain-

Decomposition Technique for Human Arterial Tree Simulation, SC07, Reno, NV (2007).

7. L. Grinberg, Multilevel Parallelism and Locality-Aware Algorithms, Petascale Appli-

cations Symposium, Pittsburgh Supercomputing Center, PA (2007).

8. L. Grinberg, K. Eschenberg and N. Stone, Interactive Insight to Ongoing Computa-

tions, SC06, Tampa, FL (2006).

9. S. Dong, L. Grinberg, J. Insley, N. Karonis, S. Spencer and G. E. Karniadakis, Ter-

aGrid Cross-Site Simulations and Visualizations of the Human Arterial Tree, SC05 ,

Seattle, WA (2005).

Posters

1. L. Grinberg, J. Cazes and G. E. Karniadakis. A Scalable Domain Decomposition

Method for Ultra-Parallel Arterial Flow Simulation, SC08, Austin, TX (2008, ”The

Best Poster” award winner).

2. L. Grinberg, J. Cazes and G. E. Karniadakis. A Scalable Domain Decomposition

Method for Ultra-Parallel Arterial Flow Simulation, Fast Algorithms for Scientific

Computing, NYU, New York, NY (2008).

3. T. Anor, L. Grinberg, J. R. Madsen and G. E. Karniadakis, Large-scale Simulations

of the Human Cranial Arterial tree: Utility in Hydrocephalus, 52nd Annual Scientific

Meeting, Society for Research into Hydrocephalus and Spina Bifida, Providence, RI

(2008).

vii

4. L. Grinberg, S. Dong, J. Noble, A. Yakhot, G. E. Karniadakis and N.T. Karonis,

Human arterial tree simulation on TeraGrid, SC06, Tampa, FL (2006).

Honors and Awards

1. The Best Poster Award, Supercomputing’08 (2008).

2. Fulbright, United States-Israel Education Foundation (2003).

3. Wolf Foundation Award, Israel (2003).

viii

Acknowledgments

During six years at Brown, I had an opportunity to interact with the faculty and staff mem-

bers from the Division of Applied Mathematics, but I also collaborated with many scientists

and HPC specialists from other academic institutions, National Laboratories, Supercom-

puting centers and hospitals. I am convinced that their support has been indispensible

contribution to my research and I am sincerely grateful for their help. In particular, I want

express my gratitude to the following people:

First of all, my utmost gratitude goes to my thesis adviser, Professor George Em Kar-

niadakis, for giving me the inspiration, opportunity to learn, develop myself and succeed in

the area of parallel scientific computing. I am thankful to Professor Karniadakis for pro-

viding me with a free highway, and low-latency high-bandwidth connections to the world of

High Performance Computing, and giving me full support in experimenting, inventing and

implementing my ideas on numerical and computational methods. Professor Karniadakis

has been always constructive in his criticism and helped me a lot in structuring the way I

present my research in journal papers, conferences and seminars.

I thank Professor Alexander Yakhot, who was my academic adviser at the Ben-Gurion

University in the Negev in Israel and continued to collaborate with me after I left for

Brown. I am grateful to him for broadening my knowledge in the area of fluid dynamics

and numerical methods, and for long hours of fruitful scientific discussions.

I am grateful to my dissertation committee, Professors Jan Hesthaven and Peter Richard-

son, who have been kind to critique my work as readers of this Thesis.

I want also to thank:

• Children’s Hospital in Boston, Department of Neurosurgery: Dr. Joseph Madsen for

productive collaboration in research related to intra-cranial arterial flow.

• Imperial College, London: Professor Spencer Sherwin for productive collaboration.

• Argonne National Laboratory: Nicholas Karonis, Brian Toonen and Joseph Insley for

a fruitful collaboration on Grid-computing and visualization.

• San Diego Supercomputing Center: Krishna Muriki and Dmitry Pekurovsky, for ex-

ceptional support and commitment in providing technical support and help in scaling

my application on thousands of processors.

ix

• Pittsburgh Supercomputing Center: David O’Neal, Greg Foss, Kent Eschenberg, Nathan

Stone, Shawn Brown, Sergiu Sanielevici and Rolf Roskies (check names) for extraor-

dinary support, and collaboration in developing new software for computation and

visualization.

• National Center of Scientific Applications: David McWilliams for exceptional support

he provided as an NCSA user support team member.

• Texas Advanced Computing Center: John Cazes, for exceptional user support and

help leading to the Best Poster prize in Supercomputing’09.

• Numerous anonymous staff members who contributed to my research by providing a

support in porting, debugging, optimizing and running my software at the following

supercomputing centers:

Pittsburgh Supercomputing Center (PSC),

National Center of Scientific Applications (NCSA),

San Diego Supercomputing Center (SDSC),

Argonne National Laboratory (ANL),

Texas Advanced Computing Center (TACC),

National Institute for Computational Sciences at University of Tennessee/Oak Ridge

National Laboratory (NICS),

Arctic Supercomputing Center (ARSC),

Engineer Research and Development Center (ERDC),

Argonne Leadership Computing Facility (ALCF).

I thank my colleagues PhD and post-doc students as well the staff of the Division of

Applied Mathematics for their support. I want to acknowledge and thank the National

Science Foundation which has supported the research presented in this Thesis through the

following grants: CI-TEAM grant OCI-0636336 and OCI-0845449.

I am grateful to Fulbright, United States-Israel Education Foundation, for supporting

me to start my studies at Brown. I feel privileged to have been selected for the Fulbright

award, and I sincerely hope that I will return it as a contribution to the broad scientific

community.

Last but not least, I am sincerely thankful to my parents Alexander and Rivka Grinberg

who have been supportive in so many ways. They never questioned my choice to study for

x

many years and so far away from home. I can not thank my parents enough for their

unconditional love and understanding as I perused my academic degrees.

xi

Contents

Acknowledgments ix

1 Introduction 1

2 A study of Barycentric and Cartesian tensor product spectral element

bases and quadrature grids in triangular elements 5

2.1 Introduction . 5

2.2 A study of barycentric and cartesian tensor product bases 7

2.3 Local coordinate systems . 9

2.4 Two-dimensional spectral bases . 12

2.4.1 Cartesian tensor product bases . 12

2.4.2 Barycentric tensor product bases . 13

2.4.3 Numerical integration . 15

2.4.4 Numerical differentiation . 17

2.5 Construction of linear operators . 19

2.5.1 Construction of a Mass Matrix . 19

2.5.2 Construction of a Laplacian operator 24

2.5.3 Construction of Advection operator 26

2.5.4 Construction of global operator . 27

2.6 Numerical properties of linear operators: Computational efficiency 29

2.6.1 Accuracy verification . 29

2.6.2 Sparsity of linear operators . 33

2.6.3 Eigenproperties of linear operators 34

2.7 Solution of 2D Navier-Stokes problems with P/P − k approach 45

xii

2.8 Hierarchical spectral basis and Galerkin formulation using barycentric and

collapsed Cartesian quadrature grids in triangular elements 58

2.8.1 Barycentric grids on triangle . 58

2.8.2 Application to a Navier-Stokes solver 61

2.8.3 Numerical efficiency . 63

2.8.4 Stability . 68

2.9 Conclusions . 74

3 Parallel performance of iterative solver for high-order spectral/hp element

method 79

3.1 Introduction . 79

3.2 Low Energy Bases Preconditioner and Coarse Space Linear Vertex Solver:

Introduction . 82

3.3 Low Energy Basis Preconditioner for Spectral/hp Elements 84

3.3.1 Low Energy Basis Preconditioner: formulation 85

3.3.2 Low Energy Basis Preconditioner for prismatic elements 89

3.4 Parallel Coarse Space Linear Vertex Solver 92

3.4.1 Formulation . 92

3.4.2 Algorithms for solution of boundary-boundary system 94

3.4.3 Construction of coarse space linear vertex operator 97

3.4.4 Load balancing in parallel matrix vector multiplication 100

3.4.5 Implementation of parallel matrix-vector multiplication in NεκT αr 101

3.4.6 Parallel Performance Results . 104

3.5 Acceleration of Iterative Solution of Dynamical Systems 113

3.5.1 Prediction of Numerical Solution Using Polynomial Extrapolation . 115

3.5.2 Prediction of numerical solution using POD 117

3.5.3 Results . 120

3.6 Summary . 132

4 Large-scale arterial flow simulation 134

4.1 Introduction . 134

4.2 Reconstruction of vascular networks from medical images 140

4.3 Outflow boundary conditions for arterial networks with multiple outlets . . 146

xiii

4.3.1 Filtering the high-frequency Oscillations 152

4.3.2 Analysis of Stokes flow in simple networks 157

4.3.3 Simulation results . 169

4.4 Two level domain partitioning . 182

4.4.1 Formulation . 185

4.4.2 Non-overlapping domains: Results 194

4.4.3 Overlapping domains: Results . 205

4.4.4 Arterial Flow simulations on TeraGrid: Results 216

4.5 Blood flow circulation in Circle of Willis . 222

4.5.1 1D and 3D arterial flow simulations 226

4.5.2 3D arterial flow simulations . 234

4.6 Discussion and outlook . 240

5 A study of transient flow in stenosed carotid artery 243

5.1 Introduction . 243

5.1.1 Modeling transitional flow in carotid artery 245

5.1.2 Geometry, computational domain and grid generation 245

5.1.3 Problem formulation . 247

5.2 Flow patterns . 249

5.3 Application of Proper Orthogonal Decomposition 254

5.3.1 Eigenvalue spectrum of POD . 254

5.3.2 Detection of turbulence by POD analysis 256

5.3.3 Time- and space-window POD . 257

5.4 Utility of POD in clinical setting . 262

5.5 Discussion and outlook . 267

6 Concluding Remarks 269

A Construction of the elemental Transformation Matrix R 272

B Parallel matrix vector multiplication in NεκT αr 274

C resistance - flow rate relationship in a network of five vessels 277

D class TerminalBoundary 279

xiv

E class OvrLapBoundary 281

F class MergingBoundary 283

G Input files for NεκT αrG 286

xv

List of Tables

2.1 Number of quadrature points for (a) inconsistent numerical integration, (b)

consistent numerical integration, and (c) consistent numerical integration and

differentiation of a weak nonlinear operator; uδ ∈ V6. 64

2.2 Number of quadrature points for (a) inconsistent numerical integration, (b)

consistent numerical integration, and (c) consistent numerical integration and

differentiation of a weak nonlinear operator; uδ ∈ V8. 66

2.3 L2-error for different timesteps. The number of grid points for CCG and

BGB satisfies consistent numerical integration only but for BGA it satisfies

consistent numerical differentiation only. uδ ∈ V i, i = 5, 6, 7, 8. For uδ ∈ V9

the number of quadrature points for BGB is sufficient for exact numerical

integration of polynomials of order up to 25. 70

2.4 L2-error in Kovasznay solution computed on CCG and BGA. The number

of quadrature points for BGA satisfies consistent numerical differentiation

only. The number of quadrature points for CCG satisfies consistent numer-

ical integration and (a) unresolved numerical differentiation (Pd(CCG) <

Pd(BGA)), (b) resolved numerical differentiation (Pd(CCG) = Pd(BGA)).

uδ ∈ V i, i = 6, 8, 9. 72

2.5 Error in the nonlinear advection operator; uδ ∈ V8 72

3.1 Dimensions of prismatic element shown in figure 3.1. 90

3.2 Rank of VSC operator of the Poisson and Helmholtz solvers. Computational

domain of stenotic carotid artery (see figure 3.7). Problem size: 19270 tetra-

hedral elements. 96

xvi

3.3 Blue Gene: Mean CPU-time per time step for simulation with Low Energy

preconditioner using ScaLapack pdgemv and optimized NεκT αr pdgemv

function. Problem size: 19270 tetrahedral elements with fourth-order poly-

nomial approximation. Ranks of VSC for Poisson and Helmholtz solvers are

2981 and 1570. Computation performed on 256 computer nodes of Blue Gene

with 2 processors per node. 101

3.4 Iteration count: solution of Helmholtz equation with Conjugate Solver and

different preconditioners. Problem size: 96 tetrahedral elements. 105

3.5 Blue Gene: Mean CPU-time for simulation with Diagonal and Low Energy

Basis Preconditioner. Problem size: 67456 Tetrahedral elements with eight-

order polynomial approximation. Computation performed using 1 processor

per node. 106

3.6 CRAY XT3 (ERDC): Mean CPU-time for simulation with LEBP. Problem

size: 120,813 Tetrahedral elements with 6th, 8th and 10th order polynomial

approximation. Npoints is a total number of quadrature points for each un-

known. The result for 4096 CPUs was obtained on CRAY XT3 of the Pitts-

burgh Super Computing center; in our experience this computer is typically

5-10% slower than CRAY XT3 of ERDC. 107

3.7 Simulations of unsteady flow in a pipe: L∞-error for u (w - streamwise)

velocity components. Initial guess (x0) for conjugate gradient solver is pro-

vided by: a) x0 = un - solution at time step tn, b) x0 = EXT (u) - simple

extrapolation with N = 4, and c) x0 = POD1(u) - POD-based extrapolation

with Q = 4. ∆t = 2.0E − 4, stopping criteria for conjugate gradient solver:

rk
s < TOL CG = 1.0E − 12 . 120

xvii

3.8 Turbulent flow simulations in stenosed carotid artery: performance of iter-

ative solver with different initial guesses. r0
N , Nit, Te - average (over time)

initial residual (normalized by the number of unknowns), number of iter-

ations (Nit) and CPU-time (in seconds) required for extrapolation at each

time step. The initial guess is provided by: a) x0 = un - solution at time step

tn is provided as an initial guess, b) x0 = EXT (u) - initial guess computed

by a simple extrapolation, and c) x0 = POD1(u) - initial guess computed

with POD. Data is averaged over time steps 100 to 4,000, preconditioner:

low energy; ∆t = 5.0E − 5, P = 6, 10, Nel = 22, 441. 124

3.9 Turbulent flow simulations in stenosed carotid artery: high-order extrapola-

tion. r0
Ns, Nit, Te - average (over time) normalized initial residual number

of iterations (Nit) and CPU-time (in seconds) required for extrapolation at

each time step. The initial guess is provided by: a) x0 = un - solution

at time step tn is provided as an initial guess, b) x0 = EXT (u) - initial

guess computed by a simple extrapolation, and c) x0 = POD1(u) - initial

guess computed with POD. Data is averaged over time steps 100 to 4,000,

preconditioner: low energy; ∆t = 5.0E − 5, P = 6, Nel = 22, 441. 126

3.10 Turbulent flow simulations in stenosed carotid artery: average number of

iterations (Nit) and average initial residual r̄0
N for three choices of initial

guess: a) x0 = un - solution at time step tn is provided as an initial guess,

b) x0 = EXT (u) - initial guess computed by a simple extrapolation with

N = 4, and c) x0 = POD1(u) - initial guess computed by via POD with

N = 4. Data is averaged over time steps 100 to 40,000, preconditioner: low

energy; ∆t = 5.0E − 5, P = 6, Nel = 22, 441. 127

3.11 Turbulent flow simulations in stenosed carotid artery: average number of

iterations (Nit) and average CPU-time required by three Helmholtz solves

(for the three velocity components together) for two choices of initial guess:

a) x0 = un - solution at time step tn is provided as an initial guess, b)

x0 = EXT (u) - initial guess computed by a simple extrapolation with N = 4;

and two preconditioners: low energy and diagonal; ∆t = 5.0E − 5, P = 6,

Nel = 22, 441. 128

xviii

3.12 Flow simulations in Circle of Willis: performance of iterative solver with

different initial guesses. Average number of iterations (Nit) and average

normalized initial residual r̄0
N for three choices of initial guess: a) x0 = un

- solution at time step tn is provided as an initial guess, b) x0 = EXT (u) -

initial guess computed by a simple extrapolation with N = 4, and c) x0 =

POD1(u) - initial guess computed by via POD with Q = 4. Data is averaged

over time steps 300 to 3,000. Nel = 162, 909, ∆t = 5.0E − 4, preconditioner:

low energy. 129

3.13 Flow simulations in Circle of Willis: performance of POD-based accelerator.

Uit, Vit and Wit - number of iterations required for solution of Helmholtz

equations for velocity at times teps 2991 to 3000. QR - number of POD

modes used for velocity field reconstraction. λi, i = 1, 2, 3, 4 - eigenvalues

of correlation matrix C. Q = 4, P = 4, Nel = 162, 909, ∆t = 5.0E − 4,

preconditioner: low energy. 130

4.1 Simulation with RC and fixed pressure boundary conditions (pout = 0): pres-

sure drop between inlet and outlets and flow rates computed at each outlet.

Data is presented in non-dimensional units. 146

4.2 Steady flow in 3D domain with two outlets: Re = 1. Dependence of the

Q1/Q2 ratio and ∆P on the terminal resistances R1, R2 in 3D simulation of

steady flow in a bifurcation. The error is computed as (Q1/Q2−R2/R1)/(R2/R1)

%. 162

4.3 Flow simulation in domain of 20 cranial arteries. Computational details. . . 172

4.4 Solution of large scale problem, computational complexity: flow simulation in

the domain of figure 4.38(right). On a coarse level the computational domain

is subdivided into four patches A-D. Nel - number of spectral elements. DOF

- number of degrees of freedom, computed as a total number of quadrature

points: DOF = Nel ∗ (P + 3)(P + 2)2 required for exact integration of linear

terms. 196

xix

4.5 Steady flow simulation with 2DD: exponential convergence in the error of a

flow rate Q and mean pressure p̃ computed across the patch interface. Sim-

ulation performed in a domain of convergent pipe, sub-divided as illustrated

in figure 4.39(left). 200

4.6 BlueGene/P: flow simulation in the domain of figure 4.47 using 3,8 and 16

patches. Np - number of patches. CPU-time - time required for 1000 time

steps (excluding preprocessing). P = 10, ∆t = 0.0005, Re = 470, precon-

ditioner - LEBP, acceleration is not implemented. Simulations have been

performed using four cores per node (mode vn). 206

4.7 Steady flow simulation in 3D channel with backward facing step: performance

on CRAY XT5 (NICS). Nel - number of elements in two patches (Nel(ΩA)+

Nel(ΩB). NCPU - number of processes assigned to patches. The first line

correspond to 1DD simulation, and the next lines to simulations with 2DD

and different overlapping regions. 211

4.8 Arterial flow simulation, numerical challenge: size of computational sub-

domains. Nel - number of spectral elements; DOF - number of degrees of

freedom per one variable. 216

4.9 Arterial flow simulation on TeraGrid: Simulation performed on NCSA and

SDSC supercomputers. The 3D computational domain is decomposed into

3 parts, parallel solution in each sub-domain was performed on NCPU pro-

cesses, additional processor is dedicated for co-processing. Second layer of

MCI consists of three processor groups (Sj), third layer consists of four groups

(Tj). 217

4.10 Arterial flow simulation on TeraGrid: Simulation performed on NCSA and

SDSC supercomputers. The 3D computational domain is decomposed into 3

parts, parallel solution in each sub-domain was performed on NCPU proces-

sors, additional processor is dedicated for co-processing. Second layer of MCI

consists of three processor groups (Sj), third layer consists of four groups (Tj).221

4.11 CoW simulation: computational complexity. Nel - number of spectral ele-

ments. DOF - number of degrees of freedom per one variables, computed as

a total number of quadrature points: DOF = Nel ∗ (P + 3)(P + 2)2 required

for exact integration of linear terms. 225

xx

4.12 Flow simulations in the arterial tree of patient No. 2: parameters and di-

mensions. 231

xxi

List of Figures

2.1 Cartesian (ξ1, ξ2) and collapsed-cartesian (η1, η2) coordinate systems. 9

2.2 Triangular elements and barycentric coordinate system. 10

2.3 Imposing C0 continuity on standard triangular elements. Arrows indicate

the direction of local coordinate system η1, η2. 13

2.4 Imposing C0 continuity on a standard triangular elements. Arrows indicate

a positive direction of barycentric coordinates along edges: L1 along edge

CA, L2 along edge AB and L3 along edge BC. 15

2.5 Schematic structure of a Mass matrix constructed from a Φ-type bases with

P = 14. The dots represent the non-zero components of the matrix. The

dash lines separate the interior-interior part. The bandwidth of the interior-

interior block is (P − 2) + (P − 3) + 1. 20

2.6 Schematic partitioning of a Mass matrix. P = 5. The shaded area represents

the location of a matrix entries that have to be computed for Ψ-type bases. 21

2.7 Triangulation of a computational domain Ω. Left top: four element mesh

(mesh A). Right top: eight element mesh (mesh B). Left bottom: 16 element

mesh (mesh C). Right bottom: 16 element mesh (mesh D). 30

2.8 The L2 and L∞ errors in a solution of projection problem. Solid line - Mesh

A, dash line - Mesh B, dash-dot line Mesh C. Lines correspond to Φ-type

bases, markers to Ψ-type bases. 31

2.9 The L2 and L∞ errors in a solution of Diffusion problem. Solid line - Mesh

A, dash line - Mesh B, dash-dot line Mesh C. Lines correspond to Φ-type

bases, markers to Ψ-type bases. 32

2.10 Components of Mass (top) and Laplacian (bottom) matrix: sparsity. NNZ/TOTAL

- ratio of non-zero to total number of matrix entries. 33

xxii

2.11 Spectral analysis of Schur complement of condensed Mass matrix. Φ- bases.

Unpreconditioned (left) and Diagonally preconditioned (right) condensed

Mass matrix. Results for meshes A,B and C are marked by • , + and o

correspondingly. 34

2.12 Spectral analysis of Schur complement of condensed Mass matrix. Ψ- bases.

Unpreconditioned (left) and Diagonally preconditioned (right) condensed

Mass matrix. Results for meshes A,B and C are marked by • , + and o

correspondingly. 35

2.13 Solution of projection problem: Effectiveness of the Incomplete Cholesky

Preconditioner (ICP) and Diagonal Preconditioner (DP). Solid line - DP,

dash line - ICP. Circles mark data for the Ψ- type bases. 36

2.14 Spectral analysis of the unpreconditioned (left) and Diagonally precondi-

tioned (right) condensed Schur complement of Laplacian matrix. Φ-type

bases. Results for meshes A,B and C are marked by • , + and o correspond-

ingly. 37

2.15 Spectral analysis of the unpreconditioned (left) and Diagonally precondi-

tioned (right) condensed Schur complement of Laplacian matrix. Ψ-type

bases. Results for meshes A,B and C are marked by • , + and o correspond-

ingly. 38

2.16 Solution of diffusion problem: Effectiveness of the Incomplete Cholesky Pre-

conditioner (ICP) and Diagonal Preconditioner (DP). Solid line - DP, dash

line - ICP. Circles mark data for the Ψ- type bases. 39

2.17 Two element domain for linear advection problem. Vector v shows the di-

rection of the wave. The angle θ is computed from tan−1(V/U). The circles

correspond to the Φ bases, while the dots to the Ψ bases. 40

2.18 The maximal value of |λ(M−1D)|, θ = tan−1(V/U). 41

2.19 Discretization of computational domain Ω into eight triangular elements. . . 42

2.20 Maximum of |λ(M−1D)|. Data is presented in polar coordinate system,

where the angle coordinate corresponds to wave direction θ. Data for Φ

bases is marked by circles and triangles, for Ψ bases by crosses and dots. . 43

xxiii

2.21 L2-error of a numerical solution of (2.31). Data is presented in polar coor-

dinate system, where the angle coordinate corresponds to wave direction θ.

Data for Φ bases is marked by circles and triangles, for Ψ bases by crosses

and dots. 44

2.22 (in color) Kovasznay problem: computational domain and solution. Colors

represent the vorticity, arrows represent the flow direction. Wide white lines

depict the edges of spectral elements. Computational domain Ω = [−0.5 3]×
[−0.5 1.5], Nel = 24; Re = 40. 49

2.23 Solution of Kovasznay problem: convergence of velocity. Computational do-

main Ω = [−0.5 3] × [−0.5 1.5], Nel = 24; Re = 40. 50

2.24 Solution of Kovasznay problem: convergence of velocity. Computational do-

main Ω = [−0.5 3] × [−0.5 1.5], Nel = 24; Re = 10. 51

2.25 Solution of Kovasznay problem: convergence of pressure. Computational

domain Ω = [−0.5 3] × [−0.5 1.5], Nel = 24; Re = 10. 52

2.26 (in color) Step flow problem: computational domain and solution. Colors

represent the vorticity, arrows represent the flow direction. Wide white lines

depict the edges of spectral elements. Computational domain Ω = [0 13] ×
[−1 1], Nel = 124; Re = 25. 53

2.27 (in color) Step flow: Solution computed with different spatial resolutions:

P = 5 and P = 17 (top plot), and different pressure discretization methods:

P/P , P/P − 1 and P/P − 2. Top plot . z-axis - pressure (also displayed in

color). Red lines depict the edges of spectral elements. 55

2.28 (in color) Step flow: Solution computed with different spatial resolutions:

P = 9 and P = 17 (top plot), and different discretization approaches: P/P ,

P/P − 1 and P/P − 2. z-axis - pressure (also displayed in color). Red lines

depict the edges of spectral elements. Re = 25, Nel = 124, ∆t = 0.001,

Je = 2. 56

2.29 (in color) Step flow: Solution computed using explicit (2.34a) and fully im-

plicit scheme (2.35a) with spatial resolutions: P = 5 and P = 9, and P/P

approach. z-axis - pressure (also displayed in color). Re = 25, Nel = 124,

∆t = 0.001, in semi-implicit formulation and ∆t = 0.01 in implicit, Je = 2. 57

xxiv

2.30 Quadrature grids: Left - CCG; Middle - BGA; Right - BGB. The total

number of quadrature points, N , is defined as: N = (P + 1)2 for CCG,

N = (P + 1)(P + 2)/2 for BGA and BGB; P = 6. 59

2.31 Left: Number of quadrature points for exact numerical integration of a poly-

nomial of order P . Right: Corresponding computational cost. 60

2.32 L2 -error versus time for the collapsed-cartesian grid (CCG), barycentric grid

of type A (BGA) and B (BGB) with (a) inconsistent numerical integration,

and (b) exact numerical integration. The dash line (FC) depicts the fully

consistent case; uδ ∈ V6; conservative formulation of the nonlinaer term. . . 65

2.33 L2 -error versus time for the collapsed-cartesian grid (CCG), barycentric grid

of type A (BGA) and B (BGB) with inconsistent numerical integration and

convective formulation of the nonlinear term; (a) vP ∈ V6; (b) uδ ∈ V8 The

dash line (FC) depicts the fully consistent case. 66

2.34 L2 -error versus time for the collapsed-cartesian grid (CCG), barycentric grid

of type A (BGA) and B (BGB) with (a) inconsistent numerical integration,

and (b) exact numerical integration. The dash line (FC) depicts the fully

consistent case; uδ ∈ V8. 67

2.35 L2 − error vs. CPU-time: numerical solution of Kovasznay problem on

collapsed-cartesian grid (CCG), barycentric grid of a type A (BGA) and B

(BGB); inconsistent numerical integration of nonlinear term - solid line (a)

and consistent numerical integration - dash line (b); uδ ∈ V6. The computa-

tions were performed on an Intel(R) Xeon(TM) CPU 3.06GHz and 2GB of

memory. 68

2.36 L2 − error vs. CPU-time: numerical solution of Kovasznay problem on

collapsed-cartesian grid (CCG), barycentric grid of a type A (BGA) and B

(BGB); inconsistent numerical integration of nonlinear term - solid line (a)

and consistent numerical integration - dash line (b); uδ ∈ V8. The computa-

tions were performed on an Intel(R) Xeon(TM) CPU 3.06GHz and 2GB of

memory. 69

2.37 Stable ∆tstable versus P for solution of the Kovasznay problem. The nonlinear

terms, fomulated in conservative form, were computed with Adams Bashforth

method of order 1,2 and 3. 71

xxv

2.38 Two-element computational domain for solution of Kovasznay problem. . . 73

2.39 Eigenspectrum of linearized local advection operator. uδ ∈ V i, i = 6, 7, 8. . 75

2.40 Pseudospectra of a linear local advection operator, A, computed on a trian-

gular element: dots - represent the eigenvalues of A, solid lines - contours of

Log10 of epsilon-pseudo-spectra for ǫ = 10−4, 10−3.5, 10−3 , dash line - edge

of stability region; uδ ∈ V8 . 76

3.1 Illustration of the unstructured surface grid and the polynomial basis em-

ployed in NεκT αr . The solution domain is decomposed into nonoverlaping

elements. Within each element the solution is approximated by vertex, edge,

face and (in 3D) interior modes. The shape functions associated with the

vertex, edge and face modes for fourth-order polynomial expansion defined

on triangular and quadrilateral elements are shown in color. 84

3.2 Projected mode shape for the vertex mode in a P = 5 polynomial expansion

(a) original basis and (b) low energy. 88

3.3 Scatter plot of Schur complement matrices of a P = 5 polynomial expansion:

(a) Original Basis (b) Low Energy Basis (scaled by a factor of 4). 88

3.4 Hybrid mesh: performance of LEBP versus time step as a function of pa-

rameter α for Poisson (upper) and Helmholtz (lower) solvers. Simulation of

a steady flow in a domain presented in figure 3.1. 90

3.5 Hybrid mesh: performance of LEBP as a function of parameter α. Simula-

tion of a steady flow in a domain presented in figure 3.1. Mean number of

iterations required by the last ten time-steps of figure 3.1. 91

3.6 Partitioning of 2D domain consisting of triangular elements. The domain

is sub-divided into four partitions. Boundary-boundary vertices shared by

partitions are marked by squares; interior-interior vertices are marked by

circles. 93

xxvi

3.7 Blue Gene: Parallel efficiency of NεκT αr with serial and optimized parallel

implementation of coarse space linear vertex solver. TN - mean CPU-time

required for one time step in computation with N CPUs. Simulation of un-

steady flow in stenotic carotid artery (shown in the right plot). Problem

size: 19270 tetrahedral elements, fifth-order spectral polynomial approxima-

tion. Rank of VSC is presented in table 3.2. Simulation performed at SDSC. 95

3.8 XT3: Parallel efficiency of NεκT αr with different implementations of coarse

space linear vertex solver. TN - mean CPU-time required for one time step in

computation with N CPUs. Simulation of unsteady flow in stenotic carotid

artery (shown in figure 3.7). Problem size: 19270 tetrahedral elements, third-

order spectral polynomial approximation. Rank of VSC is presented in table

3.2. Simulation performed at PSC. 96

3.9 Velocity solver: Sparsity pattern of the VSC operator (left) and its LU de-

composition (right). Only the L part is plotted. Problem size: 19270 tetra-

hedral elements. Computational domain of carotid artery subdivided into 64

partitions. 97

3.10 (in color) Initial distribution of Vk

SC
(i, j) computed for the velocity system.

Computational domain of carotid artery (see figure 3.7(right)) is sub-divided

into four partitions. Due to the symmetry of the operator only low triangular

terms are stored; nz - number of non-zero components. 98

3.11 Parallel construction of VSC. Matrix is distributed onto 6 partitions on 3×2

two-dimensional processor grid. Wide lines represent decomposition of the

matrix to six partitions. VSCrc - block of rank NBS , r and c are the row and

the column index of each block. Left: standard decomposition; Right: two-

dimensional block cyclic decomposition used in ScaLapack. Colors represent

standard blocks (sub-matrices of a rank NBS), which under 2D block cyclic

mapping are grouped on the same processors. 99

xxvii

3.12 (in color) Blue Gene: Load imbalance in preconditioning stage. Upper plot

- simulation with ScaLapack pdgemv function. Lower plot - simulation with

NεκT αr pdgemv function. Problem size: 19270 tetrahedral elements, fifth-

order polynomial approximation. Simulation performed on IBM Blue Gene

supercomputer using 128 CPUs. Performance was monitoring with IPM tool

[1]. 108

3.13 Parallel matrix-vector multiplication (VSC)−1y = x. The operator VSC is

distributed on 3 × 2 processors grid. The vector y is partitioned into three

sub-vectors according to number of columns, and vector x is partitioned into

two sub-vectors according to number of row of the processor grid 109

3.14 Gathering of values of the vector y within rows in processor mesh. 109

3.15 Number of PCG iterations for three velocity components and pressure. Up-

per plots: number of iterations: solid line - LEBP, dash line - Diagonal

Preconditioner. Lower plots - reduction in iteration count. Problem size:

67456 Tetrahedral elements with eight-order polynomial approximation. . . 110

3.16 Blue Gene (SDSC): Mean CPU-time for simulation with Diagonal and Low

Energy Basis Preconditioner. Problem size: 67456 Tetrahedral elements with

eight-order polynomial approximation. Computation performed using 1 pro-

cessors per node. 111

3.17 CRAY XT3 (ERDC): Left: Performance of NεκT αr with LEBP. Parallel

speed-up. Problem size: 120,813 Tetrahedral elements with 6th, 8th and

10th order polynomial approximation. Right: geometry of the computational

domain, color corresponds to pressure values. 111

3.18 CRAY XT3 (PSC): Performance of NεκT αr with LEBP. CPU-time bal-

ance. Problem size: 19,270 Tetrahedral elements with 4th (left) and 5th

(right) order polynomial approximation. Computational domain of carotid

artery, illustrated in figure 3.7. Computation performed on 128 CPUs. . . . 112

3.19 Preconditioned conjugate gradient solver: effect of improved initial guess.

Convergence of residual (rk
Ns) and solution (||xk − xk−1||/Ns). A : x0 = un,

B : x0 = EXT (u), N = 3, C : x0 = POD1(u), Q = 3. Solution with low

energy (left) and diagonal (right) preconditioners. P = 6, ∆t = 1.0E − 4,

Nel = 22, 441. 121

xxviii

3.20 (in color) Unsteady flow simulations in stenosed carotid artery. Left: Non-

dimensional velocity monitored downstream stenosis. The oscillations signify

unsteadiness of a flow. Right: a high-speed region - red iso-surfaces, back-

flow regions - blue iso-surfaces; instantaneous path-lines of swirling flow and

cross-stream secondary flows. 124

3.21 Turbulent flow simulations in stenosed carotid artery: (a-c) - number of iter-

ations required by iterative Helmholtz solver for three velocity components.

(d-f) - initial residual r0
N = f(uap), curve marked by I (II) correspond to

un+1
ap = un (un+1

ap = EXT (u), N = 4). ∆t = 5.0E − 5, P = 6, Nel = 22, 441. 127

3.22 Flow simulations in Circle of Willis: effect of improved initial guess and con-

vergence of residual (rk
Ns) in solution with preconditioned conjugate gradient

solver. The dash lines depict the linear least square approximation for the

convergence rate. N = 4, P = 4, Nel = 162, 909, ∆t = 5.0E − 4, precondi-

tioner: low energy. 129

3.23 Flow simulations in Circle of Willis: effect of improved initial guess for the

pressure and convergence of residual (rk
Ns) in solution with preconditioned

conjugate gradient solver. Top: number of iterations required by Poisson

solver for the pressure during the first 1000 time steps. Bottom: convergence

of residual at time step 500. The dash lines depict the linear least square

approximation for the convergence rate. P = 4, Nel = 162, 909, ∆t =

5.0E − 4, preconditioner: low energy. 131

4.1 3D model of major vessels and bifurcations of the human arterial tree recon-

structed with gOREK from a set of CT, DSA CT and MRA images. Colors

represent different parts of the model. Left: Aorta and adjacent arteries.

Right top: Cranial arterial network. Right bottom: Carotid artery. 134

4.2 Blood flow simulation on distributed supercomputers. The disjoint 3D do-

mains are coupled by 1D domains . 136

4.3 Two patches A and B are connected by the interface boundary conditions.

Velocity computed at the outlet of A is imposed as Dirichlet boundary con-

ditions at the inlet of B; pressure and velocity flux computed at inlet of B

are imposed as boundary conditions at outlet of A. 138

xxix

4.4 Computed tomography. Left: DSA CT of intracranial vasculature - view

from above, the upper part of the image correspond to the front. Right: 2D

images assembled into 3D domain. The large curved vessel is aorta. 141

4.5 Reconstruction of arterial geometry with gOREK. 142

4.6 (in color) Reconstruction of Circle of Willis from MRI images. colors repre-

sent different patches of arterial surface reconstructed with gOREK and also

created in Gridgen. Red and light blue triangles depict finite element surface

mesh. 143

4.7 (in color) Left: Common, external and internal carotid arteries (CCA, ECA

and ICA, respectively) reconstructed from magnetic resonance angiography

(MRA) data. The arterial wall is represented by parametric surfaces. Right:

Cranial arterial network. The geometrical model was reconstructed from

MRA and digital subtraction angiography computed tomography images.

Smoothing of the surface boundary was done with the technique described

by Volino and Magnenat-Thalmann [98]. 145

4.8 (in color) Steady flow simulation in a three-dimensional domain with 20 cra-

nial arteries. Effect of different outflow boundary conditions. Upper - re-

sistance boundary condition; Lower - constant pressure boundary condition

(pout = 0). Colors represent pressure distribution (red - high, blue - low).

Numbers correspond to outlet IDs, consistent with table 4.1. 147

4.9 Pressure and flow waveforms in different regions of a human arterial system.

Adopted from Mills et al. [61] and published in [64]. 152

4.10 Left: Low-pass filter - RC circuit. Right: Three-element Windkessel model

- RCR circuit. 153

4.11 Pressure response to incoming flow wave Q(t) + Qǫ(t). Left: RCR model:

R1 = 50, R2 = 250, C = 0.05/(R1 + R2), α = 5 and RC model: R =

R1 + R2 = 300, C = 0.05/R(R2/R), α = 0. Right: RCR model: R1 = 100,

R2 = 200, C = 0.05/(R1 + R2), α = 5 and RC model: R = R1 + R2 = 300,

C = 0.05/R(0.8R2/R), α = 0. 155

xxx

4.12 Magnitude of impedance versus mode number in the RC and RCR circuits.

Left: RCR model: R1 = 50, R2 = 250, C = 0.05/(R1 + R2) and RC model:

R = 300, C = 0.05/R(R2/R). Right: RCR model: R1 = 100, R2 = 200,

C = 0.05/(R1 + R2) and RC model: R = 300, C = 0.05/R(R2/R). 156

4.13 1D model arterial bifurcation: one inlet and two outlets. 158

4.14 (in color) 3D model of Y-shaped bifurcation: Top left: 3D computational

Domain intersected by a plane at y=0; colors represent pressure. Bottom

right: Flow pattern at midplane; colors represent the velocity component in

the flow direction. Bottom left: Corresponding 1D model; L and D denote

the length and the diameter of each segment. The 3D domain is subdivided

into 4026 spectral elements with polynomial order P = 5. The simulation

was performed on 32 processors of CRAY XT3. 161

4.15 Q1(ω)/Q2(ω) ratio computed using formula (4.8). Solid-line R1 = 10, R2 =

15; dash-line R1 = 100, R2 = 150; dot-line R1 = 1000, R2 = 1500, Cj = 0.2Rj .162

4.16 Human Carotid Artery - reconstruction from MRA images: Common Carotid

Artery leads to Internal (left branch) and External (right branch) Carotid

Arteries. Velocity profiles in ICA (a) and ECA (c), measured with Doppler

Ultrasound technique and extracted from image (with Matlab), are marked

by wide white curves. 164

4.17 Velocity waves in carotid arteries measured with Doppler Ultrasound. Top:

V (t) in ECA and ICA. Bottom: Exact and approximated with 25 Fourier

modes VECA(t)/VICA(t). 165

4.18 (in color) 3D computational domains with two and three outlets. They con-

sist of pipe-like branches with diameters D1 = 6, D2 = 3 and D3 = 2. Colors

represent instantaneous w-velocity. The number of spectral elements in the

domain with two outlets is 4026 while in the domain with three outlets is

5238; the solution is approximated with polynomial order p = 5. Simulations

were performed on 32 processors of CRAY XT3. 169

xxxi

4.19 Numerical solution of 3D unsteady flow in a domain with two outlets using

the RC boundary condition. Inlet boundary condition are specified with two

Womersley modes. (a) and (d) show flow rates at outlet 1 (Q1) and outlet 2

(Q2); (b) and (e) show pressure differences; (c) and (f) flow rate (solid line,

left Y-axis) and pressure (dash line, right Y-axis) ratios, Results in (a), (b)

and (c) were computed with parameters C1 = 1e−3, C2 = 5e−4 while results

in (d) (e) and (f) were computed with parameters C1 = 2e − 2, C2 = 1e − 2. 170

4.20 Simulation of 3D unsteady flow in a domain with two outlets using the RC

boundary condition. The inlet boundary condition is specified with five Wom-

ersley modes. (a) flow rates at outlet 1 (Q1) and outlet 2 (Q2); (b) pressure

differences; (c) flow rate (solid line, left Y-axis) and pressure (dash line). . . 171

4.21 Numerical solution of 3D unsteady flow in a domain with three outlets using

R(t)C boundary condition. The inlet boundary condition is specified with

five Womersley modes. Left top and bottom: Reference solution and solu-

tion approximated with 20 Fourier modes for Q1(t)/Qj(t), j = 2, 3. Right:

Similar plot but for Qj(t). 172

4.22 Steady flow simulation in a domain of 20 cranial arteries with RC boundary

condition. Comparison between Qj/Q1 and R1/Rj ratios. Re = 200, Ws =

4.95. 173

4.23 Unsteady flow simulation in a domain of 20 cranial arteries, convergence

of flow rates. Left: pointwise difference in a flow rate at outlet No. 3.

Convergence in the difference |Q(t) − Q(t − T)| indicates convergence to

periodic state. Right: convergence rate at outlets No. 3 (fastest convergence)

and No. 4 (slowest convergence). Re = 200, Ws = 4.95. 174

4.24 Unsteady flow simulation in a domain of 20 cranial arteries with two types of

boundary conditions. Comparison of the reference and computed flow rate

at 10 outlets. Solid line - reference solution, obtained with the Impedance

boundary conditions; dot line - results of numerical simulation with corre-

sponding R(t)C-type boundary conditions. Re = 200, Ws = 4.95. 175

xxxii

4.25 Cranial arterial tree geometry. Plane y = 185 intersects a small saccular

aneurysm developed at the Middle Cerebral and Anterior Temporal (U-

shaped) arteries. The velocity field in this section is characterized by strong

secondary flows. Colors correspond to the z-coordinate. 176

4.26 (in color) Unsteady flow simulation in a domain of 20 cranial arteries. Com-

parison of velocity fields at slice y = 185 depicted in figure 4.25. Left plots:

solution with the Impedance boundary condition. Right plots: difference be-

tween velocity fields computed with the Impedance boundary condition and

the corresponding R(t)C boundary condition. 178

4.27 Simulation of intermittent laminar-turbulent-laminar flow in a stenosed carotid

artery with RC-type boundary condition. Left: flow patterns: red iso-surface

depicts high speed flow region (jet), blue iso-surfaces show regions of back-

flow; instantaneous stream lines demonstrate swirling flow. Right: flow rates

and negative z-component of the velocity field monitored at the selected

history points (in ICA); the locations of the points are marked by the red

dots. MEAN(Reinlet) = 350, MIN(Reinlet) = 46, MAX(Reinlet) = 1345,

Ws = 4.375. 179

4.28 Simulation of intermittent laminar-turbulent-laminar flow in stenosed carotid

artery with RC-type boundary condition. The prescribed by RC-type bound-

ary condition flow rate ration Q1/Q2 = R2/R1 = 0.6 is obtained within 5%

error. R1 = 100, R2 = 60, C1 = 0.002, C2 = 0.005. MEAN(Reinlet) = 350,

MIN(Reinlet) = 46, MAX(Reinlet) = 1345, Ws = 4.375. 180

4.29 Simulation of intermittent laminar-turbulent-laminar flow in stenosed carotid

artery with R(t)C-type boundary condition. Prescribed values of the flow

rates are marked with lines; computed values of the flow rates are marked

with dots. R1 = 100, R2(t) = R1(Q1(t)/Q2(t)), C1 = 0.002, C2 = 0.005.

MEAN(Reinlet) = 350, MIN(Reinlet) = 46, MAX(Reinlet) = 1345, Ws =

4.375. 181

xxxiii

4.30 Performance of NεκT αr on CRAY XT3 and CRAY XT5: Left: Parallel

speed-up. Problem size: 120,813 tetrahedral elements, P = 10, (226,161,936

quadrature points); preconditioner: LEBP. Right: geometry of the compu-

tational domain; color corresponds to pressure values. Computation per-

formed on CRAY XT3 (ERDC) and CRAY XT3 (PSC, for 4096 processors),

and CRAY XT5 (NICS). CRAY XT3 has one dual-core processor per node,

CRAY XT5 has two quad-core processors per node. 182

4.31 Large computational domain is subdivided into two non-overlapping patches.

The red arrows indicate direction of a primary flow. 185

4.32 Schematic representation of two overlapping patches and interfaces. 186

4.33 Multilayer Communicating Interface: High level communicator splitting.

MPI COMM WORLD is subdivided according to the computer topology to

form three non-overlapping process sub-group (Sj). The S2 group is sub-

divided using task-oriented splitting and four non-overlapping Tj groups are

created. Cells represent processes. 187

4.34 Multilayer Communicating Interface. Left: Low level communicator split-

ting. Here four third-level process sub-groups (Tj) are shown. The low level

communicator splitting is performed within each of the Tj sub-group. The in-

let and outlet communicators are created. Data exchange between processes

from each task Tj is performed through communicators from the fifth-layer of

MCI, which combines roots of the third-level communicators. Right: three-

step algorithm for inter-patch communication. 189

4.35 Steady flow simulation with 2DD: High amplitude oscillations of the pressure

at the patch interface in the beginning of a simulation performed in a conver-

gent pipe domain subdivided as illustrated in figure 4.39 (left). Solution is

computed with third-order approximation in space and different size of time

steps: (a) ∆t = 0.005, and (b) ∆t = 0.00125. High amplitude oscillations in

pΓ+ are reduced by the filter function F (t − t0) resulting in low amplitude

oscillations in pΓ− . 191

xxxiv

4.36 Simulation with 1DD and 2DD: performance. Y-axis is the mean CPU-time

required per time step. Problem size: 67456 tetrahedral elements, polynomial

order P = 4 (dash line) and P = 5 (solid line). Computation performed on

the CRAY XT3 supercomputer. 194

4.37 Simulation with 1DD and 2DD on 1024 cores of Ranger: The domain is

sub-divided into two parts: patches C and D (106,219 and 77,966 elements,

P = 4) in figure 4.38(right). Dots - CPU-time per time step; solid lines -

least-square approximation. 195

4.38 Simulation with 2DD: parallel efficiency. Steady flow simulation in the human

aorta. The domain is sub-divided into four patches. Details on computational

complexity are summarized in table 4.4. Y-axis - parallel efficiency of a solver,

Ep. Left: parallel efficiency in solution of tightly coupled system withing a

patch. Center: overall parallel efficiency. Right: geometry of a human aorta;

large computational domain is subdivided into four patches. Computation

performed on the CRAY XT3 supercomputer. 197

4.39 Illustration of two configurations of two-level domain decomposition into

patches A and B. The interfaces are centered at z = 5. Left: interface is

normal to the pipe axis. Patch A (red) has 4203 tetrahedral spectral ele-

ments and patch B (green) has 8906 elements. Right: interface is at an angle

of 80o to the pipe-axis. The sizes of patches A and B are 7246 and 11331

tetrahedral spectral elements, respectively. Primary flow direction (z−) is

from left to right. 198

4.40 Steady flow simulation with 2DD: Simulation performed in domain of con-

vergent pipe, sub-divided as illustrated in figure 4.39 (left). Convergence of

the mean pressure at the patch interface. Solution computed with P = 3.

Velocity IPC is imposed with PV BC = 3.

(a) - ∆t = 0.005 pressure IPC is imposed with PPBC = 1.

(b) - ∆t = 0.00125 pressure IPC is imposed with PPBC = 1.

(c) - ∆t = 0.005 pressure IPC is imposed with PPBC = 2. 199

xxxv

4.41 Steady flow simulation with 2DD: pressure distribution from both sides of

patch interface. Simulation performed in a domain of convergent pipe, sub-

divided as illustrated in figure 4.39(left) with P = 5 and ∆t = 0.00125. The

set-up is consistent with table 4.5. Top plots: p|Γ+ ; bottom plots: plots p|Γ− .

Left: case (a), PV BC = 1, PPBC = 1. Center: case (c), PV BC = 3, PPBC = 1.

Right: case (d), PV BC = 3, PPBC = 2. 201

4.42 Unsteady flow simulation with 2DD: Convergence of flow rates at the patch

interface. Simulation performed in a domain of convergent pipe, sub-divided

as illustrated in figure 4.39 (left). Left upper plot: α = 0.0. Left center plot:

penalty formulation, α = 0.5. Left lower plot: extrapolation, α = 0.5. Solid

line ∆t = 0.005, dash line ∆t = 0.0025, dash-dot line ∆t = 0.00125. Right:

convergence rate of numerical error ǫQ at time t = 1.9. 202

4.43 Illustration of computational domain and location of slice y = 0 and lines

x = 0, y = 0 (black) and x = −1.6, y = 0 (blue); colors represent the

non-dimensional u-velocity. 203

4.44 Unsteady flow simulation with 2DD in the computational domain of figure

4.39(right). Pressure along lines y = 0, x = 0 and y = 0, x = −1.6 as

marked in figure 4.43. (a) and (b) non-dimensional pressure values computed

with 1DD and 2DD. (c) and (d) normalized difference between the pressure

computed with 2DD and 1DD; (c) - PV BC = 3, PPBC = 1, (d) PV BC = 3,

PPBC = 2. P = 5, ∆t = 0.0005. 203

4.45 Unsteady flow simulation with 2DD: comparison of vorticity filed computed

with 1DD and 2DD: Y-component of vorticity field (ωy) contours at slices

y = 0. Y-axis is ωy. Solid lines represent location (z = 5 and z = 7.5) where

ωy was extracted. Dash line depicts the location of patch interface. P = 5,

∆t = 0.0005. 204

4.46 Unsteady flow simulation with 2DD: comparison of vorticity filed computed

with 1DD and 2DD. Computational domain is illustrated in figure 4.39(right).

Y-component of vorticity field, ωy, extracted at (a) - y = 0, z = 5 and (b)

- y = 0, z = 7.5. ǫω - deviation in ωy. PV BC = 3, PPBC = 1, 2, P = 5,

∆t = 0.0005. 204

4.47 Large computational domain is sub-divided into several overlapping patches. 206

xxxvi

4.48 Flow simulations in a domain of figure 4.47. Top: simulations with 1, 2,

4 and 8 patches with 1024, 512, 256 and 128 cores per patch, respectively.

Mean CPU-time and standard deviation, CPU-time - time required for 1000

time-steps, Np - number of patches, NCPU - number of cores. The mea-

surements are based on 10 simulations on each computer and for each coarse

discretization. Bottom: Strong scaling in simulations with 1 and 4 patches,

computing cores are equally subdivided between the patches. Re = 470,

P = 4, ∆t = 0.002. Simulation is performed on CRAY XT5 (Kraken, NICS),

and Sun Constellation Linux Cluster (Ranger, TACC). 207

4.49 Flow simulations in a domain of figure 4.47: weak scaling. Simulation with 3

(A-C), 8 (A-H) and 16 patches (A-P) using 2048 cores per patch. Np - number

of patches. Re = 470, P = 10, ∆t = 0.0005. Simulation is performed on

6,144, 16,384 and 32,768 cores of CRAY XT5 (NICS). 208

4.50 Domain of converging pipe: computational mesh and inter-patch interfaces

(S1, S2). S0 (S2) - inlet (outlet) of sub-domain ΩA, S1 (S3) - inlet (outlet)

of sub-domain ΩB. 209

4.51 Unsteady flow simulation with 2DD and overlapping patches (see figure 4.50.

Pressure along lines y = 0, x = 0 and y = 0, x = 1.6 as marked in figure

(a) and (b) non-dimensional pressure values computed with 1DD and 2DD.

(c) and (d) normalized absolute value of difference between the pressure

computed with 2DD and 1DD: (c) - y = 0, x = 0; (d) - y = 0, x = 1.6.

PV BC = 3, PPBC = 2, P = 5, ∆t = 0.0005. 210

4.52 Domain of a 3D channel with backward facing step: computational mesh and

inter-patch interfaces. S0 (S12) - inlet (outlet) of domain Ω. Sj , j = 1, ..., 12

- possible inter-patch interfaces. The width of the channel is 5 length units. 211

xxxvii

4.53 Steady flow simulation in 3D channel with backward facing step with 2DD

and overlapping patches: contours of w-velocity components: w(x, 2.5, z). a)

1DD; b) 2DD; patch ΩA is located between S0 and S5, patch ΩB is located

between S1 and S12; c) 2DD; patch ΩA is located between S0 and S8, patch

ΩB is located between S6 and S12; d) 2DD; patch ΩA is located between

S0 and S11, patch ΩB is located between S9 and S12; Coarse discretization

is illustrated in figure 4.52. P = 5, PV BC = 3, PPBC = 3, ∆t = 0.002,

Re = 72. 212

4.54 (in color) Steady flow simulation in 3D channel with backward facing step

with 2DD and overlapping patches: pressure contours: p(x, 2.5, z). a) 1DD;

b) 2DD; patch ΩA is located between S0 and S5, patch ΩB is located between

S1 and S12; c) 2DD; patch ΩA is located between S0 and S8, patch ΩB is

located between S6 and S12; d) 2DD; patch ΩA is located between S0 and S11,

patch ΩB is located between S9 and S12 Coarse discretization is illustrated

in figure 4.52. P = 5, PV BC = 3, PPBC = 3, ∆t = 0.002, Re = 72. 213

4.55 Steady flow simulation in 3D channel with backward facing step with 2DD

and overlapping patches: difference in w−velocity component for various

sizes and location of overlap. The data is extracted along x = 1.25, y = 2.5.

a) overlapping region is located close to the step; solution is obtained to three

different width of the overlap. b) overlapping region is located at the end

of the recirculation region (solid line); and behind the recirculation region

(dash line); (see figure 4.52). Arrow indicates increase in the overlapping.

P = 5, PV BC = 3, PPBC = 3, ∆t = 0.002, Re = 72. 214

4.56 Steady flow simulation in 3D channel with backward facing step with 2DD

and overlapping patches: difference in pressure for various sizes and location

of overlap. The data is extracted along x = 1.25, y = 2.5. a) overlapping

region is located close to the step; solution is obtained to three different

width of the overlap. b) overlapping region is located at the end of the

recirculation region (solid line); and behind the recirculation region (dash

line); (see figure 4.52). Arrow indicates increase in the overlapping. P =

5, PV BC = 3, PPBC = 3, ∆t = 0.002, Re = 72. 215

xxxviii

4.57 Arterial flow simulation, performance: Cross-site simulation using MPIg and

MPICH-G2 libraries. CPU-time (in sec.) required for solution of a flow

equation in each sub-domain. 219

4.58 (in color) Brain blood flow simulation in complete Circle of Willis: Geomet-

rical model of 65 cranial arteries. Colors represent pressure, arrows repre-

sent velocity fields, XY plots depict the flow rate in ml/s and pressure drop

∆P = P − Pref in mmHg, where Pref is the average pressure at ICA inlet.

Top right: instantaneous streamlines showing swirling flow in communicating

arteries. Bottom left: MRA image of the cranial arterial system. 222

4.59 (in clolor) Domain of cranial arteries of: a) healthy subject with complete

CoW, b) a patient with hydrocephalus and incomplete CoW (Patient No. 1,

only the right part of CoW is shown), and (c) a patient with hydrocephalus

and complete CoW (Patient No. 2). The geometry obtained from DSCTA

and MRI images; colors represent different patches. 225

4.60 (in color) Brain blood flow simulation in incomplete CoW with one- and

three-dimensional models. (a) Arterial geometry, (b) flow rates and (c) pres-

sure drop at (i) ICA and (ii) basilar artery. 227

4.61 Brain blood flow simulation in complete CoW of a patient with hydrocephalus

(patient No. 2). Arterial geometry and measured by PC-MRI flowrates at

four inlets. Numbers correspond to IDs of the arterial segments. The arterial

tree is subdivided into three patches - P1, P2 and P3. 230

4.62 Brain blood flow simulation in complete CoW with one- and three-dimensional

models: comparison of flowrates and pressure drop computed at different ar-

teries. Input data corresponds to patient No. 2. 232

4.63 Brain blood flow simulation in complete CoW with one- and three-dimensional

models: cross sectional area fluctuations. Dash line - corresponds to 1D sim-

ulation with elastic walls (β0 = 1); dot-dash line - corresponds to 1D simu-

lation with stiffer walls (β0 = 8). “Std.” denotes standard deviation. Input

data corresponds to patient No. 2. 233

xxxix

4.64 (in color) Brain blood flow simulation in complete Circle of Willis: devel-

opment of secondary flows in the communicating arteries. a) swirling and

backflow in the left Anterior Cerebral artery; colors represent streamwise ve-

locity component; b), c) and d) swirling flow in the right Anterior Cerebral

artery, left and right Posterior Communicating arteries, colors (in c) and d))

represent w-velocity (in-plane) component. Arrows represent direction of a

flow. 234

4.65 (in color) Brain blood flow simulation in incomplete Circle of Willis of a pa-

tient with hydrocephalus: Geometrical model of 23 cranial arteries; branches

of the left ICA are not shown. XY plots depict the flowrate in ml/s and

pressure drop, colors represent pressure difference at t = 0.6s ∆p = p − pref

in mmHg, where pref is the average pressure at ICA inlet. The constant

flowrate observed at the ICA at time interval of 0.2s to 0.35s is not typical

for a healthy subject. 235

4.66 (in color) Brain blood flow simulation in incomplete Circle of Willis: devel-

opment of secondary flows in the Middle Cerebral (A), Anterior Cerabral

arteries (B) and Internal Carotid (C) arteries; colors represent v-velocity

component in (A) and w-velocity component in (B,C). Arrows represent di-

rection of a flow. 237

4.67 (in color) Brain blood flow simulation in complete Circle of Willis of a patient

with hydrocephalus: development of secondary flows at the junctions of the

posterior communicating artery (highlighted in the top left plot). Lines and

arrows represent instantaneous stream lines and flow direction. Time interval

of one cardiac cycle is T = 1.1s. 239

5.1 (in color) Reconstruction of arterial geometry from MRI images: (a) - MRI

of carotid artery (courtesy of Prof. M. Gomori, Hadassah, Jerusalem); (b)

- Geometrical model of a carotid artery; colors represent different arterial

segments. (c) - Patches of parametric surface representation, colors repre-

sent different patches. (d) - computational mesh, consistent with third-order

polynomial approximation. 246

xl

5.2 Waveform flow rates imposed in the CCA (solid), ICA (dash) and ECA (dash

- dot) arteries and Time-Windows selected for POD data analysis. 248

5.3 (in color) Flow patterns; left: iso-surfaces in a high-speed region (jet, red),

blue iso-surfaces - back-flow regions; right: instantaneous path-lines of swirling

flow and cross-stream secondary flows. 250

5.4 (in color) Unsteady flow in carotid artery: transition to turbulence. (a-

e) cross-flow vorticity contours Ωy extracted along y = −1.2 in ICA. (f)

region of ICA where flow becomes unstable, colors represent iso-surfaces of

w-velocity (streamwise, along z-direction), Re = 350, Ws = 4.375. 251

5.5 (in color) Wall jet formation and breakdown. Streamwise w-velocity iso-

surfaces, blue indicates a back-flow recirculation region. Re = 350, Ws =

4.375. 252

5.6 (in color) Wall jet formation and breakdown. Streamwise w-velocity iso-

surfaces, blue indicates a back-flow recirculation region. Re = 350, Ws =

4.375. 253

5.7 POD eigenspectra. Re = 70 and Re = 350; Ws = 4.375. The values of n

and m are: Re = 70 - n = 2 and M = 64, Re = 350 - n = 3 and M = 1125. 256

5.8 Left: temporal POD modes of velocity obtained over one cardiac cycle.

Right: velocity field reconstructed from high-order POD modes ŭi(t,x) =
∑M

k=3[ak(t)φk
i (x)] at time instances t = 0.0s and t = 0.12s (systolic peak).

Colors represent the corresponding iso-surfaces of v=|ŭ|. Only the ICA

branch is shown. M = 1125, Re = 350, Ws = 4.375. 257

5.9 POD: Eigenspectra obtained over different time-windows (see figure 5.2). . 258

5.10 POD temporal modes ai(t), i = 1, ..., 10 corresponding to the time window

TWb (see figure 5.2). 259

5.11 POD eigenspectra obtained over different time-windows in sub-domains AB,

CD and EF (right): (a,c,e) - time-windows TWa, TWb and TWc (flow accel-

eration and transition to turbulence); (b,d,f) - time-windows TWd, TWe and

TWf (flow deceleration and laminarization); (arrows show the time growth,

color represents the w-iso-surface reconstructed from POD modes 20 to 50

at t = 0.13). 261

xli

5.12 2D POD: eigenspectra obtained over different time intervals (see figure 5.2).

(i-iii): velocity field is extracted at z = 60; (iv - vi) Velocity field is extracted

on a slice with x = const, between z = 50 and z = 60; (i,iv) - time-windows

TWa, TWb and TWc (flow acceleration, and transition to turbulence); (ii,v)

- time-windows TWd, TWe and TWf (flow deceleration, and laminarization);

(iii,vi) - time-windows TWg and TWh (diastole phase); arrows show the time

growth. 265

5.13 2D POD. Top: decay rate of POD eigenspectra. Data are extracted along:

slice z = 50 (2D slice A), slice z = 60 (2D slice B) and slice with x = const

and located between z = 50 and z = 60 (2D slice C) shown illustrated in

figure 5.12. s(t) is computed for the modes k = 2 ÷ 10. Bottom: decay rate

of POD eigenspectra, computed with variable temporal resolution. Data are

extracted along the slice z = 60; s(τ) is computed for the modes k = 2 ÷ 10. 266

C.1 Sketch of 1D model of five arteries: one inlet and five outlets. 277

xlii

Chapter 1

Introduction

Multiscale modeling of the Virtual Physiological Human (VPH) has attracted a lot of atten-

tion recently and efforts are currently underway to address many aspects of this problem in

the US, Europe and Japan [2]. The VPH project aims to simulate integrated physiological

processes across different length and time scales (multi-scale modeling). It operates under

assumption that it will eventually lead to a better healthcare system, and one of the goals

of the project is personalized care solutions. The considerable variability of the genomic

sequence, pathologies and even geometry of certain organs and systems (i.e. cardiovascular

system) suggests that use of patient-specific data must be integrated in the system model-

ing. Simulating blood flow in the entire arterial tree is an indispensable component of VPH

modeling and perhaps the most complex one from the mathematical and computational

standpoint.

Computational fluid dynamics (CFD) enables accurate simulations of blood flow in

arterial bifurcations, stented vessels and arteries with aneurysms or stenoses, among oth-

ers. Results of these CFD simulations may aid in understanding the biomechanics of such

pathologies and accelerate the use of CFD in presurgical computerassisted planning. Sim-

ilarly, CFD simulations of blood flow in entire vascular networks will lead to a better

understanding of oxygen transport to the tissues, as well as helping to design more effective

procedures for drug delivery. In recent years, numerous studies have been devoted to CFD

modeling of arterial flows, but most are limited to one or two arteries only. Interactions of

blood flow in the human body occur between different scales, in which the large-scale flow

features are coupled with cellular and subcellular biology, or at similar scales in different

1

2

regions of the vascular system. At the largest scale, the human arterial system is coupled

through the wave-like nature of the pulse information traveling from the heart into elastic

arteries. Surgical interventions, such as bypass grafts, leading to a change in the arterial net-

work alter the wave reflections, which, in turn, can modify the flow waveforms at seemingly

remote locations. Subsequently, the modification of a local waveform can lead to the onset

of undesirable wall stresses, which could start another pathological event. At the cellular

scale, the blood cell that plays a central role in the blood clotting process is the platelet.

Blood vessels injured by smoking, cholesterol or high blood pressure develop cholesterol-rich

plaques that line the blood vessel wall; these plaques can rupture and cause the platelets

to form a clot, which leads to a blockage of blood flow. In arteries of the heart, the process

leads to chest pain and heart attack; in arteries of the neck and brain, the process causes

strokes. Numerical simulations of such pathologies require multiscale modeling across many

orders of magnitude of spatial and temporal scales. Indeed, there is the prospect of cou-

pling multiscale representations of blood flow, ranging from a quasi one-dimenstional (1D)

transient flow in compliant vessels at the largest scale, to unsteady three-dimensional (3D)

flows in curved and flexible vessels at the mm range, to µm scale thrombus formation at a

fissure in the lumen of such a vessel with an atherosclerotic plaque. The main challenge

of simulating blood flow interactions, from the scale of the entire human arterial

tree down to the scale of platelet aggregation, lies in the high demand such a

task places on new algorithms for supercomputing. High-performance computing is

essential to modeling the 3D unsteady fluid mechanics within sites of interest, such as arte-

rial branches and the process of platelet aggregation and thrombosis with tens of millions

of platelets.

Three-dimensional simulation of unsteady blood flow in entire vascular system requires

solution of Navier-Stokes equations with billions degrees of freedom. High numerical ac-

curacy is important in order to minimize the discretization error and be able to focus on

the proper blood flow modeling. In this study we consider the high-order spectral/hp ele-

ment discretization (SEM). SEM provides high accuracy and treats geometrical complexity

effectively. In order to exploit effectively the advantages of SEM fast and scalable parallel

numerical solvers must be designed, so the advantages of the method will not be outweighed

by high computational cost. Designing robust numerical methods and scalable par-

allel algorithms while maintaining high spatial and temporal resolution is the

3

main focus of this Thesis. In particular, we emphasized high-order accuracy, compu-

tational efficiency and extreme scalability. The developed methods have been applied to

simulate laminar and transient flow in arteries, reconstructed from patient-specific data;

however, they can also be applied in solving a wide range of physical problems, e.g., from

simulations multiphysics in virtual nuclear reactors to modeling environmental flows.

Outline

Chapter 2 is devoted to numerical study of two spectral bases and three sets of quadra-

ture grid defined on two-dimensional triangular elements. As a model problem, the Navier-

Stokes equations is considered. The semi-implicit and implicit time-stepping schemes are

applied. The advantages and disadvantages of discretization of the pressure field with the

reduced-space approach are discussed.

Chapter 3 focuses on fast and scalable iterative solver for solution of Helmhlotz and

Poisson equations for the velocity and pressure variables, respectively. Specifically, we

focus on the parallel low-energy bases preconditioner and coarse-space linear vertex solver.

We also propose robust methods to accelerate convergence of the iterative solver in solving

dynamical systems by providing a better initial guess. As a model problem we consider flow

simulations in patient-specific arterial trees. The large size of computational domain and use

of high-resolution spatial discretization leads to system of non-linear equations with millions

degrees of freedom. However, despite the large problem size the numerical simulation can

be completed very fast, if proper numerical and parallel algorithms are employed.

In Chapter 4 we address numerical challenges in flow simulations in complex patient-

specific arterial networks, with multiple inlets and outlets. First, we present a new type

of outflow boundary condition which allows to incorporate efficiently available clinical data

into numerical simulation. Second, we present a new computational approach for solution

of extremely large flow problems (with billions of degrees of freedom). Particularly, we focus

on a two-level domain decomposition method and developing an ultra-parallel paradigm for

solving flow problems on a network of distributed computers and also on a single cluster.

Third, we present results of unsteady 1D and high-resolution 3D simulations of a flow in

the brain vasculature.

In Chapter 5 we present a study of intermittent laminar-turbulent-laminar flow in

stenosed carotid artery. High-resolution three-dimensional simulations (involving 100 mil-

lion degrees of freedom) were employed to study transient turbulent flow in a carotid ar-

4

terial bifurcation with a stenosed internal carotid artery (ICA). The geometrical model of

the arteries was reconstructed from MRI images, and in vivo velocity measurements were

incorporated in the simulations to provide inlet and outlet boundary conditions. Due to

high degree of the ICA occlusion and variable flow rate, a transitional and intermittent flow

between laminar and turbulent states was established. Time- and space-window Proper

Orthogonal Decomposition (POD) was applied to quantify the different flow regimes in the

occluded artery. A simplified version of the POD analysis that utilizes 2D slices only more

appropriate in the clinical setting - is also investigated.

In Chapter 6 we conclude with a brief discussion and outlook.

Chapter 2

A study of Barycentric and

Cartesian tensor product spectral

element bases and quadrature

grids in triangular elements

2.1 Introduction

Spectral element methods in two-dimensional domains consisting of triangular elements

have only been developed in the last fifteen years [79, 78]. They are particularly effective for

solving time-dependent partial differential equations in truly complex-geometry domains.

The spectral expansions employed in each triangle to represent the data, solution and

geometry can be either of modal or nodal type. Hierarchical modal expansions can be cast in

a tensor-product form if properly formulated, see [49]; they are typically used in conjunction

with Galerkin projections. Nodal expansions are non-hierarchical and are usually employed

in collocation type methods; computing the proper set of nodes in a triangle has been the

subject of several studies, see [29, 45, 91, 23].

In this Chapter we focus on two fundamental aspects of SEM/hp discretization, specifi-

cally the spectral bases and the quadrature grid. We compare the computational efficiency

of solution partial differential equations with different bases functions and quadrature grids.

The Chapter is organized as follows. First, we overview the cartesian and barycentric coor-

5

6

dinate systems. Second, we present the cartesian and barycentric tensor product bases and

compare numerical properties of linear operators constructed from these bases. Third, we

present two numerical schemes for solution of Navier-Stokes equations, discuss aspects of

P/P − k, k = 0, 1, 2 approach and present results of numerical solution of two flow prob-

lems. Forth, we focus on performance of Navier-Stokes solver in conjunction with three sets

of quadrature grids. We conclude with a summary in the last section of this Chapter.

7

List of Symbols/Notations

Ω - computational domain.

Ωe - computational domain corresponding to spectral element e.

x - cartesian coordinate system.

ξ - coordinates of cartesian system, defined on Ωe.

η - collapsed coordinate system.

L - barycentric coordinate system, defined on Ωe.

Φ = [Φ1, ..., ΦN]T , and Ψ = [Ψ1, ..., ΨN]T - cartesian and barycentric tensor product basis,

collectively denoted by Λ = [λ1, ..., λN]T .

P - order of polynomial expansion.

V - Vandermond matrix.

M, D and L - projection, advection and laplacian operators.

ωi, i = 1, ..., N - integration weights.

2.2 A study of barycentric and cartesian tensor product bases

Different sets of polynomial bases spanning the same space are equivalent in terms of ac-

curacy. However, the corresponding computational efficiency depends on the type of basis

functions. We present here a systematic study of the relative merits of two sets of tensor-

product basis functions defined on a triangular element.

The first set of basis functions is described in [79]. This tensor-product basis consists

of hierarchical functions that are defined in terms of the so-called “collapsed” cartesian

coordinates, here and thereafter these basis functions are denoted by Φ(ξ), ξ = [ξ1, ξ2].

Three-dimensional bases defined on polymorphic domains (e.g., tetrahedra, prisms and

pyramids) are readily constructed with appropriate modification of the coordinate in each

direction. The L2 basis set is orthogonal while the C0 basis set is semi-orthogonal. The bases

lack rotational symmetry. The second set of basis functions was introduced in [22]. The

tensor-product bases Ψ(L) is constructed using barycentric coordinates L = [L1, L2, L3].

These basis functions offer rotational symmetry but not orthogonality.

The aim of the present study is to compare both accuracy and computational efficiency of

the two spectral representations on computational domains consisting of uniform and highly

distorted triangular elements. While the comprehensive study of Φ(ξ) has been performed,

8

little is known about the barycentric bases Ψ(L).

Software: Two-dimensional spectral/hp element solver has been developed. The soft-

ware uses two sets of C0 modal spectral bases defined on a triangular element, and three sets

of quadrature points. The linear systems arising in different problems are solved directly

or iteratively with preconditioned conjugate gradient solver, the diagonal and incomplete

Cholesky preconditioners are employed. The software makes extensive use of sparse alge-

bra; specifically, the matrix-vector multiplications required by the conjugate gradient solver

are executed using sparse matrices stored in a compressed row storage format. For solu-

tion of Navier-Stokes equations an implicit and semi-implicit time stepping schemes are

implemented, in the later the non-linear term is integrated using upto third-order Adams-

Bashforth method, while the linear part is solved implicitly. For solution of Navier-Stokes

problem, the so-called P/P −k, k = 0, 1, ...P −1 approach is implemented, i.e., the velocity

field is approximated by a polynomial expansion of order P , while the pressure is approx-

imated with a polynomial expansion of order P − k. To this end, we first present the two

spectral bases, examine the properties of the projection, advection and diffusion operators;

and subsequently solve several prototype problems in order to evaluate the performance of

the two bases.

9

2.3 Local coordinate systems

Two types of 2D coordinate systems are employed: a) the Cartesian and b) the Barycentric.

The basis Φk(ξ) is defined on Cartesian coordinate system, whereas the basis Ψk(L) is

defined on Barycentric coordinate system.

Cartesian coordinate system

Consider a standard quadrilateral element and a 2D Cartesian coordinate system η1, η2.

The dimensions of standard element are bounded by constant limits, i.e.,

Q2 = (η1, η2)| − 1 ≤ η1, η2 ≤ 1,

as shown in figure 2.1. Now consider a standard triangular element in the cartesian coordi-

nate system (ξ1, ξ2)

T 2 = (ξ1, ξ2)| − 1 ≤ ξ1, ξ2; ξ1 + ξ2 ≤ 0,

also shown in figure 2.1. Then, the ξ1, ξ2 coordinate system on a triangular element is

obtained by mapping of the standard coordinate system by the transformation

η1 = 2
1 + ξ1

1 − ξ2
− 1, η2 = ξ2. (2.1)

The transformation (2.1) defines the collapsed-coordinate system. The backward transfor-

mation is given by:

ξ1 =
(1 + η1)(1 − η2)

2
− 1, ξ2 = η2. (2.2)

CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC

ξ2

(0,0)

(−1,1)

η1=−1 η1=0 η1=1

(1,−1)(−1,−1)
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC
CCCCCCCCCCCC

η2

η1

(0,0)

(−1,1)

(1,−1)(−1,−1)

(1,1)

η1=1η1=0η1=−1

ξ1
η2 = ξ2

2
ξ1= (1+η1)(1−η2) −1

η1= 2 (1+ξ1) −1
(1−ξ2)

θ

Figure 2.1: Cartesian (ξ1, ξ2) and collapsed-cartesian (η1, η2) coordinate systems.

10

The transformation from a local to element coordinate system ξ1, ξ2 to global coordinate

system x, y is given by

xi = xA
i

−ξ2 − ξ1

2
+ xB

i

1 + ξ1

2
+ xC

i

1 + ξ2

2
, (2.3)

where x1 = x, x2 = y, and xA
j , xB

j , xC
j are vertex coordinates.

Barycentric coordinate system

The barycentric coordinate system on a triangular region is defined by three non-independent

coordinates L1, L2, L3, L1 + L2 + L3 = 1 as illustrated in figure 2.2a. The coordinates of

 L
2

 L
3

 L
1

 A

 B

 C

a)

P

A
1

A
3

A
2

 A

 B

 C

b)

Figure 2.2: Triangular elements and barycentric coordinate system.

a grid point P (L1i
, L2i

, L3i
) are computed as a ratio of areas of triangles ABP, BCP, CAP

(figure 2.2b) to the area of an element ABC, i.e.,

Li =
Ai

A
, i = 1, 2, 3.

Coordinate transformation

The transformation from a Cartesian coordinate system x, y into Barycentric coordinate

system is given by

L1 = [xCyB − xByC + x(yC − yB) + y(xB − xC)] 1
2A′

L2 = [xAyC − xCyA + x(yA − yC) + y(xC − xA)] 1
2A′

L3 = [xByA − xAyB + x(yB − yA) + y(xA − xB)] 1
2A′

, (2.4)

where A′ is an area of the triangle.

11

The transformation from Barycentric coordinate system into collapsed coordinate system

η1, η2 is given by

η1 = 2L2 − 1

η2 = 2L3

1−L2
− 1

(2.5)

and the backward mapping is given by

L1 = 1 − L2 − L3

L2 = 0.5(1 + η1)

L3 = 0.25(1 − η1)(1 + η2)

(2.6)

12

2.4 Two-dimensional spectral bases

Consider two dimensional region Ω ⊂ R2 subdivided into Nel non-overlapping elements

Ω = ∪Nel
e=1Ωe, Ωi ∩ Ωj = 0, i 6= j. In each element the solution field is approximated by a

finite-order polynomial expansion defined in a space Vδ of order P :

u(x) ≈ uδ(x) =

dim(Vδ)∑

k

v̂kΦk(ξ) ≡
dim(Vδ)∑

k

ûkΨk(L). (2.7)

By Φk(ξ) and Ψk(L), k = 1, ..., dim(V δ) we denote the Cartesian and Barycentric tensor

product bases; L and ξ are local to the element Barycentric and Cartesian coordinates.

The superscript δ emphasize that we use a finite (truncated) space, notation VP will denote

space spanned by polynomials of order ≤ P . Both bases are subdivided into a linear (vertex)

modes, edge modes and interior modes. The linear modes have zero support at all vertices

except one; analogously, the edge modes have zero support at all edges except one edge.

The interior modes (also called bubble modes) have zero support on the perimeter of the

element.

2.4.1 Cartesian tensor product bases

Consider standard triangular element Ωe and a local to this element Cartesian coordinate

system ξ1, ξ2 as shown in figure 2.1(left). Standard triangular element is mapped to a

quadrilateral region by means of a mapping function 2.1 the mapping is illustrated in figure

2.1. The C0 continuous expansion modal bases are defined on η1, η2 as following:

Vertex A:
(

1−η1

2

)(
1−η2

2

)

Vertex B:
(

1+η1

2

)(
1−η2

2

)

Vertex C:
(

1+η2

2

)

Edge AB:
(

1−η1

2

)(
1+η1

2

)
P 1,1

p−1(η1)
(

1−η1

2

)p+1
(0 < p < P1)

Edge BC:
(

1+η1

2

)(
1−η2

2

)(
1+η2

2

)
P 1,1

q−1(η2) (0 < q < P2)

Edge AC:
(

1−η1

2

)(
1−η2

2

)(
1+η2

2

)
P 1,1

q−1(η2) (0 < q < P2)

Interior:
(

1−η1

2

)(
1+η1

2

)
P 1,1

p−1(η1)
(

1−η2

2

)p+1 (
1+η2

2

)
P 2p+1,1

q−1 (η2)

(0 < p, q; p < P1; p + q < P2, P1 ≤ P2),

where Pα,β
i are Jacobi polynomials of order i, P1 and P2 define the highest order of the Jacobi

polynomials in direction η1 and η2 respectively. In the present study we let P1 = P2 ≡ P .

13

A convenient numeration of the expansion modes, Φi, is as following:

Φi for i = 1,2,3 correspond to the linear Vertex modes (A, B and C).

Φi+e for i = 1,...,(Pmax-1) correspond to the Edge modes. For the shape function which are

not zero on a) Edge AB, e = 3; b) Edge BC, e = 3 + (P − 1); c) Edge AC, e = 3 + 2(P − 1).

Φi+k for i = 1,...,(P-1)(P-2)/2 and k = 3P correspond to the interior modes. Additionally,

in order to achieve higher computational efficiency, index q runs faster then p, i.e., p = q = 1

corresponds to the first face mode, p = 1, q = 2 for the second and so on.

 1

 A B

 C
 A C

 B

 2

a)

 1

 A B

 C
 C B

 A

 2

b)

Figure 2.3: Imposing C0 continuity on standard triangular elements. Arrows indicate the
direction of local coordinate system η1, η2.

When a two dimensional region Ω is decomposed into a set of non-overlapping elements,

i.e., Ω =
∑Nel

e=1 Ωe, Ωi ∩ Ωj = 0, i 6= j, and global C0 continuity is required, the following

modification of edge shape functions might be necessary. In Figs. 2.3a and 2.3b we present

two possible configurations where

a) Edge BC of Element 1, and Edge AB of Element 2 have the opposite direction (defined

by the collapsed coordinates). Then the global C0 continuity between Element 1 and 2 is

insured by means of negating the odd Edge modes of one of the elements.

b) Edge BC of Element 1, and Edge AC of Element 2 have the same direction, conse-

quently the global continuity is preserved, and no modification is required.

2.4.2 Barycentric tensor product bases

To describe the Ψ expansion bases we consider a triangular element and Barycentric co-

ordinate system L1, L2, L3 as illustrated in figure 2.2. Note that the coordinates satisfy

L1 + L2 + L3 = 1, hence they are linearly depended. The C0 continuous expansion modal

14

bases are defined on L1, L2, L3 as following:

Vertex A: L1

Vertex B: L2

Vertex C: L3

Edge AB: L1L2P
α,β
p−1(2L1 − 1)Pα,β

q−1(2L2 − 1), (p + q = P, 0 < p, q < P)

Edge BC: L2L3P
α,β
q−1(2L2 − 1)Pα,β

r−1(2L3 − 1), (q + r = P, 0 < q, r < P)

Edge CA: L3L1P
α,β
r−1(2L3 − 1)Pα,β

p−1(2L1 − 1), (r + p = P, 0 < r, p < P)

Interior: L1L2L3P
α,β
p−1(2L1 − 1)Pα,β

q−1(2L2 − 1)Pα,β
r−1(2L3 − 1), (p + q + r = P, 0 < p, q, r <

P − 1).

A convenient numeration of the expansion modes Ψi is as follows:

Ψi for i = 1,2,3 correspond to the linear Vertex modes (A, B and C).

Ψi+e for i = 1,...,(Pmax-1) correspond to the Edge modes. For the shape function which

are not zero on a) Edge AB, e = 3, b) Edge BC, e = 3 + (P − 1), and c) Edge AC,

e = 3 + 2(P − 1). Since each Edge mode is defined as a tensorial product of polynomials of

order p and q (for the Edge AB, q and r for the Edge BC, r and p for the Edge CA) we

let the first index to run from 1 to P − 1 and compute the second index as q = P − p. For

example, consider the Edge AB and P = 4, then

Ψ4 = L1L2P
α,β
1−1(2L1 − 1)Pα,β

3−1(2L2 − 1)

Ψ5 = L1L2P
α,β
2−1(2L1 − 1)Pα,β

2−1(2L2 − 1)

Ψ6 = L1L2P
α,β
3−1(2L1 − 1)Pα,β

1−1(2L2 − 1)

Ψi+k for i = 1, ..., (P − 1)(P − 2)/2 and k = 3P correspond to the interior modes.

In this study we use α = 0, β = 2.

The C0 continuity between adjacent elements is imposed by reversing the p − q (q − r,

r−p) sequence for Edge AB (BC, CA). For instance, consider the 2-element mesh as shown

in Fig. 2.4 and P = 4. To ensure the C0 continuity between Edge BC functions of Element 1

end Edge CA functions of Element 2 we define the corresponding basis functions of Element

1 in the following pattern:

Ψ7 = L2L3P
α,β
1−1(2L2 − 1)Pα,β

3−1(2L3 − 1)

Ψ8 = L2L3P
α,β
2−1(2L2 − 1)Pα,β

2−1(2L3 − 1)

Ψ9 = L2L3P
α,β
3−1(2L2 − 1)Pα,β

1−1(2L3 − 1)

and corresponding base functions of Element 2 as:

Ψ10 = L3L1P
α,β
3−1(2L3 − 1)Pα,β

1−1(2L1 − 1)

15

 1

 A C

 B

 A B

 C

 2

Figure 2.4: Imposing C0 continuity on a standard triangular elements. Arrows indicate a
positive direction of barycentric coordinates along edges: L1 along edge CA, L2 along edge
AB and L3 along edge BC.

Ψ11 = L3L1P
α,β
2−1(2L3 − 1)Pα,β

2−1(2L1 − 1)

Ψ12 = L3L1P
α,β
1−1(2L3 − 1)Pα,β

3−1(2L1 − 1)

2.4.3 Numerical integration

The exact integration of a function u on a region Ωe

I =

∫

Ωe

udA

can be approximated by numerical integration, i.e.,

I =
N∑

i=1

ωiui + R,

where ωi is i-th quadrature weight, ui is a value of a function u computed at a point i and

R is the quadrature error. Different types of grids defined on a triangular region lead to

different integration techniques.

16

Integration on the collapsed-cartesian grid

The exact integration of a function u on the standard triangular region using the collapsed-

coordinate system (η1, η2) is expressed as

I =

∫

τ2

u(ξ1, ξ2)dξ1dξ2 =

∫ 1

−1

∫ −ξ2

−1
u(ξ1, ξ2)dξ1dξ2 =

∫ 1

−1

∫ 1

−1
u(η1, η2)Jdη1dη2, (2.8)

where J is the Jacobian of the transformation (2.2)

J =

∣∣∣∣
∂(ξ1, ξ2)

∂(η1, η2)

∣∣∣∣ .

The numerical counterpart of the last term in (2.8) is

I =

i=Q1∑

i=1

ω1i

j=Q2∑

j=1

ω2j
u(η1i

, η2j
)J(η1i

, η2j
)

+ R. (2.9)

It is efficient to use Gauss quadrature points and weights for numerical integration. The

Jacobian, J , is usually included into the weights ω1, ω2. In the case where u is a polynomial

of degree P1(P2) in ξ1(ξ2) we need only Q1 = (P1+1)/2 (Q2 = (P2+1)/2) Gauss quadrature

points to perform the exact numerical integration. Thus, the precise cost of numerical

integration of a polynomial of order P (here and thereafter we assume that P1 = P2 = P

and Q1 = Q2 = Q) on the collapsed-coordinate system is (3Q2 + Q) multiplications and

summations, with function evaluations at Q2 quadrature points.

Integration on the barycentric grids

The exact integration of a function u on the standard triangular region using the barycentric

coordinate system is given by

I = 2A

∫ 1

0

∫ 1−L2

0
f(L)dL1dL2,

where A is the elements area. The numerical integration on a barycentric grid over a

triangular region with area A is given by

I = 2A
N∑

i=1

ωiu(L1i
, L2i

) + R′,

17

with the weights, ωi. Several sets of integration points and corresponding weights are

available, and the discussion on a various choices is provided in section 2.8.1. The general

approach to obtain ωi for a given set of barycentric quadrature points Li is as follows.

Consider polynomial basis λk(m, n)) ∈ VP , VP = span{xn
1ym

2 , m + n ≤ P}, k = 1, ..., Q, a

set of integration points Li, i = 1, ..., Q and the corresponding square Vandermonde matrix

V constructed from λ(m, n) evaluated at grid points Li, i.e, V (k, i) = λk(Li). Then the

weights ωi can be computed by solving a linear problem

Vω =

∫
ΛdA,

where Λ is a vector formed from the polynomial basis λ(m, n).

2.4.4 Numerical differentiation

The evaluation of derivatives in a physical space can be performed using a chain rule. For

the barycentric bases we use:

∂
∂x

∂
∂y

=

∂L2

∂x
∂L3

∂x

∂L2

∂y
∂L3

∂y

∂
∂L2

∂
∂L3

. (2.10)

Since the three barycentric axes are not orthogonal we my choose a different coordinate

transformation, for example xy → L1L2 or xy → L1L3. Computing derivatives directly in

a barycentric coordinate system instead of η1η2 coordinate system is more efficient from

computational point of view. For example the derivatievs of the Vertex modes are com-

puted from ∂Ψi/∂x = ∂ Li/∂x. Derivatievs of the Edge modes, Ψ(Li, Lj) are computed

using corresponding xy → LiLj transformation. Finally derivatives of face modes can be

computed by xy → L1L2 and substituting L3 = 1 − L1 − L2. We can also compute the

derivatives using η1η2 coordinate system:

∂
∂L2

∂
∂L3

=

1

J

∂L3

∂η2
−∂L3

∂η1

−∂L2

∂η2

∂L2

∂η1

∂
∂η1

∂
∂η2

, (2.11)

18

where J = (1 − η1)/8. Thus the derivatives in x- and y- directions are computed from:

∂

∂x
=

∂L2

∂x

1

J

[
1 − η1

4

∂

∂η1
+

1 + η2

4

∂

∂η2

]
+

∂L3

∂x

1

J

1

2

∂

∂η2
(2.12)

∂

∂y
=

∂L2

∂y

1

J

[
1 − η1

4

∂

∂η1
+

1 + η2

4

∂

∂η2

]
+

∂L3

∂y

1

J

1

2

∂

∂η2
(2.13)

To compute derivatives of cartesian bases we use:

∂
∂x

∂
∂y

=

2

A′

∂y
∂ξ2

− ∂y
∂ξ1

− ∂x
∂ξ2

∂x
∂ξ1

∂
∂ξ1

∂
∂ξ2

, (2.14)

where the partial derivatives in ξi are computed from:

∂
∂ξ1

∂
∂ξ2

=

2
1−η2

∂
∂η1

21+η1

1−η2

∂
∂η1

+ ∂
∂η2

(2.15)

19

2.5 Construction of linear operators

The three linear operators considered in this section are the Projection (M), Advection (D),

and Diffusion (L) operators. These operators are required for solutions of many physical

problems. For example, consider one-dimensional unsteady advection-difusion problem

∂u

∂t
=

∂u

∂x
+ ν

∂2u

∂x2
.

The weak formulation of this problem is obtained by pre-multiplying the left and the right

hand sides of the equation by the weight of a test function Λ = [λ1, ..., λN]T and integrating

over Ω. ∫
Λ

[
∂u

∂t
=

∂u

∂x
+ ν

∂2u

∂x2

]
dx.

Following the Bubnov-Galerkin formulation we approximate the solution u by a polynomial

expansion of order P (see formula 2.7) and use the same basis functions for to test functions.

For convenience let us rewrite the above integral as I1 = I2 + νI3 where

I1 =

(
N∑

i=1

∂

∂t
ûiλi , Λ

)
= M

∂

∂t
û,

I2 =

(
N∑

i=1

ûi
∂

∂x
λi , Λ

)
= Dû,

I3 =

(
−

N∑

i=1

ûi
∂

∂x
λi ,

∂

∂x
Λ

)
= −Lû,

in the last equality integration by parts was applied and zero flux boundary conditions were

assumed.

2.5.1 Construction of a Mass Matrix

The construction of Mass matrix (Projection operator) Me corresponding to element e

for different expansion bases requires evaluation of the inner product of the modes in the

expansion basis with themselves, i.e.,

M e
i,j = (λi, λj) =

∫

Ωe

λi(ξ1, ξ2)λj(ξ1, ξ2)dξ1dξ2,

20

where λi = Φi or λi = Ψi. Mass matrices constructed from the expansion bases Ψ and Φ

bases are not the same, they differ in structure (sparsity) and eigenproperties. Understand-

ing and proper utilization of the operator structure may lead to considerable computational

savings in terms of floating point operations and storage. The eigenproperties of the oper-

ators are important in analysis of stability and also convergence of iterative solvers. In the

following we describe the structure of Me constructed from the two spectral basis.

The Mass matrix constructed from Φ is symmetric and consequently we have to compute

only the diagonal and half of off-diagonal entries. Second, the Mass matrix is very sparse,

thus we are allowed to skip the computation of a Matrix components which values are zero.

In figure 2.5 we present a structure of Me for a triangular expansion of order P = 14. It is

clearly seen that the interior-interior block has a well defined bandwidth.

Figure 2.5: Schematic structure of a Mass matrix constructed from a Φ-type bases with
P = 14. The dots represent the non-zero components of the matrix. The dash lines separate
the interior-interior part. The bandwidth of the interior-interior block is (P−2)+(P−3)+1.

The Mass matrix, constructed form Ψ bases does not show the same sparsity, actually

it is almost a full matrix. The last implies that computation of M is expensive. However,

exploiting the rotational symmetry of the expansion bases Ψ reduces significantly the com-

putational cost. To appreciate this fact let us divide the matrix Me into several parts. By

shaded area in figure 2.6 we denote the components of the matrix Me that have to be com-

puted. The rest of the values of Me are obtained by appropriate mapping of the computed

entries. In the following, for convenience of notation, we drop the superscript e.

21

 VV VE
2

 VE
1

 VE
3

 EV
2

 EV
1

 EV
3

 VF

 FV

 EE
11

 EE
12

 EE
13

 EE
21

 EE
22

 EE
23

 EE
31

 EE
32

 EE
33

 EF
1

 EF
2

 EF
3

 FE
2

 FE
1

 FE
3 FF

 A

 A

 B

 B

Figure 2.6: Schematic partitioning of a Mass matrix. P = 5. The shaded area represents
the location of a matrix entries that have to be computed for Ψ-type bases.

Part 1 - Vertex-Vertex Block.

This section of the operator has nine terms, but due to the symmetry of the expansion bases

only two of them have to be computed: Mi,j = Mj,i = C1 and Mi,i = C2 for all i, where C1

and C2 are different constants.

Part 2 - Vertex-Edge.

Since triangular element has 3 Edges we consider 3 blocks of the Vertex-Edge section, each

of them corresponds to a different Edge. Each block has 3 rows and (P-1) columns. The

Vertex-Edge product for the first Edge is obtained from

∫
LiL1L2P

α,β
p−1(2L1 − 1)Pα,β

q−1(2L2 − 1)dA, (p + q = P), (2.16)

where index i = 1, 2, 3 denotes the Vertex mode and the row of the Mass Matrix as well.

We recall that index p runs from 1 to P − 1, and q = P − p. It can be easily shown that

V E1 2,j = V E1 1,P−j and V E1 3,j = V E1 3,P−j . Thus we have to compute only half of the

values in this block. It turns out that due to the symmetry of the Edge modes the second

and the third blocks should not be computed at all!, instead we can map the values at

each block using: V E1 1,j = V E2 2,j = V E3 3,j , V E1 2,j = V E2 3,j = V E3 1,j , V E1 3,j =

V E2 1,j = V E3 2,j .

Part 3 - Edge-Edge.

22

This section of the operator has nine (P−1) by (P−1) blocks. First, due to the symmetry of

the operator, we have Mi,j = Mj,i. Second, the diagonal blocks, that represent a product of

Edge i with Edge i are identical for all i. Third, each of these diagonal blocks is symmetric

not only with respect to its main diagonal (A − A) but also with respect to the diagonal

B −B (see Fig. 2.6). Forth, block constructed as a product of the Edges 1 and 2 (EE12) is

also symmetric and a block constructed as a product of the Edges 1 and 3 (EE13) is simply

a transpose of a EE12. Fifth, the Edge-Edge section is symmetric with respect to the B−B

diagonal, thus block EE23 is a mirror of EE12.

Part 4 - Vertex-Interior, Edge - Interior.

The rotational symmetry of the expansion bases can be used to reduce the computational

cost of evaluating this part as well. The recipe of the mapping is similar to the one provided

in the next part.

Part 5 - Edge - Interior.

This part consists of 3 blocks, each has (P − 1) rows and (P − 1)(P − 2)/2 columns. Due

to the rotational symmetry of the expansion function only one of this blocks should be

computed, the other two are mapped from the first one.

To demonstrate the mapping procedure we consider P = 5, then the interior modes, which

are products of the Jacobi polynomials of order p− 1, q− 1 and r− 1 (see section 2.4.2) are

ordered according to the following table:

pqr1 =

index p q r

1 1 1 3

2 1 2 2

3 1 3 1

4 2 1 2

5 2 2 1

6 3 1 1

(2.17)

The index in (2.17) provides the numaration of the interior shape function and points to

the column number in the EF1 block as well. In order to fill the next, EF2 block, the table

23

given by (2.17) should be sorted with respect to the column q and then r to obtain:

pqr2 =

index p q r

6 3 1 1

4 2 1 2

1 1 1 3

5 2 2 1

2 1 2 2

3 1 3 1

(2.18)

Now assume that j is a row number in pqr2, then for each j = 1, 2, ..., (P − 1)(P − 2)/2

we have EF2(i, pqr2(j, 1)) = EF1(i, j), where i is an index of row in the Edge − Interior

blocks and runs from i = 1 to i = (P − 1). For example the column 1 in the EF2 block is

identical to the column 6 of the EF1 block and the column 2 in the EF2 block is identical

to the column 4 of the EF1 block.

To fill the third block, EF3, we sort (2.17) first by the column r and then by the column p

to obtain

pqr3 =

index p q r

3 1 3 1

5 2 2 1

6 3 1 1

2 1 2 2

4 2 1 2

1 1 1 3

(2.19)

and, using the same notation for i and j as before, fill the third block according to

EF3(i, pqr3(j, 1)) = EF1(i, j).

As an example, lets consider M, corresponding to P = 5. The block EF1 is

[-1/11880, -19/13860, -7/3960, 1/3780, -1/1540, 1/4620]

[-1/6930, -59/23100, -1/420, -61/69300, -199/69300, -1/2310]

[-1/6930, -61/69300, -1/2310, -59/23100, -199/69300, -1/420]

24

[-1/11880, 1/3780, 1/4620, -19/13860, -1/1540, -7/3960],

and the block EF2 is

[-7/3960, -1/1540, 1/4620, -19/13860, 1/3780, -1/11880]

[-1/420, -199/69300, -1/2310, -59/23100, -61/69300, -1/6930]

[-1/2310, -199/69300, -1/420, -61/69300, -59/23100, -1/6930]

[1/4620, -1/1540, -7/3960, 1/3780, -19/13860, -1/11880].

Now consider that index j = 1, then the column 6 (pqr2(1, 1) = 6) of EF2 is identical to

the column 1 of EF1; similarly column 4 of EF2 (pqr2(j = 2, 1) = 4) is the same as the

column 2 of EF1.

Part 6 - Interior-Interior.

Here the symmetry of the operator with respect to the AA diagonal can be employed to

reduce the computational cost.

The evaluation of local operator in each elements can be substituted by a simple pro-

cedure. First, standard Mass matrix for an element with a unit area is computed. Then

the standard operator is scaled by the area of each particular element. For Ψ-type bases,

swapping of columns and rows corresponding to the edges that have to be reversed to com-

plete the task. For Φ-type bases the procedure is completed by negating the columns and

rows corresponding to the odd modes of the reversed edges. According to suggested pro-

cedure, for a time depended problems, where the computational mesh may deform, local

Mass matrix is never recomputed, but it’s scaled by the new versus old area ratio.

2.5.2 Construction of a Laplacian operator

The construction of Laplacian operator Le for different expansion bases (Λi) requires evalua-

tion of the inner product of the derivatives of modes in the expansion basis with themselves,

i.e.,

Le
i,j =

(
∂λi

∂x
,
∂λj

∂x

)
+

(
∂λi

∂y
,
∂λj

∂y

)
.

Construction of a local to each element Laplacian matrix Le is more complicated than

construction of a Mass matrix, since it involves derivatives of the mapping functions (2.4,

2.3). The last are varying from element to element, what suggests that Le should be com-

puted in each element. For the straight sided linear triangular elements the transformation

25

from xy coordinates into ξ1ξ2 (or L1, L2, L3) is linear, thus the derivatives of the mapping

functions are constants. In the following we overview a computationally efficient routine

to compute Le. The idea is to compute only three standard matrices (defined in a local

to element coordinate system) and use the linear combination of them in order to obtain

Le matrix for an arbitrary triangular element. The coefficients of the linear combinations

are the derivatives of the elemental mapping functions scaled by the area of an element.

To guarantee the global C0 connectivity, the appropriate modes of the Edge functions are

negated - in a case of Φ-type bases or swapped in a case of Ψ-type bases. Suggested

methodology reduces the computational effort in computing the Le for each element, par-

ticularly for a time-dependent problems where the computational mesh is deformed or a

new computational mesh should be generated.

To clarify the suggested procedure we provide the following example. The Li,j compo-

nent of the Laplacian matrix, based on the Ψ-type bases is computed from

Le
i,j = Lxe

i,j + Lye
i,j =

∫
∂Ψi

∂x

∂Ψj

∂x
dxdy +

∫
∂Ψi

∂y

∂Ψj

∂x
dxdy. (2.20)

Lxe
i,j =

(
∂L2

∂x

)2

2A′LS1i,j +

(
∂L3

∂x

)2

2A′LS2i,j +
∂L2

∂x

∂L3

∂x
2A′LS3i,j (2.21)

Lye
i,j =

(
∂L2

∂y

)2

2A′LS1i,j +

(
∂L3

∂y

)2

2A′LS2i,j +
∂L2

∂y

∂L3

∂y
2A′LS3i,j , (2.22)

where A′ is an area of the element, and

LS1i,j =

∫ (
∂Ψi

∂L2

∂Ψj

∂L2

)
dL1dL2

LS2i,j =

∫ (
∂Ψi

∂L3

∂Ψj

∂L3

)
dL1dL2

LS3i,j =

∫ (
∂Ψi

∂L2

∂Ψj

∂L3
+

∂Ψi

∂ L3

∂Ψj

∂ L2

)
dL1dL2;

or, alternatively:

LS1i,j =

∫ (
1 − η1

4

∂Ψi

∂η1
+

1 + η2

4

∂Ψi

∂η2

)(
1 − η1

4

∂Ψj

∂η1
+

1 + η2

4

∂Ψj

∂η2

)
1

J
dη1dη2

LS2i,j =

∫
1

4

∂Ψi

∂η2

∂Ψj

∂η2

1

J
dη1dη2

LS3i,j =

∫ [
1 − η1

8

(
∂Ψi

∂η1

∂Ψj

∂η2
+

∂Ψj

∂η1

∂Ψi

∂η2

)
1 + η2

4

(
∂Ψi

∂η2

∂Ψj

∂η2

)]
1

J
dη1dη2

26

Thus, LS1, LS2 and LS3 are the three standard matrices that must be computed. Then,

all local Laplacian operators of straight sided elements are constructed from these matrices.

We recall that additional work can be required in order to complete the construction of

the local operator, namely: negating the odd modes of reversed Edges for the cartesian

tensorial bases or swapping the columns and rows corresponding to the reversed Edges for

barycentric tensorial bases.

2.5.3 Construction of Advection operator

In construction of Advection operator De we can use the same concept as in construction of

the Laplacian matrix. But this time we need only two standard matrices in order to obtain

an elemental Advection Matrix. To illustrate this approach we formulate the procedure to

compute De
i,j = UDxe

i,j + V Dye
i,j in the following way:

UDxe
i,j + V Dye

i,j = U

(
λi,

∂λj

∂x

)
+ V

(
λi,

∂λj

∂y

)
. (2.23)

Using transformation of coordinate system from xy to L1, L2, L3 (or η1η2) we obtain Dxe
i,j

and Dye
i,j from

Dxe
i,j =

∂L2

∂x
2A′S1i,j +

∂L3

∂x
2A′S2i,j (2.24)

Dye
i,j =

∂L2

∂y
2A′S1i,j +

∂L3

∂y
2A′S2i,j , (2.25)

where

S1i,j =

∫
Ψi

∂Ψj

∂L2
dL1dL2

S2i,j =

∫
Ψi

∂Ψj

∂L3
dL1dL2;

or, equivalently:

S1i,j =

∫
Ψi

[
1 − η1

4

∂Ψj

∂η1
+

1 + η2

4

∂Ψj

∂η2

]
1

J
dη1dη2

S2i,j =

∫
Ψi

1

2

∂Ψj

∂η2

1

J
dη1dη2.

27

Thus the Advection operator for each element is constructed as a linear combination of the

standard matrices S1 and S2 multiplied by the gradients of the mapping functions and an

area of the element.

2.5.4 Construction of global operator

In the previous section construction of a local (elemental) operator was presented. The

global operator A is assembled as a linear combination of local operators Ae by a technique

known as static condensation:

A =
Nel∑

e=1

Pe(Ae),

here Pe is a projection operator [79], which maps the local degrees of freedom to the global.

The operator Ae can be any of the three operators discusses in the previous section or a

linear combination of those. We therefore assume that we have a system of the form

Aû = f̂ ,

where û is a vector of unknowns and f̂ =
∑Nel

e=1 Pe(fe) is a forcing term. We can further

distinguish between the boundary and interior degrees of freedom and split the operator A

into

 Abb Abi

AT
bi Aii

 ûb

ûi

 =

 f̂b

f̂i

 . (2.26)

The block Abb represents the boundary-boundary coupling, Abi represents the boundary-

interior coupling, and Aii represents the interior-interior coupling. Since the interior modes

have zero support on the boundaries of each element, the Aii consist of smaller interior-

interior non-overlapping matrices Ae
ii. To solve system (2.26) we multiply it (from left) by

the matrix

 I −AbiA
−1
ii

0 I

 , (2.27)

to arrive at

 Abb − AbiA
−1
ii AT

bi 0

AT
bi Aii

 ûb

ûi

 =

 f̂b − AbiA
−1
ii f̂i

f̂i

 . (2.28)

28

Solution of system (2.28) can be performed in two steps. At the first step, the equation for

boundary modes is solved

Ascûb =
[
Abb − AbiA

−1
ii AT

bi

]
ûb = f̂b − AbiA

−1
ii f̂i. (2.29)

At the second step a series of small problems

ûi = A−1
ii (f̂i − AT

biûb)

is solved. A system (2.29) can be solved directly or iteratively. The operator Asc (called

the Shur complement) is usually very large and sparse, what makes the iterative solution

to become a method of choice.

29

2.6 Numerical properties of linear operators: Computational

efficiency

In this section numerical aspects such as sparsity and eigenproperties of the linear operators

constructed from the cartesian and barycentric bases are studied. First, the accuracy in

solution of a projection and diffusion problems is verified. Second, the sparsity of the

Projection and Laplacian operators are compared. Third, the eigenspectra and efficiency

of iterative preconditioned conjugate solver in conjunction with different discretization is

examined.

2.6.1 Accuracy verification

In order to verify accuracy of numerical solvers, based on both types of the expansion bases,

the Projection and Diffusion problems defined in a compact form as Mû = f̂1 and Lû = f̂2,

have been solved; here u are unknown coefficients of a spectral expansion, while f1 and f2

are suitable forcing terms. The numerical solution was evaluated at quadrature points, and

compared to an exact one. As an exact solution we used v(x, y) = sin(πx) sin(πy), 0 ≤
x, y ≤ 2. The numerical error was estimated using the following norms:

L2 =

√∫

Ω
(u(x, y) − v(x, y))2dA

L∞ = MAXΩ|u(x, y) − v(x, y)|

The computational domain Ω = {x, y|0 ≤ x, y ≤ 2} has been subdivided to 4, 8 and 16

triangular elements as presented in figure 2.7. The L2 and L∞ errors of a numerical solution,

of a projection and diffusion problems, are presented in figures 2.8, 2.9. As expected the

numerical error does not depend on a choice of an expansion bases, and spectral convergence

is obtained in all cases.

30

Figure 2.7: Triangulation of a computational domain Ω. Left top: four element mesh (mesh
A). Right top: eight element mesh (mesh B). Left bottom: 16 element mesh (mesh C).
Right bottom: 16 element mesh (mesh D).

31

0 5 10 15
−12

−10

−8

−6

−4

−2

0

LO
G

10
[L

2(u
−

v)
]

P
0 5 10 15

−12

−10

−8

−6

−4

−2

0

LO
G

10
[L

∞
(u

−
v)

]

P

Figure 2.8: The L2 and L∞ errors in a solution of projection problem. Solid line - Mesh A,
dash line - Mesh B, dash-dot line Mesh C. Lines correspond to Φ-type bases, markers to
Ψ-type bases.

32

0 5 10 15
−12

−10

−8

−6

−4

−2

0

P

LO
G

10
(L

2(u
−

v)
)

0 5 10 15
−12

−10

−8

−6

−4

−2

0

P

LO
G

10
(L

∞
(u

−
v)

)

Figure 2.9: The L2 and L∞ errors in a solution of Diffusion problem. Solid line - Mesh A,
dash line - Mesh B, dash-dot line Mesh C. Lines correspond to Φ-type bases, markers to
Ψ-type bases.

33

2.6.2 Sparsity of linear operators

In figures 2.10 the sparsity of components of global Mass and Laplacian operators cor-

responding to Cartesian and Barycentric bases is compared; the data corresponds to 24

elements mesh. The cartesian bases posses better sparsity patterns than the barycentric

bases, particularly for higher-order polynomial expansion. Sparser operator requires less

floating point operations potentially leading to computational savings.

5 10
0.12

0.13

0.14

0.15

0.16

0.17

M
sc

P

N
N

Z
/T

O
T

A
L

5 10
0

0.02

0.04

0.06

0.08

0.1

M
bi

P

5 10
0.082

0.084

0.086

0.088

0.09

0.092

0.094

0.096

M
bi

M
ii
−1

P

Φ
Ψ

5 10
0

0.02

0.04

0.06

0.08

0.1

L
sc

P

N
N

Z
/T

O
T

A
L

5 10
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

L
bi

P

5 10
0.084

0.086

0.088

0.09

0.092

0.094

L
bi

L
ii
−1

P

Φ
Ψ

Figure 2.10: Components of Mass (top) and Laplacian (bottom) matrix: sparsity.
NNZ/TOTAL - ratio of non-zero to total number of matrix entries.

34

2.6.3 Eigenproperties of linear operators

Mass Matrix

We start from presenting the maximal and minimal eigenvalues, λ, and the condition num-

ber, κ, of the unpreconditioned and preconditioned statically condensed Mass matrix for

both types of bases. In figures 2.11 and 2.12 we compare the properties of the condensed

3 5 7 9 11
10

0

10
2

10
4

10
6

κ

3 5 7 9 11
10

−2

10
−1

10
0

m
ax

(λ
)

3 5 7 9 11
10

−6

10
−4

10
−2

m
in

(λ
)

P+1

3 5 7 9 11
10

0

10
2

10
4

10
6

3 5 7 9 11

10
0.3

10
0.5

3 5 7 9 11
10

−4

10
−2

10
0

P+1

Figure 2.11: Spectral analysis of Schur complement of condensed Mass matrix. Φ- bases.
Unpreconditioned (left) and Diagonally preconditioned (right) condensed Mass matrix. Re-
sults for meshes A,B and C are marked by • , + and o correspondingly.

Mass matrix based on different spectral bases. We observe the superiority of the Φ-type

bases over Ψ-type bases in a conditioning and in a response to the diagonal preconditioning.

We recall that the condensed Mass matrix based on the Φ-type bases is very sparse and

most of its “mass” is concentrated on the diagonal, whereas the Mass matrix based on the

Ψ-type bases is a full matrix. Thus the diagonal preconditioner of the M(Ψ) matrix is not

as spectrally close as in a case of M(Φ). As a result one of mentioned above requirements

for the preconditioner is not held. The practical meaning of high condition number is a

larger number of iterations needed in order to converge to an exact (or reasonable) solution.

Next we consider the Incomplete Cholesky Preconditioner (ICP). In order to evaluate the

effectiveness of ICP, in conjunctions with the two bases, the projection problem defined

35

3 5 7 9 1113
10

0

10
2

10
4

10
6

κ

3 5 7 9 1113
10

−2

10
−1

10
0

m
ax

(λ
)

3 5 7 9 1113
10

−8

10
−6

10
−4

10
−2

10
0

m
in

(λ
)

3 5 7 9 1113
10

0

10
2

10
4

10
6

3 5 7 9 1113
10

0

10
1

3 5 7 9 1113
10

−4

10
−2

10
0

Figure 2.12: Spectral analysis of Schur complement of condensed Mass matrix. Ψ- bases.
Unpreconditioned (left) and Diagonally preconditioned (right) condensed Mass matrix. Re-
sults for meshes A,B and C are marked by • , + and o correspondingly.

on a domain Ω discretized into 16 uniform elements (figure 2.7(right bottom)) was solved.

The size of the domain in y− direction was repeatedly changed to reveal the influence of

distortion of elements on the computational cost. We define a distortion parameter R as a

ratio of the length of catheti of a triangular elements.

The effectiveness of ICP in terms of reduction in iteration count is presented in figures

2.13. We observe considerable reduction in number of iterations required, particularely in

the case of Ψ bases. Specifically, we observe:

• The number of iterations and hence (the eigenspectrum of the condensed Schur com-

plement of Mass matrix) is unaffected by distortion. This result is expected since all

elements in the mesh have the same area, that is the same Jacobian, which scales

both minimum and maximum eigenvalues so their ratio remains unchanged.

• The DP is more effective when applied on Msc(Φ).

• The ICP is more efficient than DP in both bases. Similar or slightly better efficiency

can be obtained by applying ICP on a linear system based on the barycentric bases

than on the cartesian bases.

36

4 6 8 10
0

50

100

150
R = 1:0.25

ite

ra
tio

ns

Ψ: DP
Φ: DP
Ψ: ICH
Φ: ICH

4 6 8 10
0

50

100

150
R = 1:0.0625

4 6 8 10
0

50

100

150
R = 1:0.01

ite

ra
tio

ns

P+1
4 6 8 10

0

50

100

150
R = 1:0.001

P+1

Figure 2.13: Solution of projection problem: Effectiveness of the Incomplete Cholesky
Preconditioner (ICP) and Diagonal Preconditioner (DP). Solid line - DP, dash line - ICP.
Circles mark data for the Ψ- type bases.

Laplacian operator

The eigenproperties of the statically condensed Laplacian operator (L) are presented in

figure 2.14; the condition number, maximal and minimal eigenvalues of the unpreconditioned

and preconditioned statically condensed matrix for both types of bases are compared. We

observe that the condition number of L(Ψ) is considerably higher than of L(Φ). Moreover

the diagonal preconditioner is noticeably more effective for the operator based on Φ- type

bases.

Next, we a apply the Incomplete Cholesky Prerconditioner for iterative solution of dif-

fusion problem. We monitor the number of iteration required by the PCGM which in part

reflects the effectiveness of the preconditioning. We are also interested in the influence of

the mesh deformation on the eigenproperties of the operators. The domain discretization

is shown in figure 2.7(bottom right). As in a previous study the domain was repeatedly

37

3 5 7 9 1113

10
1

10
2

10
3

κ

3 5 7 9 1113
10

0

10
1

m
ax

(λ
)

3 5 7 9 1113
10

−4

10
−2

10
0

m
in

(λ
)

P+1

3 5 7 9 1113

10
1

10
2

10
3

3 5 7 9 1113
10

0

10
1

3 5 7 9 1113
10

−2

10
−1

10
0

P+1

Figure 2.14: Spectral analysis of the unpreconditioned (left) and Diagonally preconditioned
(right) condensed Schur complement of Laplacian matrix. Φ-type bases. Results for meshes
A,B and C are marked by • , + and o correspondingly.

reduced in size in y- direction. Results are summarized in figure 2.16. Again, as in a case of

the Mass matrix, we observe the benefits of using the ICP. In contrast to the Mass matrix,

the Laplacian operator shows high sensitivity to the mesh distortion, since it incorporates

the values of the derivatives of mapping functions. In the view of results presented in 2.16

we may conclude that the use of symmetric expansion bases can be advantageous, particu-

larly for a very distorted mesh. However, we should not ignore the high computational cost

in simulations with ICP and Ψ bases due to different sparsity patterns. It was observed

that approximately same CPU-time is required for solution of diffusion problem defined on

domain consisting from elements with large aspect ratio when the diagonal preconditioner

is employed for L(Φ) and ICP for L(Ψ).

38

3 5 7 9 1113

10
1

10
3

10
5

κ

3 5 7 9 1113
10

0

10
1

10
2

m
ax

(λ
)

3 5 7 9 1113
10

−4

10
−2

10
0

m
in

(λ
)

P+1

3 5 7 9 1113

10
1

10
3

10
5

3 5 7 9 1113
10

0

10
1

10
2

3 5 7 9 1113
10

−4

10
−2

10
0

P+1

Figure 2.15: Spectral analysis of the unpreconditioned (left) and Diagonally preconditioned
(right) condensed Schur complement of Laplacian matrix. Ψ-type bases. Results for meshes
A,B and C are marked by • , + and o correspondingly.

39

4 6 8 10
0

100

200

300
R = 1:0.25

ite

ra
tio

ns

Ψ: DP
Φ: DP
Ψ: ICH
Φ: ICH

4 6 8 10
0

100

200

300

400
R = 1:0.0625

4 6 8 10
0

200

400

600

R = 1:0.01

ite

ra
tio

ns

P+1
4 6 8 10

0

200

400

600

800
R = 1:0.001

P+1

Figure 2.16: Solution of diffusion problem: Effectiveness of the Incomplete Cholesky Precon-
ditioner (ICP) and Diagonal Preconditioner (DP). Solid line - DP, dash line - ICP. Circles
mark data for the Ψ- type bases.

40

Advection operator

In this section we solve the linear advection problem

∂u

∂t
= U

∂u

∂x
+ V

∂u

∂y
+ f (2.30)

which, in a compact form, reads

∂

∂t
û = M−1(UDx + V Dy)û + M−1

∫

Ω
Λf(t, x, y)dxdy, (2.31)

where û are the amplitudes of the expansion bases Λ. We are interested in comparing

spectral properties of the operator M−1D ≡ M−1(UDx + V Dy) with respect to different

expansion bases. The spectral analysis of M−1D helps in selecting the appropriate time

stepping scheme.

As an exact solution for the linear advection equation with periodic boundary condition

we use

u = sin(πx + c1t)sin(πy + c2t), (2.32)

where c1 and c2 are computed from the requirement
√

U2 + V 2 = 1

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

θ

v

Figure 2.17: Two element domain for linear advection problem. Vector v shows the direction
of the wave. The angle θ is computed from tan−1(V/U). The circles correspond to the Φ
bases, while the dots to the Ψ bases.

We start from a two element domain, as shown in figure 2.17. In figure 2.18 we present

the maximal absolute value of the eigenvalues of M−1D for different combination of U and

V (see Eq. 2.31) and P = 7, 11. It is clearly seen that the maximum value of |λ(M−1D)|
depends on a weights of its components, Dx and Dy or, in other worlds, on the wave course

41

 10

 20

 30

 40

30

210

60

240

90

270

120

300

150

330

180 0

 P = 11

 P = 7

Figure 2.18: The maximal value of |λ(M−1D)|, θ = tan−1(V/U).

with respect to the elements orientation. It is also noticeable that, considering the eigen-

properties of the advection operator, there is no practical difference between implementing

Φ- or Ψ-type bases.

Next we investigate the influence of a distortion of elements composing the same domain Ω

on the eigenproperties of the M−1D operator.

Consider a domain Ω with different discretization as shown in figure 2.19. The maximum

eigenvalues of the operator M−1D for different values of θ are presented in figure 2.20.

We observe that for both types of expansion bases we have practically the same maximum

eigenvalues, thus we may conclude that the choice of the expansion bases does not affect

the stability criteria for the linear advection operator. The numerical solution of (2.31) at

t = 1 was compared to an exact one at arbitrary points xi, yj ∈ Ω which location was not

affected by a domain discretization, the angle θ or the choice of an expansion bases. The

L2 − error of the numerical solution is presented in figure 2.21. As we could expect the

accuracy of the solution does not depend on the choice of the bases, since they span the

same polynomial space.

42

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

Mesh A’ Mesh B’

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

−0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

2.5

Mesh C’ Mesh D’

Figure 2.19: Discretization of computational domain Ω into eight triangular elements.

43

 20

 40

 60

 80

30

210

60

240

90

270

120

300

150

330

180 0
 P = 11 P = 7

 20

 40

 60

 80

30

210

60

240

90

270

120

300

150

330

180 0
 P = 11 P = 7

Mesh A’ Mesh B’

 20

 40

 60

 80

 100

30

210

60

240

90

270

120

300

150

330

180 0
 P = 11 P = 7

 50

 100

 150

30

210

60

240

90

270

120

300

150

330

180 0
 P = 11 P = 7

Mesh C’ Mesh D’

Figure 2.20: Maximum of |λ(M−1D)|. Data is presented in polar coordinate system, where
the angle coordinate corresponds to wave direction θ. Data for Φ bases is marked by circles
and triangles, for Ψ bases by crosses and dots.

44

 0.0005

 0.001

 0.0015

 0.002

30

210

60

240

90

270

120

300

150

330

180 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

30

210

60

240

90

270

120

300

150

330

180 0

Mesh A’ Mesh B’

 0.001

 0.002

 0.003

 0.004

 0.005

30

210

60

240

90

270

120

300

150

330

180 0

 0.002

 0.004

 0.006

 0.008

30

210

60

240

90

270

120

300

150

330

180 0

Mesh C’ Mesh D’

Figure 2.21: L2-error of a numerical solution of (2.31). Data is presented in polar coordinate
system, where the angle coordinate corresponds to wave direction θ. Data for Φ bases is
marked by circles and triangles, for Ψ bases by crosses and dots.

45

2.7 Solution of 2D Navier-Stokes problems with P/P − k ap-

proach

Let us consider an incompressible flow, for which the governing equations are given by

∂u

∂t
+ u · ∇u = −∇p + ν∇2u, (2.33a)

∇ · u = 0, (2.33b)

where p(t,x) is the pressure, u(t,x) is the velocity field, ν is the kinematic viscosity, and it

is assumed that the density is ρ = 1. The equations (2.33a,2.33b) are supplemented with

appropriate boundary conditions. Here we consider u = 0 on ∂Ω, where ∂Ω defines the

boundary of the domain. In a case of non-zero Dirichlet boundary condition we may “lift”

the solution u by subtracting the know values for u at the boundaries to arrive to zero

Dirichlet boundary conditions.

For solution of the Navier-Stokes (NS) equation we implement a) implicit-explicit

scheme, and b) fully implicit scheme.

Implicit-explicit scheme: solution of the NS equations is performed with high-order time

splitting scheme [48], that decouples the velocity and pressure fields. The non-linear term is

integrated using high-order Adams-Bashforth integrator, while the viscous term is treated

implicitly. The numerical scheme is based on the following discretization:

γ0u
n+1 −∑Je−1

k=0 αku
n−k

∆t
= −

Je−1∑

k=0

βk(un−k · ∇)un−k −∇p + ν∇2un+1. (2.34a)

and the solution is performed in three stages:

Stage 1: auxiliary field u∗ is computed explicitly using Adams-Bashforth integrator

u∗ =
Je−1∑

k=0

αku
n−k + ∆t

(
Je−1∑

k=0

βk(NL)n−k

)
, (2.34b)

where NL = (u · ∇)u is the non-linear term, γ0 and αk are coefficients of backward differ-

entiation, βk - coefficients of Adams-Bashforth integration schemes, Je is the integration

(differentiation) order.

46

Stage 2: solution of Poisson equation for pressure

∇2p = (∆t)−1∇ · u∗ (2.34c)

supplemented with Dirichlet or Neumann boundary conditions. The Neumann boundary

conditions are computed explicitly:

∂p

∂n
=

[
−γ0u

n+1 −∑Je−1
k=0 αku

n−k

∆t
−

Je−1∑

k=0

(
βk[(u · ∇)u + ν∇×∇× u]n−k

)]
· n̂. (2.34d)

Stage 3: implicit solution of the Helmholtz problem

γ0u
n+1 − u∗

∆t
= −∇p + ν∇2un+1. (2.34e)

Note, that O(ν(∆t)Je) error is introduced in the Neumann pressure boundary conditions,

the error appears due to explicit treatment of the viscous term.

Fully implicit scheme employs high-order backward differentiation for the time deriva-

tives and has no splitting errors. However, it requires that the NS equations are solved

repeatedly until convergence in numerical solution is obtained at each time step. Here

we require convergence in the velocity field only. The numerical scheme is based on the

following discretization:

γ0u
n+1 −

∑Je−1
k=0 αku

n−k

∆t
= −(un+1 · ∇)un+1 −∇p + ν∇2un+1. (2.35a)

The main difficulty in implicit solution is the treatment of non-linear term, to this end the

following numerical scheme is implemented.

Stage 1:

un+1 ≈ ũm=0 = ŭm=0 = un, (2.35b)

here index m denotes the m − th subiteration.

Stage 2:

u∗ =

Je−1∑

k=0

αku
n−k − ∆t(ũm · ∇)ũm. (2.35c)

Stage 3:

∇2p = (∆t)−1∇ · u∗ (2.35d)

47

supplemented with Dirichlet or Neumann boundary conditions, The Neumann boundary

conditions are computed from

∂p

∂n
= −

(
γ0u

n+1 −∑Je−1
k=0 βku

n−k

∆t
+ [(ũ · ∇)ũ]m + ν∇×∇× ũm

)
· n̂. (2.35e)

The ∂p
∂n is computed on Ωδ, where the exact value of un+1 term is given.

Stage 4: implicit solution of the Helmholtz problem

γ0ŭ
m+1 − u∗

∆t
= −∇p + ν∇2ŭm+1. (2.35f)

Stage 5:

ũm+1 = ωŭm+1 + (1 − ω)ŭm, (2.35g)

where 0 < ω < 1 is a relaxation parameter. For ω = 0 the semi-explicit first order scheme

is obtained. An alternative formulation to (2.35g) is

ũm+1 = ωŭm+1 + (1 − ω)ũm. (2.35h)

It was observed that (2.35h) leads to convergence rate two to three times slower than (2.35g).

At the first subiteration the two formulations are equivalent. According to formula (2.35g),

for m > 1 the value of ũm+1 is calculated from the two successive solutions of (2.35f).

However, using (2.35h) the value of ũm+1 includes the solution un premultiplied by weight

(1 − ω)m, which slows the convergence.

The Stages 2 to 5 are repeated till convergence in the field ŭm is achieved. To terminate the

subiterations we employed the following stopping criteria |ŭm+1 − ŭm|L∞
< TOL, where

the values of modal coefficients (2.7) of ũm are compared. Upon convergence the solution at

tn+1 is un+1 ≡ ũm+1. Several strategies has been suggested to accelerate the convergence

of iterative solution. For example, Aitkens acceleration technique with adaptive relaxation

parameter was used in [25]. For relatively simple flows such as laminar flow around backward

facing step, as considered in this study, the convergence is typically obtained in 2-4 sub-

iterations when formula 2.35g is employed with relaxation parameter ω = 0.5 and TOL =

1E − 7.

To write (2.33a,2.33b) in the variational formulation, the appropriate spaces for the

48

velocity and pressure must be defined. The appropriate functional spaces are defined by

the highest (spatial) derivatives of u and p :

U ≡ H1(Ω)d, M ≡ L2(Ω)

where U is the appropriate space for the velocity and M for the pressure, d is the spatial

dimension.

The discrete spaces for velocity and pressure (Uδ, Mδ) are formed as a sub-spaces of

(U , M) using polynomial bases functions. The velocity and pressure terms are coupled

and hence can not be approximated independently. To satisfy a compatibility conditions

also known as inf-sup conditions the pressure space has to be restricted to exclude spurious

modes p∗, defined by (w,∇p∗) = 0, where w ∈ U . Bernardi&Maday [20] suggested the so

called P/P − 2 approach where the velocity field is approximated by polynomial functions

of degree ≤ P , while the pressure term is approximated with polynomial functions of degree

≤ P−2. The filtering of the spurious pressure modes using the P/P−2 approach is required

in solution of coupled Stockes system. An alternative avenue to solve the Navier-Stokes

equations (2.33a,2.33b) is to decouple the pressure and the velocity fields. The decoupling

(splitting) leads to solution of the Poisson equation for the pressure, which along with the

correct pressure boundary conditions leads to unique solution, that is solution without the

spurious modes.

The objective here is to apply the P/P − k, k = 0, 1, 2 approach for solution of NS

equations with time-splitting scheme in order to evaluate numerically the robustness of the

method. The following simulations have been performed. First, we apply the P/P −k, k =

0, 1, 2 approach for solution of Navier-Stokes equations with semi-implicit time-splitting

scheme. The test problem we solve numerically is the Kovaszany flow, for which analytical

solution is known. The goal here is to compare the accuracy of the solutions obtained with

k = 0, 1, 2. Second, we consider the so called “step flow” problem, where discontinuity in

the gradients of the velocity and pressure field appears. The semi-implicit scheme with the

P/P − k, k = 0, 1, 2 approach and the fully-implicit scheme with the P/P approach are

applied.

49

P/P − k approach for solution of 2D Navier-Stokes problem with operator

splitting scheme: resolution study

To evaluate the accuracy of numerical solution obtained with the reduced space discretiza-

tion for the pressure, we solve the Kovasznay flow problem. The problem is defined on a

rectangular domain Ω = [−0.5 3] × [−0.5 1.5] which is subdivided into Nel = 24 triangular

elements. The computational domain is presented in figure 2.22. On each element solu-

Figure 2.22: (in color) Kovasznay problem: computational domain and solution. Colors
represent the vorticity, arrows represent the flow direction. Wide white lines depict the
edges of spectral elements. Computational domain Ω = [−0.5 3] × [−0.5 1.5], Nel = 24;
Re = 40.

tion is approximated using Cartesian tensor product bases. At the domain boundaries Ωδ

Dirichlet boundary condition is applied for the velocity variables. For the pressure, Dirichlet

boundary condition is applied at the boundary x = 3, and Neumann boundary conditions

are set at other boundaries. The numerical solution is compared to the analytical one, given

by

u = 1 − eµx cos(2πy), v =
µ

2π
sin(2πy), p = p0 −

1

2
e2µx, (2.36)

where µ = Re
2 −

√
Re2

4 + 4π2, and Re = 1/ν. Note that µ < 0, and for lower Re numbers

the gradient ∂u/∂x is increasing in its magnitude. In figure 2.23 we compare the accuracy

of numerical solution obtained with P = 5, 7, 9, 11 and Re = 40. It is noticeable that the

accuracy of solutions obtained with the P/P and P/P − 1 approaches is almost the same,

while about an order of accuracy is lost when P/P − 2 approach is implemented. In figure

2.24 we plot the convergence of numerical solution corresponding to Re = 10. Note that

50

5 10
10

−10

10
−8

10
−6

10
−4

10
−2

L ∞
(u

)

P

P/P
P/P−1
P/P−2

5 10
10

−10

10
−8

10
−6

10
−4

10
−2

L 2(u
)

P

5 10
10

−10

10
−8

10
−6

10
−4

10
−2

H
1(u

)

P

5 10
10

−10

10
−8

10
−6

10
−4

10
−2

L ∞
(v

)

P

P/P
P/P−1
P/P−2

5 10
10

−10

10
−8

10
−6

10
−4

10
−2

L 2(v
)

P

5 10
10

−10

10
−8

10
−6

10
−4

10
−2

H
1(v

)

P

Figure 2.23: Solution of Kovasznay problem: convergence of velocity. Computational do-
main Ω = [−0.5 3] × [−0.5 1.5], Nel = 24; Re = 40.

the Kovasznay problem with lower Re number requires higher spatial resolution than for

high Re. In figure 2.25 the convergence of the pressure is plotted. Spectral convergence is

observed for the three choices P/P, P/P − 1 and P/P − 2, however, superior convergence

is obtained for the P/P discretization.

51

5 10

10
−8

10
−6

10
−4

10
−2

10
0

L ∞
(u

)

P

P/P
P/P−1
P/P−2

5 10

10
−8

10
−6

10
−4

10
−2

10
0

L 2(u
)

P
5 10

10
−8

10
−6

10
−4

10
−2

10
0

H
1(u

)
P

5 10

10
−8

10
−6

10
−4

10
−2

10
0

L ∞
(v

)

P

P/P
P/P−1
P/P−2

5 10

10
−8

10
−6

10
−4

10
−2

10
0

L 2(v
)

P
5 10

10
−8

10
−6

10
−4

10
−2

10
0

H
1(v

)

P

Figure 2.24: Solution of Kovasznay problem: convergence of velocity. Computational do-
main Ω = [−0.5 3] × [−0.5 1.5], Nel = 24; Re = 10.

52

4 6 8 10 12
10

−8

10
−6

10
−4

10
−2

10
0

L ∞
(p

)

P

P/P
P/P−1
P/P−2

4 6 8 10 12
10

−8

10
−6

10
−4

10
−2

10
0

L 2(p
)

P

Figure 2.25: Solution of Kovasznay problem: convergence of pressure. Computational
domain Ω = [−0.5 3] × [−0.5 1.5], Nel = 24; Re = 10.

53

Next, we focus on solution of “step-flow” problem, the computational domain and finite

element discretization are illustrated in figure 2.26. The following boundary conditions for

Figure 2.26: (in color) Step flow problem: computational domain and solution. Colors
represent the vorticity, arrows represent the flow direction. Wide white lines depict the
edges of spectral elements. Computational domain Ω = [0 13]× [−1 1], Nel = 124; Re = 25.

the velocity variables are applied: at the inlet (x = 0) u = y(1 − y), v = 0, at the outlet

(x = 13) fully developed flow is assumed, and at other boundaries u = v = 0. Dirichlet

boundary condition for the pressure (p = 0) is applied at the outlet and Neumann boundary

condition at other boundaries. The simulations have been performed with Re = Hū/µ = 25,

where, H = 1 is the hight of the domain and ū = 1/6 is the mean velocity at the inlet. The

initial solution was obtained from the solution of a Poisson problem for the velocity ∇2u = 0,

supplemented with the exact boundary conditions at all boundaries except x = 13, where

fully developed flow was assumed. The solution was integrated till T = 15. To eliminate

aliasing error the 3/2 (over-integration) rule was applied [51] in evaluation of the non-linear

term.

It is well known that the flow around backward-facing step exhibits a singularity in

the pressure and the velocity derivatives at the step corner, which may trigger erroneous

oscillations. The objective here is to examine numerically the filtering of the high frequency

components in the pressure by applying the P/P , P/P − 1 and P/P − 2 approaches in

conjunction with the semi-implicit solver, and by solving the problem implicitly.

In figures 2.27 and 2.28 we present the pressure field in the vicinity of the step, erroneous

pressure oscillations are observed, particularly in solution with lower-order polynomial ap-

proximation (P = 5) and P/P approach. Note that the oscillations appear not only in the

elements adjacent to the corner but also propagate to the surrounding elements, mostly up-

stream the flow. Although, higher-order spatial resolution helps to suppress the oscillations

(compare results obtained with P = 5 and P = 9) the reduced-space pressure approximation

seems to be more efficient.

54

The simulations of step-flow have been performed with fully implicit scheme (2.35a).

The main difference between the implicit and semi-implicit scheme (beside the superior

stability) is in the solution of Poisson equation for the pressure, specifically, in calculating

the Neumann pressure boundary conditions: the implicit scheme removes the splitting error.

In figure 2.29 we compare the pressure fields computed with semi-implicit and fully implicit

schemes and P/P approach with P = 5, 9. Clearly the implicit formulation is more robust

than the semi-explicit one. The absence of the pressure oscillations in solution obtained with

the implicit solver confirms that the origin of the oscillations is in the time-discretization

(splitting) error, specifically in the explicit treatment of the Neumann pressure boundary

conditions.

The implicit solution of the 2D step-flow problem lead to significant computational

savings. The relaxation parameter implemented in this study was ω = 0.5 and 2-4 sub-

iterations at each time steps were required for solution with P = 5 and 4 − 6 subiterations

with P = 9. The first subiteration typically required about 77 conjugate gradient iterations

for the pressure and about 25 for each velocity component (the diagonal preconditioner was

employed). At the second subiteration 70 (20) conjugate gradient iterations were required

for the pressure (velocity) solves, while, starting from the third subiterations, less than 50 it-

erations were required for the pressure solver and 1 to 8 iterations for the velocity solver. For

the first subiteration the solution from the previous time step was used as initial condition

for the conjugate gradient solvers, and subsequently solution from the previous subitera-

tion was used as an initial condition. The stopping criteria for the conjugate iterations in

solution of linear system Ax = b was r < 1.0e − 12, where r = ||Ax − b|| is the residual. It

is important to note that the overhead in the implicit solution of the NS equation is not

only repeated solution of linear systems, but also calculation of the non-linear term. The

calculation of the non-linear term is performed in physical space, i.e., transformation from

the modal to physical space is necessary; once the non-linear term is computed the inner

product of the non-linear term and the test function has to be taken, which is also relatively

expensive operation. Computation of the Neumann pressure boundary conditions is also

CPU-intensive due to calculation of ∇ × ∇ × u. However, in the framework of parallel

computing the aforementioned operations are embarasingly parallel. In the solution of the

step-flow problem, considered here, the overall performance of the implicit solver was better

than the semi-implicit one, in terms of both - the CPU-time and accuracy.

55

Figure 2.27: (in color) Step flow: Solution computed with different spatial resolutions:
P = 5 and P = 17 (top plot), and different pressure discretization methods: P/P , P/P − 1
and P/P − 2. Top plot . z-axis - pressure (also displayed in color). Red lines depict the
edges of spectral elements.

56

Figure 2.28: (in color) Step flow: Solution computed with different spatial resolutions:
P = 9 and P = 17 (top plot), and different discretization approaches: P/P , P/P − 1 and
P/P − 2. z-axis - pressure (also displayed in color). Red lines depict the edges of spectral
elements. Re = 25, Nel = 124, ∆t = 0.001, Je = 2.

57

Figure 2.29: (in color) Step flow: Solution computed using explicit (2.34a) and fully implicit
scheme (2.35a) with spatial resolutions: P = 5 and P = 9, and P/P approach. z-axis -
pressure (also displayed in color). Re = 25, Nel = 124, ∆t = 0.001, in semi-implicit
formulation and ∆t = 0.01 in implicit, Je = 2.

58

2.8 Hierarchical spectral basis and Galerkin formulation us-

ing barycentric and collapsed Cartesian quadrature grids

in triangular elements

Here we focuses on modal spectral expansions and the Galerkin formulation for the divergence-

free Navier-Stokes equations [78]. The weak formulation of the NS equations suggest that

the solution is obtained in the modal space; however, the most efficient treatment of the

non-linear term is to compute it in the physical space and then take its inner product with

the test functions. Calculations being done in physical space require defining appropriate

quadrature. In the past, the discrete system has been formulated by employing Gauss type

quadratures on a cartesian grid that is mapped to a standard square domain. Here we at-

tempt, to reformulate the discrete system based on barycentric quadrature grids formed by

the nodal sets of points employed in the aforementioned nodal spectral expansions. Thus,

the set of nodes which are used for interpolation for spectral collocation methods in the

triangle will be used here for numerical integration and differentiation. We are particularly

interested in examining the quadrature crimes [88] that may arise due to the nonlinear (ad-

vection) terms in the Navier-Stokes equations. By quadrature crimes we mean violations

associated with quadrature rules for consistent numerical integration and differentiation of

a polynomial function.

In the following, we first define the various quadrature grids and subsequently we analyze

the three basic operations, namely integration, differentiation and projection. We then

perform a comparison of accuracy and efficiency for the three different approaches for the

Kovasznay flow and analyze the numerical stability of the corresponding discrete system.

2.8.1 Barycentric grids on triangle

We have introduced the cartesian and barycentric grids in section 2.3, and in this section

we extend the discussion on the barycentric grid. Here we denote the collapsed-cartesian

grid introduced in section 2.3 by CCG. In the present study we consider two types of

barycentric grids. The first was developed by Blyth & Pozrikidis [23], and we will refer

to this grid as a barycentric grid of a type A (BGA); a two-dimensional grid is generated

from a one-dimensional master grid. Here we employ the Gauss grid in a non-tensorial

coordinate system, whereas in [23] the gauss-Lobatto grid was used. The total number

59

of nodal points over a triangular element is N = m(m + 1)/2, where m is the number of

grid points in one dimension. The highest order of polynomials, P , that can be exactly

integrated and differentiated is limited by P = m − 1. The main advantage of the BGA is

that we obtain a symmetric distribution of quadrature points with respect to the vertices

of a triangular element, also it is easy to compute the coordinates of the quadrature points

and the associated weights for numerical integration.

The second type of barycentric grid was developed by Taylor et al [91] and we will refer

to this grid as a barycentric grid of a type B (BGB). The number of quadrature points, N , is

defined by the order of cardinal functions - polynomials of order P - as N = (P +1)(P +2)/2.

The distribution of quadrature points over a triangular elements and their associated weights

are optimized in order to obtain exact integration of polynomials of order higher than P .

The distribution of quadrature points is not always symmetrical; however, even in a case

of asymmetrical distribution, there is no clustering of quadrature points as in the case of

the collapsed-cartesian grid. All quadrature points computed with the cardinal function of

degree up to 14 are located inside the triangle and have positive weights. Integration on the

BGB grid of polynomials up to order P = 25 is exact. We emphasize that the BGA grid was

constructed for interpolation purposes, while the BGB grid was optimized for integration.

In figure 2.30 we show typical distributions of cartesian and barycentric grid points over an

equilateral triangle.

Figure 2.30: Quadrature grids: Left - CCG; Middle - BGA; Right - BGB. The total number
of quadrature points, N , is defined as: N = (P + 1)2 for CCG, N = (P + 1)(P + 2)/2 for
BGA and BGB; P = 6.

Another set of symmetrical nodes, optimized for integration on a triangular element was

suggested by Wandzura & Xiao [99]. The highest order of polynomial function that can be

exactly integrated using this set is limited by P = 30. It was argued in [91] that integration

on BGB is generally less expensive than integration using the Wandzura & Xiao grid. The

60

Vandermonde matrix constructed from modal bases defined on a triangular element and

Wandzura & Xiao points is not a square matrix, which provides additional complexity in

numerical differentiation. In the current work we have not studied the Wandzura & Xiao

points.

The integration on cartesian and barycentric grids was discussed in section 2.4.3. The

suggested procedure to compute the weights for numerical integration on the barycentric

grid was based on construction of the Vandermonde matrix. However, this method is

appropriate for the BGA grid and not for the BGB. For BGB the procedure of computing

the location of quadrature points and weights is more complicated; a detailed explanation

can be found in [91].

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

P

of

 q
ua

dr
at

ur
e

po
in

ts

a)

Cartesian Grid
Barycentruc Grid A
Barycentruc Grid B

0 5 10 15 20 25
0

200

400

600

800

1000

1200

P

co
m

pu
ta

tio
na

l c
os

t [

of
 o

pe
ra

tio
ns

]

b)

Cartesian Grid
Barycentruc Grid A
Barycentruc Grid B

Figure 2.31: Left: Number of quadrature points for exact numerical integration of a poly-
nomial of order P . Right: Corresponding computational cost.

The computational cost of the exact integration of polynomial of degree P on BGA is

(P + 1)(P + 2) summations and multiplications while the cost of function evaluations scales

as (P + 1)(P + 2)/2. On the other hand, for the exactly same computational cost we can

integrate polynomials of degree higher than P using BGB. We summarize this section by

comparing the number of quadrature points and the number of numerical operations for

integration of polynomial of degree P . In figures 2.31(a,b) we plot the results for the three

types of quadrature. We assume that the computational cost for function evaluation at

each quadrature point is one unit. Clearly, the quadrature grid BGB is more efficient than

BGA.

61

The projection operator from modal to physical space is defined by

u(ξ1i
, ξ2j

) =
K∑

k=1

ûkΛk(ξ1i
, ξ2j

),

here Λ represents an arbitrary spectral basis, however in this study we employ the cartesian

bases Φ only.

Thus, the computational cost of computing u(ξ1i
, ξ2j

) at a single quadrature point does

not depend on the type of grid, but the overall cost depends on the number of quadrature

points. This implies that using the barycentric grid with N = (P + 1)(P + 2)/2 quadrature

points is almost half the cost of using CCG with N = (P + 1)2 quadrature points.

The projection from physical to modal space is performed in three steps. First, we

compute the mass matrix M; second, we integrate the function with respect to the test

functions; third, we solve the algebraic system Mû = f , where the unknowns û are ampli-

tudes of the expansion basis. The efficiency of the first and the second steps depends on

the effectiveness of the numerical integration. However, we note that CCG is based on a

tensor-product construction. For tensor-product bases we can employ the sum-factorization

to effectively reduce the computational cost. On barycentric grids the sum-factorization is

not possible [79]. We also note that the second step is repeated (P + 1)(P + 2)/2 times

equal to the number of modes in a polynomial expansion. In figure 2.31b we demonstrate

that the choice of BGB leads to the most efficient integration and thus the most efficient

projection.

2.8.2 Application to a Navier-Stokes solver

This section consists of three parts. First, we overview the model problem and numerical

scheme, specifically we focus on different formulations of the non-linear term. In the second

part we analyze the numerical efficiency of a Navier-Stokes solver where different quadrature

grids are employed. In the third part we analyze the effect of quadrature grids on the

temporal stability of the Navier-Stokes solver.

The aforementioned three types of quadrature grids were employed in all operations in

a 2D spectral/hp-element code for incompressible Navier-Stokes equations. As a prototype

problem we consider the Kovasznay flow, already presented in section 2.7.

The numerical solution is obtained by solving the incompressible NS equations in terms

62

of the primitive variables (2.33a). In this study the semi-implicit NS solver (2.34a) is em-

ployed. The computational domain was decomposed into 24 triangular elements, as shown

in figure 2.22. The Dirichlet boundary conditions are applied for solution of Helmholtz

solver for the velocity field. For the pressure the Dirichlet boundary condition p = 0 is

applied at x = 3 and Neumann boundary condition on other boundaries. The initial ve-

locity field is obtained from the solution of ∇2u = 0 with exact boundary conditions. The

size of the time step was fixed to ∆t = 1.0E − 4. To estimate the numerical efficiency, we

monitored the CPU-time required to obtain a solution at time T = 6 and the L2 − error

of a solution at T = 1, 2, 3, 4, 5, 6 (steady state is achieved after T = 4.) Also, P = 6 and

P = 8 were used for spectral polynomial order.

In (2.34a) the convective formulation of the nonlinear term is presented, however, the

non-linear term NL = [NLx NLy] can be formulated in conservative, rotational, skew-

symmetric and convective forms. We performed numerical experiments using all formu-

lations. In this study we concentrate primarily on the conservative (2.37) and convective

(2.38) forms.

NLx =
∂(u)2

∂x
+

∂uv

∂y
, NLy =

∂uv

∂x
+

∂(v)2

∂y
. (2.37)

NLx = u
∂u

∂x
+ v

∂u

∂y
, NLy = u

∂v

∂x
+ v

∂v

∂y
. (2.38)

The weak form of linear terms requires integration of polynomials from V2P , while

for the nonlinear terms the integrated polynomials are in V3P−1. The calculation of NL

involves several steps: On the first step, values of u are computed on N quadrature points

by projection from modal to physical space. On the second step, the derivatives operator

is applied to obtain NLx, NLy. Finally, NLx and NLy are integrated with respect to

the test functions. We note that values of NLx, NLy in physical space are also used for

the evaluation of the right-hand side for the pressure equation, (2.34c). The divergence of

the provisional field u⋆ is, first, computed by applying the derivative operator on u⋆ and,

second, by integration of ∇ · u⋆ with respect to the test functions.

A consistent implementation of the weak form of the nonlinear terms implies that the

number of quadrature points should satisfy the rules for exact numerical integration and

exact differentiation of polynomials from V3P−1 and V2P , respectively. Our numerical ex-

periments were divided into three categories:

(a) Number of quadrature points is sufficient for exact integration of polynomials from V2P .

63

(b) Number of quadrature points is sufficient for exact integration of polynomials from

V3P−1.

(c) Number of quadrature points is sufficient for exact integration of polynomials from

V3P−1 and exact differentiation of polynomials from V2P .

We will refer to the method in case (a) as inconsistent numerical integration; in case (b)

as consistent numerical integration; and case (c) as fully consistent numerical integration

and differentiation.

2.8.3 Numerical efficiency

Let PI denote the highest order of polynomial function that can be exactly integrated on

a given set of quadrature points and Pd the highest order of polynomial function that can

be exactly differentiated. We also denote by N the total number of quadrature points.

For each type of grid the number of quadrature points is chosen according to the following

principles.

Collapsed-cartesian grid (CCG): The number of quadrature points is set according

to rules for one-dimensional integration. Using Q Gauss quadrature points per direction

we can integrate exactly polynomials of order P ≤ 2Q − 1 = PI and differentiate exactly

polynomials of order P ≤ Q − 1 = Pd. The total number of grid points on a triangular

element is N = Q2.

Barycentric grid of type A (BGA): The highest order of polynomial that can be exactly

integrated and differentiated is defined by the number of grid points of the one-dimensional

master grid from which the two-dimensional one is constructed. In order to have exact

numerical differentiation and integration we need m = Pd + 1 = PI + 1 grid points in the

one-dimensional grid. Thus, the total number of grid points in the triangular region is

defined by N = (Pd + 1)(Pd + 2)/2.

Barycentric grid of type B (BGB): The number of quadrature points for consistent

differentiation is defined similarly as for BGA, i.e., N = (Pd + 1)(Pd + 2)/2. However,

the highest order of polynomial that can be exactly integrated using the same number of

grid points is greater than Pd. Appropriate values of N for exact integration of polynomial

function in VPI are provided in Table 7.1 of [91].

We recall that BGB was optimized for numerical integration, while BGA was not; more-

over some of the weights, computed on BGA, for integration of polynomials with P > 6 are

64

negative.

In handling the nonlinear terms it is convenient to perform the basic numerical opera-

tions on the same grid, that is we use the same points for integration and differentiation.

In nonlinear problems we have that PI > Pd, which implies that it is not always possible

to have N grid points and satisfy exactly the rules for accurate integration and differenti-

ation without paying an extra cost by performing over-integration or differentiation (in a

super-collocation fashion); see [52]. Also, in the discretization of the nonlinear terms with

uδ ∈ VP we may specify the number of quadrature points for each type of grid in order to

have (a) exact integration of the weak linear advection operator; (b) exact integration of

the weak nonlinear advection operator; and (c) exact integration and differentiation of the

weak nonlinear advection operator.

In Table 2.1 we summarize the values of N , PI and Pd given the above considerations

for the nonlinear problem with uδ ∈ V6. The number of quadrature points on each grid was

chosen such that we have: (a) inconsistent numerical integration, (b) consistent numerical

integration, and (c) consistent numerical integration and differentiation. In our problem,

the order of polynomial function that should be integrated is higher than the order for

differentiation, thus consistent integration on BGA leads to consistent differentiation as

well. For this reason the second and the third rows that correspond to BGA in Table 2.1

(also in Table 2.2) are the same. We note that for this particular problem the highest order

of a polynomial function to be integrated is 17 and the highest order of polynomial function

to be differentiated is 12, since we use the conservative formulation for the nonlinear terms.

Collapsed-cartesian Barycentric grid A Barycentric grid B

N PI Pd N PI Pd N PI Pd

(a) 49 13 6 91 12 12 36 13 7

(b) 81 17 8 171 17 17 66 18 10

(c) 169 25 12 171 17 17 120 21 12

Table 2.1: Number of quadrature points for (a) inconsistent numerical integration, (b)
consistent numerical integration, and (c) consistent numerical integration and differentiation
of a weak nonlinear operator; uδ ∈ V6.

The Kovasznay flow problem was solved on the three different grids, with the number

of grid points specified according to Table 2.1. In figure 2.32 we present the L2-error as

a function of time. The left plot illustrates the behavior of the error of the solution when

65

1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

a)

L 2−
er

ro
r

1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

b)

CCG
BGA
BGB
FC

CCG
BGA
BGB
FC

Figure 2.32: L2 -error versus time for the collapsed-cartesian grid (CCG), barycentric grid
of type A (BGA) and B (BGB) with (a) inconsistent numerical integration, and (b) exact
numerical integration. The dash line (FC) depicts the fully consistent case; uδ ∈ V6;
conservative formulation of the nonlinaer term.

the number of quadrature points is sufficient to integrate a weak linear advection operator

only. We note that for the collapsed-cartesian grid as well as for barycentric grid of type B

this number of quadrature points is insufficient for exact numerical differentiation. On the

other hand, for BGA the numerical differentiation is exact. The dash line depicts the fully-

consistent case, i.e., when we have consistency in both integration and differentiation. The

right plot shows the L2-error for tests where the number of quadrature points is sufficient

for consistent numerical integration. We observe that in terms of accuracy the choice of

barycentric grid of type A is advantageous for the case of inconsistent numerical integration.

Another observation is that insufficient resolution for numerical differentiation alone does

not affect the overall accuracy, as shown in the right plot.

We performed the same test with rotational and skew-symmetric forms of the nonlinear

term. The results were very similar to the results obtained with conservative formulation

of the NL. The drop of accuracy was observed when both numerical integration and differ-

entiation suffered from under-resolution.

66

A different situation was observed when the convective form of NL was used; using the

convective form always leads to exact numerical differentiation. In figure 2.33 we present

the numerical error of the solution obtained using the convective form and inconsistent

numerical integration. We see no drop of accuracy due to numerical under-integration.

1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

L 2−
er

ro
r

a)

CCG
BGA
BGB
FC

1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

L 2−
er

ro
r

b)

CCG
BGA
BGB
FC

Figure 2.33: L2 -error versus time for the collapsed-cartesian grid (CCG), barycentric grid
of type A (BGA) and B (BGB) with inconsistent numerical integration and convective
formulation of the nonlinear term; (a) vP ∈ V6; (b) uδ ∈ V8 The dash line (FC) depicts the
fully consistent case.

Collapsed Cartesian Barycentric grid A Barycentric grid B

N PI Pd N PI Pd N PI Pd

(a) 81 17 8 153 16 16 55 16 9

(b) 144 23 11 300 23 23 105 23 13

(c) 289 33 16 300 23 23 120 120 14

Table 2.2: Number of quadrature points for (a) inconsistent numerical integration, (b)
consistent numerical integration, and (c) consistent numerical integration and differentiation
of a weak nonlinear operator; uδ ∈ V8.

The Kovasznay flow problem was also solved with higher accuracy, corresponding to

uδ ∈ V8. In Table 2.2 we provide a summary of number of quadrature points and PI , Pd for

each simulation. We note that in case of uδ ∈ V8 the highest order of polynomial function to

67

be integrated is 23 while the highest order of polynomial function to be differentiated is 16.

For BGB the maximum number of quadrature points is 120 which corresponds to cardinal

function of a degree 14; for this reason the max(Pd) = 14. The results of convergence of

the error in the L2 norm are presented in figure 2.34; we observe similar behavior as in the

case with uδ ∈ V6.

1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

L 2−
er

ro
r

a)

CCG
BGA
BGB
FC

1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

t

b)

CCG
BGA
BGB
FC

Figure 2.34: L2 -error versus time for the collapsed-cartesian grid (CCG), barycentric grid
of type A (BGA) and B (BGB) with (a) inconsistent numerical integration, and (b) exact
numerical integration. The dash line (FC) depicts the fully consistent case; uδ ∈ V8.

In figures 2.35 and 2.36 we show the dependence of the L2-error for the different methods

with respect to CPU-time. Here the CPU-time is measured in seconds and reflects the

elapsed time from the beginning of simulation (first time step, t=0) to the intermediate

time (t = 1, 2, 3, 4, 5) and final time T = 6. The CPU-time does not reflect the time

consumed for construction of the linear operators, which is done only once at the beginning

of the simulation. We recall that for all tests we use the same numerical scheme, the

same initial condition, and the same size of a time step. However, the nonlinear term

is computed using different grids, which results in distinct performance of the solver. In

this test, the sum-factorization technique for numerical integration on CCG (2.9) was not

68

implemented. For solutions obtained on the cartesian grid and on the barycentric grid of

type B we present the CPU-time for (a) inconsistent numerical integration and (b) consistent

numerical integration. For solution on barycentric grid of a type A we show only one case,

with the number of quadrature points consistent for differentiation but not sufficient for

consistent integration of the nonlinear terms. The results in both figures show that at least

for the Kovasznay flow we consider here the collapsed-cartesian grid is the most efficient,

even without implementing the sum-factorization technique.

0 100 200 300 400 500 600 700 800 900
10

−4

10
−3

10
−2

10
−1

L 2−
er

ro
r

CPU−time [sec]

CCG − a
BGA − a
BGB − a
CCG − b
BGB − b

Figure 2.35: L2 − error vs. CPU-time: numerical solution of Kovasznay problem on
collapsed-cartesian grid (CCG), barycentric grid of a type A (BGA) and B (BGB); in-
consistent numerical integration of nonlinear term - solid line (a) and consistent numerical
integration - dash line (b); uδ ∈ V6. The computations were performed on an Intel(R)
Xeon(TM) CPU 3.06GHz and 2GB of memory.

2.8.4 Stability

In this section we show that the stability criteria are practically independent of the grid type

where the basic numerical operations are performed. However, when the size of timestep

approaches its critical value, the BGA grid exhibits some advantages.

The Kovasznay problem was solved again using different spatial accuracy and variable

69

0 500 1000 1500 2000 2500
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

L 2−
er

ro
r

CPU−time [sec]

CCG − a
BGA − a
BGB − a
CCG − b
BGB − b

Figure 2.36: L2 − error vs. CPU-time: numerical solution of Kovasznay problem on
collapsed-cartesian grid (CCG), barycentric grid of a type A (BGA) and B (BGB); in-
consistent numerical integration of nonlinear term - solid line (a) and consistent numerical
integration - dash line (b); uδ ∈ V8. The computations were performed on an Intel(R)
Xeon(TM) CPU 3.06GHz and 2GB of memory.

timestep. The conservative formulation of the nonlinear term was employed. The critical

timestep for stability (∆tstable) was numerically evaluated; in Table 2.3 we summarize the

results in terms of the L2-error in the numerical solution at T = 6 (steady state), obtained

using different grids. In the second column we show the numerical error obtained using

∆tstable - one can see that the numerical error is not affected by a choice of grid and it

is solely determined by the order of polynomial expansion, P , as expected. In the third

column we present results obtained using marginally stable ∆t; here the choice of a grid

does affect the results. Columns four and five present results of simulation with slightly

large size of ∆t.

The relation between P and the critical timestep, ∆tstable, was obtained heuristically

in the following way: For fixed order of polynomial expansion, P , the timestep was con-

tinuously increased until an instability in the numerical solution appeared; the instability

was characterized by a sudden loss of accuracy. Then, ∆tstable was defined as the max-

70

P = 5

Grid ∆t 2.500E-3 2.550E-3 2.600E-3 2.800E-3

CCG 5E-3 4E-2 1E+0 unstable

BGA 5E-3 5E-3 unstable unstable

BGB 5E-3 1E-2 1E+0 unstable

P = 6

Grid ∆t 1.730E-3 1.740E-3 1.750E-3 2.000E-3

CCG 4E-4 2E-1 5E-1 2E+0

BGA 3E-4 3E-4 unstable unstable

BGB 4E-4 4E-4 6E-3 unstable

P = 7

Grid ∆t 1.270E-3 1.275E-3 1.280E-3 1.290E-3

CCG 4E-5 3E-1 5E-1 unstable

BGA 4E-5 4E-2 5E-1 unstable

BGB 4E-5 4E-2 3E-1 unstable

P = 8

Grid ∆t 9.735E-4 9.749E-4 10.00E-4 12.00E-4

CCG 5E-6 2E-3 1E+0 unstable

BGA 4E-6 5E-6 1E+0 unstable

BGB 4E-6 6E-5 1E+0 5E+1

P = 9

Grid ∆t 7.600E-4 7.790E-4 8.000E-4 8.200E-3

CCG 3E-7 3E-4 1E+0 unstable

BGA 3E-7 4E-7 1E+0 unstable

BGB 3E-7 9E-5 2E+0 1E+1

Table 2.3: L2-error for different timesteps. The number of grid points for CCG and BGB
satisfies consistent numerical integration only but for BGA it satisfies consistent numerical
differentiation only. uδ ∈ V i, i = 5, 6, 7, 8. For uδ ∈ V9 the number of quadrature points for
BGB is sufficient for exact numerical integration of polynomials of order up to 25.

imum timestep for which the stable solution was obtained. The test was performed for

P = 5, 6, 7, 8, 9 and was repeated for Adams-Bashforth time-integration of the nonlinear

terms with first-, second- and third-order (AB1, AB2 and AB3, respectively). The depen-

dence of ∆tstable on P for the three Adams-Bashforth methods is presented in Fig. 2.37.

It is clear that AB1 (Euler-Forward) method with ∆tstable ∝ P−1.7 is the most stable (this

will become clear from analyzing the eigenspectra, see below). Second, we observe that the

stability region for barycentric grids and collapsed-cartesian grid is not exactly the same.

This is due to the different quadrature crimes we commit using inconsistent integration or

differentiation. In Table 2.4 we compare the L2-error of a solution at T = 6 with consistent

integration and unresolved/resolved differentiation (CCG) to the error of a solution with

71

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

−3

−2.5

−2

LOG
10

(P)

LO
G

10
(∆

 t)

1

2

1

1.7

1

2.2

AB1
AB2
AB3

Figure 2.37: Stable ∆tstable versus P for solution of the Kovasznay problem. The nonlinear
terms, fomulated in conservative form, were computed with Adams Bashforth method of
order 1,2 and 3.

inconsistent integration but consistent differentiation (BGA); the improvement in L2-error

is clear.

The estimate of the numerical error in computing the nonlinear advection operator on

a sparse grid can be obtained from the following. First, we project the exact solution of

Kovasznay problem onto the space spanned by the basis functions. Second, we use consistent

numerical differentiation to compute NLx, NLy (2.37). Third, we compute exactly the inner

product of polynomial NLx, NLy terms with a test function, φk:

Iexact = (NL, φk).

These three steps lead to an accurate projection of the nonlinear terms onto a modal space.

Next, we compute the approximate inner product Iǫ. The nonlinear terms are evaluated and

projected using the CCG, BGA and BGB grids with consistent integration on the first two

and consistent differentiation on the last one. We define the numerical error in evaluating

72

P = 6, ∆t = 1.74E − 3

a) Pd(CCG) < Pd(BGA) b) Pd(CCG) = Pd(BGA)

CCG 2E-1 3E-4

BGA 3E-4 3E-4

P = 8, ∆t = 9.749E − 4

a) Pd(CCG) < Pd(BGA) b) Pd(CCG) = Pd(BGA)

CCG 2E-3 6E-6

BGA 5E-6 5E-6

P = 9, ∆t = 7.79E − 4

a) Pd(CCG) < Pd(BGA) b) Pd(CCG) = Pd(BGA)

CCG 3E-4 4E-7

BGA 4E-7 4E-7

Table 2.4: L2-error in Kovasznay solution computed on CCG and BGA. The number of
quadrature points for BGA satisfies consistent numerical differentiation only. The number
of quadrature points for CCG satisfies consistent numerical integration and (a) unresolved
numerical differentiation (Pd(CCG) < Pd(BGA)), (b) resolved numerical differentiation
(Pd(CCG) = Pd(BGA)). uδ ∈ V i, i = 6, 8, 9.

the nonlinear advection operator as

αNL = MAXj, k(Iexact − Iǫ), j = 1, .., Nel, k = 1, ..., K

where Nel is a number of elements in the computational domain and K = (P +1)(P +2)/2

is the number of test functions. In Table 2.5 we present the values of αNL; note that

unresolved differentiation on CCG grid leads to the highest error.

N αNL

CCG 144 8E-8

BGA 300 8E-10

BGB 105 5E-9

Table 2.5: Error in the nonlinear advection operator; uδ ∈ V8

In the semi-implicit time-stepping we have employed, the stability of the three schemes

is dictated by the eigenspectra of the advection operator and, of course, the type of the time-

stepping method. Let us denote the advection operator by A and its eigenspectra by Λ(A).

Then, the perturbed advection operator, A + ∆A, has Λ(A + ∆A) = Λǫ(A) eigenspectra,

which is also known as epsilon-pseudospectra of A [92]. The definition of pseudospectra of

a matrix A is given by

Λǫ(A) = z ∈ C : ||(A − zI)v|| ≤ ǫ

73

for some v ∈ Cn with ||v|| = 1. If some of eigenvalues of A are located in the vicinity of

the region of instability, then the epsilon-pseudo-eigenvalues might be located inside the

unstable region. The distance between the eigenvalues and the epsilon-pseudo-eigenvalues

depends on ||∆A||. In our case, ||∆A|| is a result of inconsistent numerical evaluation of

the advection operator.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.38: Two-element computational domain for solution of Kovasznay problem.

In order to analyze the eigenspectrum of the advection operator we simplify the problem

by solving the Navier-Stokes equations on a computational domain with two elements as

shown in figure 2.38. We use AB1 method for the nonliner terms. By gradual increase of

∆t we experimentally obtain the critical timestep, ∆tstable, for which a stable solution is

obtained. Then, we assemble the condensed global linear advection operator AG = M−1D,

where

D = (U
∂u

∂x
+ V

∂u

∂y
, φ),

and the scalar coefficients U and V denote the maximum values of the corresponding velocity

field, uδ; M is a mass matrix. The local, elemental, advection operator is extracted from the

global one and its eigenspectra is analyzed. We choose the element where U and V have their

largest values. In Fig. 2.39 we present the scaled (by ∆tstable) eigenspectra of the linearized

local advection operator. The dash line depicts the edge of a stability region for the AB1

time-stepping scheme. We note that the values of ∆tstable were obtained from the solution

74

of the nonlinear problem, with the advection terms computed with O(∆t). For all numerical

experiments the scaled eigenvalues fit exactly the region of stability, which suggests that

we can analyze stability of the nonlinear problem using properly scaled eigensectra which

correspond to the linear problem.

In Fig. 2.40 we present the pseudospectra of the linearized local advection operator A.

Note that one of the eigenvalues is located in the neighborhood of the unstable region. The

eigenspectra of the linear advection operator do not depend on the type of grid, since the

number of grid points suffices to compute the operator exactly. However, the “effective”

eigenspectra of the nonlinear operator is grid dependent due to different quadrature crimes

we commit. The larger the numerical error associated with incorrect integration and differ-

entiation, the larger the distance between eigenvalues of the perturbed operator and those

of the exact operator. As seen in Table 2.5, the error in computing the nonlinear terms

on the BGA grid is smaller than the error of the nonlinear terms computed on the CCG

grid. The nonlinear advection operator is computed every timestep, which introduces a

random shift to the eigenvalues of the perturbed operator from those of the exact one. It

appears that the BGA grid minimizes these shifts and provides a more accurate bound on

∆tΛ(A + ∆A). Thus, the transition from a stable region to an unstable one depends on ∆t

and less on ∆A as in the case of CCG.

2.9 Conclusions

In the first part of Chapter 2 (sections 2.1 - 2.6) the robustness of two tensor product

spectral bases has been investigated. The first set of basis function (cartesian tensor prod-

uct bases, denoted here by Φ) suggested by Sherwin&Karniadakis [79] has been studied in

depth and desribed in the literature, while the second type of basis functions (barycentric

tensor product bases, denoted here by Ψ) proposed by Bittencourt in [22] is relatively new

and many of its properties have not been investigated so far. The main fundings are:

• Both bases can be effectively implemented in the framework of spectral element/hp

disctetization.

• The cost of construction projection operator using the barycentric bases can be sig-

nificantly reduced due to the rotational symmetry of the bases.

75

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01

−0.1

−0.05

0

0.05

0.1

0.15

Re (∆t
stable

 λ)

Im
 (

∆t
st

ab
le

 λ
)

 UNSTABLE

 STABLE

P=6
P=7
P=8

Figure 2.39: Eigenspectrum of linearized local advection operator. uδ ∈ V i, i = 6, 7, 8.

• The stability criteria in explicit solution of advection problem does not depend on a

choice of basis.

• The linear operators constructed from the cartesian product bases have lower condi-

tion number and better sparsity, which is favorably reflected on the computational

cost in iterative solution of partial differential equations.

• The projection and diffusion operators constructed from both bases and precondi-

tioned by the Incomplete Cholesky Preconditioner (ICP) show similar eigenproperties.

In iterative solution of diffusion problem with conjugate gradient solver lower iteration

count can be achieved by employing the barycentric bases and ICP, particularly in

the case of very distorted triangular elements.

In section 2.7 the P/P−k approach for solution of Navier-Stokes problem has been inves-

tigated. Specifically, we focused on the numerical accuracy and filtering of high-frequency

pressure oscillations arising due to singularities and explicit treatment of pressure bound-

76

−4

−4

−3.5

−3.5

−3

−3

Re (∆t λ)

Im
 (

∆t
 λ

)

−18 −16 −14 −12 −10 −8 −6 −4 −2 0

x 10
−3

0.095

0.1

0.105

0.11

0.115

0.12

Figure 2.40: Pseudospectra of a linear local advection operator, A, computed on a triangular
element: dots - represent the eigenvalues of A, solid lines - contours of Log10 of epsilon-
pseudo-spectra for ǫ = 10−4, 10−3.5, 10−3 , dash line - edge of stability region; uδ ∈ V8

ary conditions. Robustness of a semi-implicit and implicit numerical schemes have been

compared. The main fundings are:

• Solution of Navier-Stokes problem with P/P − k, k > 0 discretization suffers from

lower accuracy than solution with P/P discretization.

• In solution of problems with singularities the use of lower order polynomial expansion

for discretization of the pressure variable than for discretization of the velocity vari-

ables, indeed leads to filtering high-frequency pressure oscillations. It was observed

that the pressure oscillations appear due to the time-splitting error corresponding to

semi-implicit scheme, and specifically due to explicit treatment of Neumann bound-

ary condition for the pressure. Implicit numerical scheme does not posses any time-

splitting error and pressure field computed with the implicit solver does not exhibit

erroneous high-frequency oscillations. Filtering high-frequency pressure oscillations

might have positive effect in solution of fluid-structure interaction (FSI) problems

where the main challenge is rather stability than accuracy. In FSI solvers based on

77

weak coupling between the fluid and the structure domain, pressure computed at the

boundaries of fluid domain is incorporated in boundary conditions for the structure

solver.

In section 2.8 we have employed collapsed cartesian and barycentric grids, typically used

in collocation spectral methods on a triangle, to perform numerical integration, differen-

tiation and projection in the Galerkin spectral/hp element method. We have examined

the individual operations separately as well as in the context of solving the Navier-Stokes

equations for incompressible flows. The main findings of this study are the following:

• All three quadrature grids investigated can be used in constructing the discrete oper-

ators.

• The choice of the grid, (e.g., symmetric versus non-symmetric) does not affect the

accuracy of the numerical solution as long as a sufficient number of quadrature points

is used.

• BGB leads to high efficiency but the limited number of grid points defined for multi-

variate quadrature restricts the highest order of polynomial expansion.

• In solution of nonlinear problems with Galerkin projection the loss of accuracy can be

a result of underresolution in both numerical integration and differentiation. However,

in the solution of the model equation chosen in this paper, if at least one of these

numerical operations is consistent the overall accuracy is maintained.

• The stability properties are nearly independent of the grid types. The performance of

barycentric grids is slightly better when the size of a timestep approaches its critical

value, while the performance of the collapsed-cartesian grid is the worst due to the

quadrature crimes we commit due to unresolved differentiation of the nonlinear terms

when a conservative form is used.

• Using different grids deviation of several orders of accuracy in the error of a stable

numerical solution may occur. This happens when the size of the time step approaches

its critical value in terms of stability. Quadrature crimes we commit in differentiation

and integration practically shrink the stability region.

78

• The collapsed-cartesian grid is overall the most efficient, particularly for high order

of polynomial expansions.

Chapter 3

Parallel performance of iterative

solver for high-order spectral/hp

element method

3.1 Introduction

Efficiency in solving linear system of equations Ax = b iteratively depends primarely on

three factors: a) a choice of numerical method, e.g., GMRES, Conjugate Gradient, etc.;

b) condition number of the operator A; and c) a distance between the initial guess x0

and the solution x. The choice of the numerical method and a proper preconditioner are

directly related to the properties of the operator A. Techniques for minimization |x0 − x|
are derived from the solution properties. In this study we consider a high-order spectral

element discretization, leading to a positive definite symmetric operator A and solution of

a linear system with a preconditioned Conjugate Gradient method. Our goal is to design

fast and scalable numerical solver, for solution of multi-million (or even billion) degrees

of freedom problem. We focus here on two topics: a) parallel preconditioner designed

to improve parallel efficiency of a conjugate gradient solver, and b) methods for accurate

prediction of the initial guess (that reduces the number of conjugate gradient iterations)

while imposing negligible computational overhead.

The spectral/hp element code NεκT αr is employed in our studies [79]. The com-

putational domain consists of structured or unstructured grids or a combination of both,

79

80

similar to those employed in standard finite element and finite volume methods. In each

element the solution is approximated in terms of hierarchical mixed order Jacobi poly-

nomial expansions. This provides a way of hierarchically refining the numerical solution

by increasing the order of the expansion (p-refinement) within every element without the

need to regenerate the mesh, thus avoiding a potential significant overhead cost associated

with remeshing. Domain partitioning, required by the parallel solver, is done by Metis [3].

NεκT αr employs up to third-order accurate semi-implicit time integration scheme (2.34a).

A high-order splitting scheme [48] is adopted, that decouples the velocity and pressure fields

requiring only the inversion of three Helmholtz operators for the velocity components (in

three-dimensions) and one Poisson operator for the pressure. Due to the matrix sparsity

arising from symmetric linear operators, iterative solver based on Preconditioned Conjugate

Gradient (PCG) is preferred. The effectiveness of preconditioner is normally estimated by

reduction in iteration count. However, the parallel efficiency of a given preconditioner is also

strongly affected by the additional computational cost associated with the preconditioning

step and by the volume of communication involved. In this study we measure the effective-

ness of preconditioner by monitoring the reduction in the average CPU-time required for

one time step in large 3D simulations of flow in arterial geometries. The effectiveness of

initial guess prediction is measured by reduction of the initial residual r0 = ||Ax0 −b|| and

corresponding reduction in number of iterations.

The following computational platforms were used for the benchmarking and code devel-

oping:

• IBM Blue Gene of San Diego Supercomputing Center (SDSC). This computer is

housed in three racks with 3,072 compute nodes. Each node has two PowerPC pro-

cessors that run at 700 MHz and share 512 MB of memory. All compute nodes are

connected by two high-speed networks: a 3-D torus for point-to-point message passing

and a global tree for collective message passing.

• IBM Power4+/Federation of SDSC. This computer has 8-way P655+ 1.5 GHz and

32-way P690 1.7GHz compute nodes with 32 and 128 GB of memory, respectively. In

our study we used the P655 compute nodes.

• Cray XT3 MPP system of Pittsburgh Supercomputing Center (PSC) with 2068 com-

pute nodes linked by a custom-designed interconnect. Each compute node has two

81

2.6 GHz AMD Opteron processors with its own cache, and shared 2 GB of memory

and the network connection. The nodes are connected in a three-dimensional torus

using a HyperTransport link to a dedicated Cray SeaStar communications engine.

• Cray XT3 MPP of U.S. Army Engineer Research and Development Center (ERDC).

The computer has 4,160 nodes, each containing one 2.6-GHz AMD Opteron 64-bit

dual-core processor and 4GB of shared memory. The nodes are connected in a three-

dimensional torus using a HyperTransport link to a dedicated Cray SeaStar commu-

nications engine.

The Chapter is organized as follows: In section 3.2 we review the existing scalable

parallel solvers and preconditioners and specify the objectives for the current study. In

section 3.3 we overview the Low Energy Bases Preconditioner. In section 3.4 we focus

on the coarse space linear vertex solver, specifically we discuss the algorithmic aspects of

parallel implementation of the solver. In section 3.5 we discuss two acceleration techniques

designed to predict better initial state for iterative solvers. In section 3.6 we conclude with

a brief summary. In Appendices A and B we provide additional information on construction

of LEBP and communication paradigms implemented for parallel matrix-vector product in

NεκT αr .

82

List of Symbols/Notations

Ω - computational domain.

Ωe - computational domain corresponding to spectral element e.

x - cartesian coordinate system or solution space, depends on context.

ξ - coordinates of cartesian system, defined on Ωe.

η - collapsed coordinate system.

P - order of polynomial expansion.

Φ - global polynomial basis.

φe - polynomial bases defined on Ωe.

Ψ - POD spatial basis.

u = [u v w] - velocity field. C - correlation matrix.

Λ = [λ1, ..., λQ] - eigenvalues of C.

3.2 Low Energy Bases Preconditioner and Coarse Space Lin-

ear Vertex Solver: Introduction

Scalability of highly effective preconditioners on thousands of processors is an open problem

that had no satisfactory solution for many matrix problems arising from the discretisation

of partial differential equations. As the effectiveness of the preconditioner increases so does

the global interdependencies reflecting in a sense the multi-scale nature of the problem

and hence the poor scaling. To the best of our knowledge, there are currently no effective

preconditioners for the new generation of modal spectral/hp element discretisations that

scale well on more than one thousand processors.

Several effective preconditioners for spectral element Navier-Stokes solvers can be found

in the literature, but very few of these preconditioners are also scalable. Tufo and Fischer

[93] presented a scalable parallel solver for the incompressible Navier-Stokes equation, for

the first (nodal) generation of spectral elements. Performance of the solver was evaluated on

the Intel ASCI-Red, CRAY T3E-600 and SGI ASCI-Blue computers with 333MHz proces-

sors. Good scalability was observed for simulations with relatively high order polynomial

approximation. Bergen et al. [18] used Hierarchical Hybrid Grid (HHG) to solve efficiently

large scale linear finite element problem. The HHG approach is essentially a geometric

multigrid method. Good scalability and also good solution time was achieved for solution

83

of a large problem on up to 1024 SGI AtlixTM3700 CPUs (1.6 GHz Itanium 2 processors).

Lottes and Fischer [57] studied performance of the variations of multigrid method applied

to spectral element nodal discretizations of the Helmholtz equation. Several methods con-

sidered in their work resulted in convergence rates comparable to regular (Cartesian) grid

based multigrid methods. Although effective for non-deformed spectral elements, geometric

multigrid is essentially a sequential approach and can not lead to a high parallel efficiency

on petaflop computers. Pavarino et. al. [69] developed overlapping Shwarz methods for

nodal triangular and quadrilateral spectral elements. Their results show that it is possible

to obtain convergence rate independent of the order of polynomial expansion and number

of elements.

A Low Energy Basis Preconditioner (LEBP) for elliptic substructured solvers was pro-

posed by Bica [21] and later implemented by Sherwin and Casarin [76] for modal spectral/hp

elements. In this work we present a parallel implementation of the LEBP appropriate for

a large number of processors and investigate its performance. Specifically, we discuss in

detail implementation of a parallel coarse space linear vertex solver. Our results show that

LEBP is very effective in simulations on thousands of processors while it exhibits similar

scalability to a Diagonal Preconditioner. The goal of this project was to develop a scalable

and efficient coarse space linear vertex solver required by a LEBP for elliptic substructured

solver. Guided by the information obtained with profiling tools on IBM Blue Gene/L and

DataStar (Power4+/Federation) computer at SDSC we were able to make optimizations

by redesigning the communication in several bottleneck routines. Profiling code simultane-

ously on several computational platforms allowed us to perform differential optimization.

As a result, the code implemented with Low Energy Basis Preconditioner and the optimized

coarse space linear vertex solver now scales well on thousands of processors.

84

3.3 Low Energy Basis Preconditioner for Spectral/hp Ele-

ments

The computational domain in NεκT αr consists of tetrahedra, hexahedra, prisms, pyra-

mids or a combination of these. Within each element the solution is approximated in terms

of hierarchical, mixed order, semi-orthogonal Jacobi polynomial expansions [79]. It is hier-

archical in a sense that the modes are separated into vertex (linear term), edge, face and

bubble (interior) modes. In figure 3.1 we provide an illustration of the domain decomposi-

tion and polynomial basis employed in NεκT αr .

Figure 3.1: Illustration of the unstructured surface grid and the polynomial basis employed
in NεκT αr . The solution domain is decomposed into nonoverlaping elements. Within
each element the solution is approximated by vertex, edge, face and (in 3D) interior modes.
The shape functions associated with the vertex, edge and face modes for fourth-order poly-
nomial expansion defined on triangular and quadrilateral elements are shown in color.

The polynomial expansion basis within each element is decomposed into interior and

boundary modes (vertex, edge and face) to help construct a global C0-continuity. The

interior modes have zero support on the elemental boundaries, thus the boundary and

interior degrees of freedom can be numerically decoupled through a technique known as

substructuring where the Schur complement of the boundary system is constructed. The

boundary degrees of freedom, corresponding to adjacent elements, are coupled due the

requirement of C0-continuity. Moreover, there is a strong coupling between the vertex,

edge and face modes within each element. It is this strong coupling between the boundary

degrees of freedom that leads to solution of large linear system with high condition number.

The dependence of the condition number of the preconditioned Schur complement of

the Laplacian matrix on the order of polynomial approximation was reported in [76]. The

85

condition number of 3D Laplacian matrix scales with the order of polynomial expansion

P as κ ∝ P 3.3 and κ ∝ P 3.2 for tetrahedral and prismatic meshes with fixed number of

elements reciprocally, whereas the condition number of the preconditioned (with LEBP)

Schur complement scales as κ ∝ (1 + lg(P))2. Bica [21] and Pavarino & Widlund [68]

presented a theoretical proof and numerical verification for that polylogarithmic growth of

κ for solution of 3D problems with the p-version finite element method based on continuous,

piecewise polynomial expansions.

As we will see in the next section, the idea of the LEBP is to weaken the coupling of the

boundary modes, enhance the diagonal dominance of the matrix system and then to apply

a block-preconditioning technique for the vertex, edge and face degrees of freedom.

3.3.1 Low Energy Basis Preconditioner: formulation

Consider the elliptic boundary value problem

∇2u(x) + λu(x) = f(x); λ ≤ 0, (3.1)

defined on computational domain Ω which is discretized into Nel non-overlapping spectral

elements; the computational sub-domain, associated with a particular element, is denoted

by Ωe. A standard spectral/hp element [79] is defined on a local, to this element, system of

coordinates ξ, which can be mapped to the global coordinate system x = xe(ξ). Then, a

standard spectral/hp element [79] spatial approximation of u is given by

uδ(x) =

Ndof∑

i=1

ûiΦi(x) =

Nel∑

e=1

dim(Vδ)∑

i=1

ûe
iφ

e
i (xe(ξ)), (3.2)

where Ndof is a total number of degrees of freedom and φi(x(ξ)) are polynomials defined

in a space (Vδ) of order P , which when pieced together under the mapping x(ξ) make a

C0 continuous (global) expansion Φ(x). The superscript δ emphasize that we use a finite

(truncated) space.

Using Galerkin discretization of (3.1), i.e. find uδ ∈ Vδ such that

L(v, u) =

∫

Ω
∇vδ · ∇uδ + λvδuδd(x) =

∫

Ω
vδ fd(x) ∀vδ ∈ Vδ (3.3)

86

we obtain the weak formulation of (3.1). Following the standard Galerkin formulation

adopted in finite element methods and letting vδ = Φi(i = 1, . . . , dim(Vδ)), problem (3.1)

can be recast into a matrix equation

Hû = f ,

where H(i, j) =
∫
Ω ∇Φi(x)∇Φj(x) + λΦi(x)Φj(x)d(x) denotes the Helmholtz operator and

f(i) =
∫
Ω Φi(x)f d(x).

In terms of implementation, the global matrix H is typically assembled from elemental

contributions He where

He(i, j) =

∫

Ωe

∇φe
i (x)∇φe

j(x) + λφe
i (x)φe

j(x) d(x)

and φe
i (x) denote the elemental representations of the elemental expansion which when

assembled globally make Φj(x) [79]. The elemental approximation, uδ
e, can be expressed by

different sets of polynomial expansion from the same space (Vδ)

uδ
e(x(ξ)) =

dim(Vδ)∑

i=1

û1i
φe

1i(ξ) ≡
dim(Vδ)∑

i=1

û2i
φe

2i(ξ), (3.4)

and therefore it is possible to define a matrix transform C from basis φe
1 to φe

2, i.e.,

φe
2 = Cφe

1,

and this process is possible even if a close form expression for φe
2 is not available. Due to

the linearity of the operation, C can be applied to transform the operator He computed

with different expansion bases, i.e.,

He
2 = CHe

1C
T , He

1 = C−1He
2(CT)−1.

Analogous to the elemental decomposition of H into components He, we introduce elemental

contributions to û and f denoted as ûe and fe. Further decomposing ûe and fe into

contributions associated with the boundary (ûe

b
) and interior (ûe

i
) modes we obtain:

 He

bb
He

bi

He

ib
He

ii

 ûe

b

ûe

i

 =

 fe
b

fe
i

 . (3.5)

87

Due to non-overlapping support of the interior modes, the contributions of He

ii
to H are

decoupled from each other. It is therefore an excepted practice to construct the Schur

complement Se = He

bb
− He

bi
[He

ii
]−1He

ib
and solve directly for the boundary degrees of

freedom, which when known can be used to recover the interior degrees of freedom.

We therefore restrict our discussion to preconditioning only the Schur complement sys-

tem and define a transformation matrix C as

C =

 R 0

0 I

 ,

then, after substructuring the matrix system He
2

= CHe
1
CT, we obtain that the Schur

complement of He
2

is related to the Schur complement of He
1

by

Se

2 = RSe

1R
T,

where Se
1
,Se

2
are the Schur complements of He

1
and He

2
, respectively. Our task is now to

define an appropriate transformation matrix R in order to obtain Se
2

with a predominantly

diagonal structure. Details on the structure and numerical construction of the matrix R

can be found in Appendix A and in [76].

We note that in order to reduce significantly the number of iterations, we want to design

a preconditioner whose eigenspectrum is close to the one of the original operator. However,

the efficiency of a parallel solver is also strongly affected by the additional computational

and communication cost associated with the preconditioning. Therefore, the block-diagonal

dominance of the modified Schur complement is essential.

The LEBP is developed by numerically constructing a “low energy” basis,

(i.e.,
∫

φe
2iφ

e
2jdΩe <

∫
φe

1iφ
e
1jdΩe, particularly for i 6= j) related to the transformation matrix

R. This is achieved by considering the elemental matrices arising for a given spectral/hp

problem within a standardized region and numerically constructing a new low energy basis,

where coupling between each vertex mode with respect to the edge and face modes, and

also the edge modes with respect to the face modes is minimized. Due to the influence

of local elemental mappings xe(ξ) the transformed global matrix H will not maintain the

orthogonality introduced by the low energy basis on He. However, the transformed system is

now diagonally dominant and so block diagonal preconditioning of this transformed matrix

88

leads to a polylogarithmic scaling of the condition number with respect to polynomial order

P for reasonably well behaved mappings. Since the number of iterations of the conjugate

gradient methods scales as a square root of the condition number this approach leads to

an effective p−type preconditioner. Further, the local communication associated with edges

and faces means that this preconditioner is very suitable for parallelization.

An example of numerically-derived basis for a low energy vertex mode is shown in figure

3.2 [76]. The standard linear finite element vertex mode is shown in figure 3.2(a) and the

numerically constructed low-energy vertex mode is shown in figure 3.2(b). As depicted in

figure 3.3 the transformed Schur complement system Se
2

has much more diagonal-dominant

structure than the original Se
1
.

(a) (b)

Figure 3.2: Projected mode shape for the vertex mode in a P = 5 polynomial expansion
(a) original basis and (b) low energy.

(a)

S1 =

(b)

S2 =

Figure 3.3: Scatter plot of Schur complement matrices of a P = 5 polynomial expansion:
(a) Original Basis (b) Low Energy Basis (scaled by a factor of 4).

When constructing the global Schur complement S from Se, we now choose to design a

89

preconditioner which inverts blocks corresponding to degrees of freedom along each global

edge and face since these are relatively small and easily inverted.

The h−scaling is most effectively handled by directly inverting the coarse linear finite

element space block associated with the spectral/hp discretization; here we define the coarse

linear finite element space as a space of the vertex degrees of freedom. The definition of

the coarse linear finite element space block is given in 3.4.1. Thus, the additive Schwartz

preconditioner is a combination of the coarse space linear vertex block and the block-

diagonal LEBP, as described in section 2.6 of [76]. Since in these types of methods we

typically have quite coarse grids compared to classical finite element descritization, a direct

inversion is still tractable from a memory standpoint (we should note that methods for

direct solution of the equations on a linear finite element mesh may be also based on

approaches we describe in this study). However, extra algorithmic work is required to make

this coarse space linear vertex solve scale from a parallelization/communication point of

view. In section 3.4 we discuss the implementation of parallel direct solver associated with

the coarse grid preconditioning.

3.3.2 Low Energy Basis Preconditioner for prismatic elements

For many applications, e.g. in boundary layers, we use a layer of prismatic elements to

capture the boundary layer of the flow. The interior space is then filled with tetrahedrons.

In this section we present an improvement in constructing LEBP for prismatic elements

used in this type of meshing strategy. In the original work of [76] the construction of LEBP

was based on considering a standard prismatic element, which has two equilateral triangular

surfaces connected by three quadratic faces which all have edges of a similar length. The

equilateral shape of the triangular face was to ensure the global continuity of the Low

Energy shape functions between the prismatic and tetrahedral elements.

In the following, we modify the aspect ratio of the standard prismatic element by varying

the distance between the triangular faces (thickness of the prismatic element). The reshap-

ing of element results in a better fit of the standard element to that used in the physical

mesh. We denote by α the parameter by which we scale the distance between triangular

faces of the standard prismatic element. In general, not all elements in the original mesh

have the same aspect ratio, which makes adjustment of α not trivial.

To check the effect of α on the of convergence rate we performed a steady flow simulation

90

in the domain shown in figure 3.1. The mesh is constructed from one layer of prismatic

elements while the rest are tetrahedral elements. The dimensions of the prismatic element

are summarized in table 3.1. In figure 3.4 we present the number of iterations required by

the Poisson solver for the pressure and Helmholtz solver for the streamwise (w) velocity

component. In figure 3.5 we show the number of iterations required by the linear solvers

Edge: AB AC AD DE DF

Length (original): 0.717 0.694 0.133 0.717 0.738

Length (standard): 1 1 α 1 1

Table 3.1: Dimensions of prismatic element shown in figure 3.1.

0 200 400 600 800 1000
30

40

50

60

of

 it
er

at
io

ns

Poisson solver: P=6, α=0.2
Poisson solver: P=6, α=0.6

0 200 400 600 800 1000
15

16

17

18

19

20

of

 it
er

at
io

ns

time−step index

Helmholtz solver: P=6, α=0.2
Helmholtz solver: P=6, α=0.6

Figure 3.4: Hybrid mesh: performance of LEBP versus time step as a function of parameter
α for Poisson (upper) and Helmholtz (lower) solvers. Simulation of a steady flow in a domain
presented in figure 3.1.

with respect to polynomial order and parameter α. In a case of elemental Mass matrix,

the factor α scales the Jacobian of the standard element only, which is equivalent to scaling

the Mass matrix with a constant. This scaling does not modify the ratio of the largest to

smallest eigenvalues λMAX/λMIN . If all elements in the mesh have the same Jacobian and

the same scaling factor α, then the condition number of the global, statically condensed

Mass matrix, will not be affected. In the case of Stiffness matrix, the parameter α appears

not only in the Jacobian but its inverse appears also in the derivatives taken along the

91

0.2 0.5 0.75 1
10

20

30

40

50

60

α

ite

ra
tio

ns

P=4

0.2 0.5 0.75 1
10

20

30

40

50

60

α

ite
ra

tio
ns

P=6

p
u
v
w

0.2 0.4 0.6 0.8

20

30

40

50

60

α

ite

ra
tio

ns

P=8

Figure 3.5: Hybrid mesh: performance of LEBP as a function of parameter α. Simulation
of a steady flow in a domain presented in figure 3.1. Mean number of iterations required by
the last ten time-steps of figure 3.1.

AD direction (see figure 3.1), thus it affects the λMAX/λMIN ratio. In a hybrid mesh,

where the Jacobian of all prismatic elements are scaled by α while the Jacobian of the

tetrahedral elements remains unmodified, the condition number of the global Mass and

Stiffness matrices changes. The Helmholtz operator is a weighted linear combination of the

Mass and the Stiffness operators, hence its condition number will depend on both matrices.

As we observe in figure 3.5 the number of iterations required to solve the Helmholtz

equations for the three velocity components is not very sensitive to α, while the number of

iterations required by the Poisson solver strongly depends on α. For these types of meshes,

the thickness of the standard prismatic element leads to a better approximation of the shape

of the original elements and, as a result, to a lower iteration count, ultimately leading to

computational savings.

92

3.4 Parallel Coarse Space Linear Vertex Solver

In this section we first discuss the partitioning of global linear vertex degrees of freedom and

formulation of the Schur complement for the coarse vertex solve. Second, we compare several

numerical approaches to tackle the solution of a linear system required by the coarse vertex

solve. Third, we provide details on the parallel construction of the Schur complement for the

coarse vertex solve during the preprocessing stage. Finally, we discuss different algorithms

for parallel matrix-vertex multiplication and examine the load-balancing with respect to

different implementations of communication required by the multiplication.

3.4.1 Formulation

Parallel implementation of the coarse space vertex degrees of freedom solver requires parti-

tioning the global domain into non-overlapping groups of elements. To minimize the volume

of communication between different groups it is preferable to form a partition of one or few

clusters of adjacent elements; in our code this task is performed by Metis [3]. Given such

compact partitioning of elements, we can identify another boundary-interior decomposi-

tion with respect to the vertex degrees of freedoms. This decomposition is highlighted in

figure 3.6 where we consider an illustrative example of a partitioning of a 2D triangular

computational domain into four partitions; an analogous extension to 3D domain is reason-

ably straight-forward. In this figure the interfaces between partitions are identified by wide

lines. Vertices shared by adjacent elements are sub-divided into two groups: (a) boundary-

boundary vertices (shown as squares), located on the interfaces between partitions, and (b)

interior-interior vertices (shown as circles), located inside each partition.

Our aim is to precondition the global Schur complement system S. We can order S by

vertex, edge and face degrees of freedom so as to obtain a matrix structure of the form

S =

Svv Sve Svf

ST
ve See Sef

ST

vf
ST

ef
Sff

,

where the subscripts v, e and f refer to vertex, edge and face degrees of freedom, respectively.

As described in section 3.3.1, the p-type (polynomial) scaling of the system is preconditioned

through the numerical change of basis associated with the low energy basis (block diagonal)

93

Figure 3.6: Partitioning of 2D domain consisting of triangular elements. The domain is sub-
divided into four partitions. Boundary-boundary vertices shared by partitions are marked
by squares; interior-interior vertices are marked by circles.

preconditioner. To take account of the h-type (elemental) scaling in our preconditioning

strategy an appropriate solution [59] is to invert the vertex space sub-matrix of the Schur

complement, i.e., Svv. As we mentioned in section 3.3.1, we use an additive Schwartz

preconditioner, which includes two parts: the coarse space linear vertex block and the Low

Energy preconditioner constructed by the numerical orthogonalization of the basis [76], i.e.,

Svv
−1

0

0

+ RT

Diag[(S2)vv]

(S2)eb

(S2)fb

−1

R,

where Diag[(S2)vv] is the diagonal of S2 vertex modes, (S2)eb ((S2)fb) is the block diagonal

of the edge (face) components [76]. Note that the Schur complement S has already been

orthogonalized with respect to the bubble modes of the 3D expansion and in this sense

might be considered as having low energy within the interior of an element. However, the

vertices will not have low energy within the “wire-basket” space of the tessellated elements.

We can now further decompose the coarse space linear vertex system Svv into degrees

of freedom on the boundary of the partitions (denoted again with a subscript b) and those

degrees of freedom within the partitions (denoted with a subscript i) to obtain

Svv =

 Vbb Vbi

Vib Vii

 v̂b

v̂i

 =

 gb

gi

 , (3.6)

94

where we have used v̂ and g to denote the solution and the forcing vectors corresponding to

the vertex components; the Vbb submatrix corresponds to the boundary-boundary modes;

Vii correspond to the interior-interior modes, and Vib = VT

bi
is the submatrix which couples

these two systems. Analogously, v̂b and v̂i are the solution coefficients of the boundary

and the interior degrees of freedom, marked in illustration of figure 3.6 by squares and

circles respectively. Once again, we can apply substructuring to decouple the interior and

boundary degrees of freedom, i.e.,

 Vbb − Vbi[Vii]
−1Vib 0

Vib Vii

 v̂b

v̂i

 =

 gb − Vbi[Vii]
−1gi

gi

 . (3.7)

The matrix Vbb − Vbi[Vii]
−1Vib is the Schur complement matrix of Svv based on

degrees of freedom along the partition. Further, by construction Vii has a block-diagonal

structure that can be readily inverted, where each block has a size corresponding to the

number of interior vertices on a given partition. For a fixed mesh size, the number of

boundary-boundary degrees of freedom depends on the number of partitions, and therefore

the more partitions that are generated the larger the size of Vbb and the number of blocks in

Vii. In contrast, the size of Vii decreases as the number of partitions grows. Solution for v̂i

can be computed locally within each partition once the values of v̂b have been determined.

The solution for v̂b can be computed locally by constructing the global system on each

processor or using a parallel approach. For the relatively small amount of elements one

typically uses in a spectral/hp element discretization as compared to a classical finite el-

ement methods such a local approach has been successfully applied for up to a few tens

of processors. However, this approach will clearly saturate when considering larger num-

ber of processors and the number of elements typically required by large-scale computa-

tion. In the following sections, we discuss alternative approaches for solving the boundary-

boundary vertex system, and then provide details on assembling the boundary-boundary

system VSC = Vbb − Vbi[Vii]
−1Vib in parallel.

3.4.2 Algorithms for solution of boundary-boundary system

We considered two approaches for solving the boundary-boundary system

[VSC]v̂b = gb − Vbi[Vii]
−1gi. (3.8)

95

The first approach is based on the LU decomposition of the operator VSC, and the

second is directly inverting the VSC operator. Each of the two methods can be executed in

serial or in parallel. In the serial approach the LU decomposition of operator VSC (or its

inverse) is replicated on each processor, while in the parallel one it is distributed over all

processors.

As we mentioned before, when the number of partitions is small and consequently the

rank of VSC is low, it might not be beneficial to parallelize the solution of the boundary-

boundary system. We implemented the serial and the parallel approaches for solving the

system by inverting the VSC operator (in the preprocessing only) and performing matrix-

vector multiplication at every iteration; in figure 3.7 we compare the overall parallel effi-

ciency of our solver. The rank of VSC operator for the Poisson and Helmholtz solvers is

presented in table 3.2. Clearly, the serial solver for system (3.8) is not scalable on more

then 64 processors.

16 32 64 128
1

2

3

4

5

6

7

8

CPU

T
16

/T
N

T
128

 = 1.12 sec

T
128

 = 2.3 sec

serial
parallel
ideal scaling

Figure 3.7: Blue Gene: Parallel efficiency of NεκT αr with serial and optimized parallel
implementation of coarse space linear vertex solver. TN - mean CPU-time required for one
time step in computation with N CPUs. Simulation of unsteady flow in stenotic carotid
artery (shown in the right plot). Problem size: 19270 tetrahedral elements, fifth-order
spectral polynomial approximation. Rank of VSC is presented in table 3.2. Simulation
performed at SDSC.

Next we compare the performance of our solver where the system (3.8) is solved in

parallel by means of the LU decomposition or with the inversion of the operator VSC; we

used functions pdgetrs and pdgemv from ScaLapack library [4] for the parallel LU solve

96

of CPUs 16 32 64 128

Poisson: Rank (VSC) 530 980 1619 2323

Helmholtz: Rank (VSC) 282 515 848 1226

Table 3.2: Rank of VSC operator of the Poisson and Helmholtz solvers. Computational
domain of stenotic carotid artery (see figure 3.7). Problem size: 19270 tetrahedral elements.

and for the matrix-vector multiplication, respectively. In both cases, the LU decomposition

and inversion of VSC was done during preprocessing and the time of the preprocessing

was excluded; we plot the results in figure 3.8. The poor efficiency of the LU based solver

is due to high volume of communication together with relatively high number of floating

point operations. ScaLapack does not implement sparse algebra operators, and the LU

decomposition is stored as a full dense matrix in 2D block cyclic format, hence the high

number of floating point operations.

16 32 64 128
1

2

3

4

5

6

7

8

CPU

T
16

/T
N

T
128

 = 0.144 sec

T
128

 = 0.34 sec

 PDGETRS
 PDGEMV
ideal scaling

Figure 3.8: XT3: Parallel efficiency of NεκT αr with different implementations of coarse
space linear vertex solver. TN - mean CPU-time required for one time step in computation
with N CPUs. Simulation of unsteady flow in stenotic carotid artery (shown in figure 3.7).
Problem size: 19270 tetrahedral elements, third-order spectral polynomial approximation.
Rank of VSC is presented in table 3.2. Simulation performed at PSC.

In preliminary tests the parallel version of SuperLU library (version 2.0) [5] for solution

of system (3.8) was implemented. SuperLU uses a sparse algebra and is efficient for solution

of linear systems with very sparse operators. Although the number of non-zero values (nz)

of VSC is small (see figure 3.9), they are not packed in a way which will maximize the

efficiency of memory access to the values of LU. Compared to ScaLapack-based solver, the

97

SuperLU-based solver, applied to (3.8), performed about five times slower on CRAY XT3

and showed poor scalability.

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 38876
0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 113255

Figure 3.9: Velocity solver: Sparsity pattern of the VSC operator (left) and its LU decom-
position (right). Only the L part is plotted. Problem size: 19270 tetrahedral elements.
Computational domain of carotid artery subdivided into 64 partitions.

Based on the performed tests we concluded that the most efficient way to solve the

system (3.8) is to directly invert the operator and to perform a parallel matrix-vector

multiplication. Our next tasks are to develop a technique to assemble the VSC in parallel

while minimizing memory requirements and find the most efficient procedure for the parallel

matrix-vector multiplication. In the following section, we concentrate on the construction

and inversion of VSC.

3.4.3 Construction of coarse space linear vertex operator

The parallel construction of the coarse space linear vertex operator is performed during the

preprocessing stage in three steps:

1. Values of VSC corresponding to each partition are computed locally.

2. Processors perform a ring-type communication to redistribute locally computed values

of VSC.

3. LU decomposition and inversion of VSC is performed in parallel with subsequent redis-

tribution from 2D block cyclic format to standard block decomposition.

In the following we discuss these steps in detail.

The first step of VSC construction consists of computing the local contribution, namely

98

Vk

SC
(i, j), where i and j are global indices and k is the partition ID. At this point, our

assumption is that the values VSC(i, j) may have random distribution across processors

and any amount of overlap is allowed. Indeed, the distribution of VSC(i, j) depends on

the global numbering of the boundary-boundary degrees of freedom and on the partitioning

of the computational domain. In figure 3.10 we sketch distribution of values of VSC(i, j)

computed for the velocity system, in the computational domain of carotid artery (see figure

3.7(right)) partitioned into four parts. To minimize the memory requirement, values of

0 20 40 60

0

20

40

60

nz = 156

CPU 0

0 20 40 60

0

20

40

60

nz = 169

CPU 1

0 20 40 60

0

20

40

60

nz = 325

CPU 2

0 20 40 60

0

20

40

60

nz = 990

CPU 3

Figure 3.10: (in color) Initial distribution of Vk

SC
(i, j) computed for the velocity system.

Computational domain of carotid artery (see figure 3.7(right)) is sub-divided into four par-
titions. Due to the symmetry of the operator only low triangular terms are stored; nz -
number of non-zero components.

Vk

SC
(i, j) are stored in sparse matrix using the coordinate format [72]; moreover, the upper

triangular part of symmetric operator VSC is not stored. The ordering of Vk

SC
(i, j) stored

in sparse matrix format is not important. Each vertex can be shared by several elements

within partition. If a vertex contribution with the same i, j indices is already stored we

add the value of Vk

SC
(i, j) to the existing one, otherwise we increase the size of the matrix

and append a new value with corresponding indices. It is not necessary to compute the

exact number of values stored in the sparse matrix prior to its construction, since we can

use dynamic memory reallocation to store new values. We note that the dynamic memory

reallocation for the matrix is an expensive computation task; one way to minimize the

99

computational cost of resizing the matrix is to allocate some extra memory in advance.

However, the discussed procedure is performed only in the preprocessing stage and typically

requires less than one second.

V
11

V
14

V
31

V
34

V
51

V
54

V
12

V
15

V
32

V
35

V
52

V
55

V
13

V
16

V
33

V
36

V
53

V
56

V
21

V
24

V
41

V
44

V
61

V
64

V
22

V
25

V
42

V
45

V
62

V
65

V
23

V
26

V
43

V
46

V
63

V
66

V
11

V
14

V
31

V
34

V
51

V
54

V
12

V
15

V
32

V
35

V
52

V
55

V
13

V
16

V
33

V
36

V
53

V
56

V
21

V
24

V
41

V
44

V
61

V
64

V
22

V
25

V
42

V
45

V
62

V
65

V
23

V
26

V
43

V
46

V
63

V
66

Figure 3.11: Parallel construction of VSC. Matrix is distributed onto 6 partitions on 3 × 2
two-dimensional processor grid. Wide lines represent decomposition of the matrix to six
partitions. VSCrc - block of rank NBS , r and c are the row and the column index of each
block. Left: standard decomposition; Right: two-dimensional block cyclic decomposition
used in ScaLapack. Colors represent standard blocks (sub-matrices of a rank NBS), which
under 2D block cyclic mapping are grouped on the same processors.

The second step in the parallel construction of VSC is to redistribute the locally com-

puted values between partitions. In NεκT αr we implement two matrix partitioning

methods. In figure 3.11 we present decompositions of a matrix V onto 6 partitions.

The left plot shows the standard block decomposition. The right plot depicts the cor-

responding two-dimensional block cyclic distribution. Each block Vrc is a square ma-

trix of rank NBS , r = [1 Nr] and c = [1 Nc] - are the block row and column index.

If mod(rank(VSC), NBS) 6= 0 then the blocks VNrc and VrNc
are not square matrices;

although, from algorithmic point of view this is perfectly acceptable, it alters the com-

putational load balance. ScaLapack assumes matrices are laid out in a two-dimensional

block cyclic decomposition. We use a basic block of size NBS = 4, ..., 8. This size is not

very efficient for LU decomposition and subsequent matrix inversion (performed only dur-

ing preprocessing) where the optimal size of a block is between 30-80. However, the small

size of the basic block leads to better load balancing in parallel matrix-vector multiplica-

tion, performed (by ScaLapack) at each iteration. As for the 2D processor grid layout, our

100

numerical experiments indicate that better performance is achieved when the number of

processors-columns is greater or equal to the number of processors-rows.

Given the alignment of processors where VSC is to be distributed, the size of the base

block and considering the rank of VSC, we allocate only the necessary memory for sub-

matrix of VSC on each processor. To map VSC into two-dimensional blocks with cyclic

distribution required by ScaLapack, sparse matrices with values and indices of Vk

SC
(i, j) are

circulated between processors (employing ring-type communication) where the local part of

two dimensional block cyclic matrix VSC2D is updated with relevant values from Vk

SC
(i, j).

At the third step we use ScaLapack for parallel LU decomposition and then parallel ma-

trix inversion. As we already mentioned, the size of a basic block in 2D cyclic distributed

matrix is not optimized for parallel LU decomposition and matrix inversion, however these

two operations require only 0.5-5 seconds. After the parallel matrix inversion is performed,

we can use the (VSC2D)−1 distributed over all processors in 2D block cyclic format for paral-

lel matrix-vector multiplication to compute v̂b = Π−1
[
(VSC2D)−1Π(gb − Vbi[Vii]

−1gi)
]

using the ScaLapack pdgemv function. The operator Π is permutation operator which maps

a vector into block cyclic format. Alternatively, we can map (VSC2D)−1 to form (VSC)−1,

which is distributed in standard blocks over all processors, as illustrated in figure 3.11. We

found that the latter approach is advantageous due to additional optimization we can apply

for redistributing vectors v̂b and (gb − Vbi[Vii]
−1gi) over processors. We provide details

of gathering and scattering of these vectors in section 3.4.5.

3.4.4 Load balancing in parallel matrix vector multiplication

The efficiency of parallel matrix-vector multiplication depends strongly on two factors:

(a) effectiveness of communication between processors, and (b) serial performance of ma-

trix vector multiplication. In the original ScaLapack pdgemv function and modified for

NεκT αr pdgemv function the serial part of matrix-vector product is based on the same

BLAS library. However, the communication patterns are different. In figure 3.12 we com-

pare communication balance during the matrix vector multiplication performed by ScaLa-

pack pdgemv function and by the NεκT αr pdgemv function. In this simulation 128 proces-

sors laid out in 8×16 process grid were used. The first 16 processors aligned on the row zero,

the next 16 (processor IDs 16 to 31) on the first row, and so on. Processors ID on the zero col-

umn of the 2D process grid can be computed from ID(row,col=0) = row∗16, row = 0, 1, ..., 7.

101

As shown in figure 3.12 (upper plot), a severe load balance problem occurs when MPI Bcast

is called. Additionally, the processors from column zero spend more time in MPI Allreduce

than those from other columns. This situation is due to two factors: (a) ScaLapack pdgemv

function expects that the vector, which multiplies the distributed matrix, is supplied to the

column zero of process grid only in cyclic block-row distribution, then it is redistributed

among other processors in cyclic block-column distribution; and (b) ScaLapack pdgemv func-

tion returns the result in cyclic row format to the processors of the column zero only. Thus,

the result should be reordered and then broadcast from the column zero to the rest. While

the result of matrix-vector multiplication is reordered on the column zero (this operation

also includes one communication between processors of column zero), processors on other

columns are waiting.

By modifying the ScaLapack pdgemv function we could eliminate unnecessary data trans-

fer from one processor to another and optimize redistribution of multiplication result to all

processors. As a result we, achieved better load balancing and also reduced the total exe-

cution time by 10 to 30 percent as presented in Table 3.3.

ScaLapack pdgemv NεκT αr pdgemv

0.55 sec 0.37 sec

Table 3.3: Blue Gene: Mean CPU-time per time step for simulation with Low Energy pre-
conditioner using ScaLapack pdgemv and optimized NεκT αr pdgemv function. Problem
size: 19270 tetrahedral elements with fourth-order polynomial approximation. Ranks of
VSC for Poisson and Helmholtz solvers are 2981 and 1570. Computation performed on 256
computer nodes of Blue Gene with 2 processors per node.

3.4.5 Implementation of parallel matrix-vector multiplication in NεκT αr

In figure 3.13 we sketch the distributed matrix (VSC)−1. For illustration purposes, the ma-

trix is distributed over a 6-processor mesh, aligned in two rows and three columns. In the

following for simplicity of notations we denote by x and y the solution vector and forcing

term. We consider the parallel matrix-vector multiplication as a three-step procedure:

step 1 - parallel assembling of the vector y;

step 2 - local sub-matrix - sub-vector multiplication;

step 3 - redistributing the results of the last operation between partitions.

On step 1, local contribution to vector y is computed on each processor and then redis-

102

tributed. We note that we use the spectral element code where domain decomposition is

done element-wise by Metis [3], while the dense matrix (VSC)−1 is distributed regardless

of the element-wise domain decomposition. The latter requires to develop an efficient and

balanced procedure for parallel construction of the vector y and later for distribution of the

result of matrix-vector product stored in x. For communication between processors we split

the default MPI communicator global MPI COMM WORLD into MPI COMM ROW and

MPI COMM COLUMN sub-communicators in order to perform message passing within the

scope of each row or column of the process grid.

Redistribution of the vector y is done in three stages:

a) On each processor we compute the local contribution to the vector y.

b) On every row of the processor mesh we distribute values of y such that on processors

of each column we compute
∑Ncol−1

k=0 yj,k, where Ncol is number of columns in 2D grid of

processors, j is the global column index in the range Js <= j <= Je. Here Js and Je are

the global index of the first and the last column of the local block of (VSC)−1 .

c) Finally, values of yj , Js <= j <= Je are summed on each column of the processor mesh

using MPI Allreduce and MPI COMM COLUMN communicator.

In figure 3.14 we provide an illustration of the elements redistribution within each row

of processors. In the illustration the vector y has a length of 10; on the processors of

column zero values of yj , j = 0, ..., 3 are required, on the processors of column one values

yj , j = 4, ..., 7 are required, and on the processors of the last column values of yj , j = 8, 9

are required for matrix-vector multiplication. The shaded fields correspond to values of yj

computed in each partition according to element-wise domain decomposition.

We considered several MPI implementations to perform step 1. In the following we

provide the description of four different methods we implemented. For clarity we provide a

pseudocode for these four methods in Appendix B.

Our first version (V1) uses MPI Allreduce within MPI COMM WORLD for a global

reduction operation over the entire length of the vector y. This operation transmits more

data than is strictly necessary, since each processor only needs to get data for yj with j

bounded by Js <= j <= Je. For the example of figure 3.14 the length of message will be

10. In addition, the number of arithmetic operations in this case is higher, since all values

of vector y are passed and summed on each processor.

In the second version (V2) we employ the aforementioned sub-communicators

103

MPI COMM ROW and MPI COMM COLUMN. First, MPI Allreduce operation is done

within each row to perform MPI SUM of the vector y over its entire length; then MPI Allreduce

is done within each column. This version communicates significantly less data than V1, yet

there are still some redundant data (zeros) being transmitted in a scope of a row.

In the third version (V3) we employ MPI Alltoallv instead of MPI Allreduce in rows,

while the second MPI Allreduce is the same as in V2. The MPI Alltoallv is a blocking

function, however, performed over the row communicator MPI COMM ROW

it synchronizes processors within a scope of each row only. This version does not commu-

nicate unnecessary data in a scope of a row.

In the fourth version (V4) we replace the blocking call MPI Alltoallv with point-to-

point, non-blocking sends and receives (MPI Isend and MPI Irecv) operations, followed by

MPI Waitany; while the MPI Allreduce operation within columns is the same as in V2.

These four versions were studied in detail on three architectures: IBM Blue Gene/L,

Cray XT3 and IBM Power 4. We found that on sufficiently large partitions of Blue Gene

(over 2048 CPUs) versions V1 and V3 perform with almost the same speed and are better

than the other two versions. The explanation of this behavior has several components:

1. Global MPI Allreduce is done over the tree interconnect of Blue Gene, which is specialized

for collective communication, while collective calls over subcommunicators are done using

the 3D torus interconnect.

2. There is only one MPI call with associated latency instead of two calls as in V2 and

several calls in the V4.

3. The reason that V4 version does not perform as well as V3 most likely has to do with the

fact that vendor-implemented MPI Alltoallv optimizes network traffic to avoid hotspots.

On IBM Power4 (Datastar) the cost of global MPI Allreduce was more than twice higher

than row-wise and column-wise MPI Allreduce. For example, using 512 processors of IBM

Power 4 construction of the vector y with a global MPI Allreduce (V1) call was accomplished

in 0.093 seconds, while using the alternative approach (V2) 0.040 seconds where required.

This behavior is more intuitively understandable since in the latter approach less data are

sent. On CRAY XT3 we likewise saw a behavior different than the one on Blue Gene:

V4 performed faster than V1, V2 and V3. This demonstrates the different characteristics

of interconnects of different platforms and the necessity to target algorithm development

correspondingly. In the benchmark study presented in the following section we focus on the

104

best algorithm on a given platform.

The step 2 of parallel matrix-vector multiplication requires only one call to level 2 BLAS

function only and no communication is performed. On each processor we multiply the local

part of (VSC)−1 by the local part of y to obtain local part of x.

On the step 3, to redistribute the result of the parallel matrix vector product we im-

plement the following procedure: First, we sum the result in each row of the processors

concurrently using MPI Allreduce and MPI COMM ROW communicator. The size of the

message here is equal to the number of (VSC)−1 rows stored on each row of the process

grid. Second, within the scope of each column we implement non-blocking communication

to exchange values of x between processors, the algorithm is similar to V4 used for gathering

values of the vector y. We note that the processor in row i receives only the required values

of x from other processors in its column, according to the original element-wise domain

decomposition.

3.4.6 Parallel Performance Results

In this section we investigate the performance of Low Energy Basis and Diagonal Precon-

ditioner used in NεκT αr . We compare the scalability and effectiveness of the two pre-

conditioners. The Schur complement of the Mass and the Stiffness operators constructed

with the polynomial basis used in NεκT αr are diagonally dominant, and the values on

their diagonals are varying, and this makes the Diagonal Preconditioning quite effective,

unlike in other methods. In table 3.4 we compare the number of iterations required for

the solution of Helmholtz equation ∇2U − λU = −(λ + 6π2) sin(πx) cos(πy) cos(2πz) with

Conjugate Gradient solver and three types of preconditioners:

a) the Diagonal Preconditioner, defined as the inverse of the main diagonal of the Schur

complement S.

b) the Block Preconditioner, defined as

Svv
−1

See
−1

Sff
−1

,

105

where See
−1 and Sff

−1 are constructed by inverting the blocks of See (Sff) corresponding

to coupling of the edge (face) i with itself only, i.e., omitting the coupling of the edge (face)

i with the edge (face) j.

c) the Coarse Space Linear Vertex Block Preconditioner, defined as

Svv
−1

I

I

.

For the discretization we use 96 tetrahedral elements, and the iterations are terminated when

the residual is less then 10E−6. We observe that significant reduction in the iteration count

is achieved with the simple Diagonal Preconditioner.

P No Prec. Diag. Prec. Block Prec. Vertex Block Prec.

2 3 3 1 1

4 162 36 36 125

6 400 71 67 312

Table 3.4: Iteration count: solution of Helmholtz equation with Conjugate Solver and
different preconditioners. Problem size: 96 tetrahedral elements.

Results presented in this section show that the computational cost of simulations of

unsteady flows is considerably lower with LEBP than with the standard Diagonal Precon-

ditioner. Our results also show that scalability of the more effective LEBP is practically the

same as of Diagonal Preconditioner. In all our tests we terminate the conjugate gradient

iterations when the relative error in the residual is less then 1E-8.

Simulations of unsteady flow typically require integration over 105 − 106 time steps and

at each time step 20 to 100 iterations are executed on average. Thus, the cost of solution

of preconditioning outweighs significantly the cost of construction of the LEBP, hence it is

not included in the performance study.

3.4.6.1 Performance of Low Energy Basis and Diagonal Preconditioner

First we compare the iteration count using the Diagonal Preconditioner and LEBP. Our

computational domain has a shape of cylindrical pipe and is constructed of 67456 tetrahedral

elements; the initial condition for velocity fields is v = 0. At the inlet of the domain we

prescribe a Poiseuille velocity profile, while at the outlet fully developed flow is assumed.

106

We monitor the number of iterations during the first 1000 time steps; we observe (see figure

3.15) that the number of iterations at the beginning of simulation is higher than after some

transient period, thus the performance of numerical solver with the two preconditioners is

compared after a few hundreds of time steps.

In figure 3.16 and Table 3.5 we compare the mean CPU-time per time step required

for 3D flow simulation with LEBP and with Diagonal Preconditioner; almost an 8-fold

speed-up in the execution time is observed. In this simulation the solution was integrated

1000 time-steps and the mean CPU-time per time step was measured as an average of the

CPU-time required for the last 10 time steps of simulation. In the last column of Table 3.5

we present the Rank of VSC. Note that with increasing number of processors the size of the

local block of VSC is decreased, which means that the computation versus communication

ratio is decreasing as well.

of CPUs Diag. Prec. Low Energy Prec. Rank of VSC: Velocity (Pressure)

512 24.1 sec 2.88 sec 5449 (8596)

1024 12.43 sec 1.61 sec 6625 (10577)

2048 6.69 sec 0.98 sec 7552 (12192)

3072 N/A 0.76 sec 8018 (13072)

Table 3.5: Blue Gene: Mean CPU-time for simulation with Diagonal and Low Energy Basis
Preconditioner. Problem size: 67456 Tetrahedral elements with eight-order polynomial
approximation. Computation performed using 1 processor per node.

Performance of NεκT αr with LEBP was also tested on CRAY XT3 computer of

ERDC, which has dual-core AMD Opterons 2.6GHz processors and 2GB memory per core

(but only 1.8GB is available for applications). Achieving good scalability on a cluster of

processors with relatively high clock-speed requires very good optimization of communica-

tion algorithms since the time spent on computation is usually 2 to 4 times less than on

computers with relatively slow processors such as Blue Gene. In figure 3.17 and Table 3.6

we show the scalability of NεκT αr achieved on the CRAY XT3 computer. The data pre-

sented in figure 3.17 are based on a simulation in a domain of 120,813 tetrahedral elements

with 6th, 8th and 10th polynomial approximation. In each simulation the solution was

integrated for 500 time steps and the mean CPU-time was computed based on the last 10

time steps.

In figure 3.18 we plot the CPU-time balance monitored during the first 40 iterations

required by the Poisson solver in simulation of unsteady flow in a domain carotid artery

107

Number of CPUs P=6 P=8 P=10

512 0.64 sec 1.3 sec 2.5 sec

1024 0.39 sec 0.74 sec 1.37 sec

2048 0.28 sec 0.46 sec 0.78 sec

4096∗ 0.50 sec

Npoints 69,588,288 132,894,300 226,161,936

Table 3.6: CRAY XT3 (ERDC): Mean CPU-time for simulation with LEBP. Problem
size: 120,813 Tetrahedral elements with 6th, 8th and 10th order polynomial approximation.
Npoints is a total number of quadrature points for each unknown. The result for 4096 CPUs
was obtained on CRAY XT3 of the Pittsburgh Super Computing center; in our experience
this computer is typically 5-10% slower than CRAY XT3 of ERDC.

(figure 3.7). For this simulation we used 128 processors of CRAY XT3. The plots show that

about half of the CPU-time is consumed by preconditioning. Only 15% of the CPU-time

consumed by preconditioning is spent on solving system (3.8); this time includes the three

steps of the parallel matrix-vector multiplication as discussed in section 3.4.5. The diagonal

preconditioning requires only one vector-vector multiplication and no communication; thus

the time spent on the preconditioning is negligible, and the total CPU-time required for

one iteration in the last simulation would be of order 4E − 3 to 5E − 3 sec.

108

Figure 3.12: (in color) Blue Gene: Load imbalance in preconditioning stage. Up-
per plot - simulation with ScaLapack pdgemv function. Lower plot - simulation with
NεκT αr pdgemv function. Problem size: 19270 tetrahedral elements, fifth-order poly-
nomial approximation. Simulation performed on IBM Blue Gene supercomputer using 128
CPUs. Performance was monitoring with IPM tool [1].

109

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

������

ROW 0

ROW 1

COL 2COL 1COL 0 XY

Figure 3.13: Parallel matrix-vector multiplication (VSC)−1y = x. The operator VSC is
distributed on 3 × 2 processors grid. The vector y is partitioned into three sub-vectors
according to number of columns, and vector x is partitioned into two sub-vectors according
to number of row of the processor grid

.

Figure 3.14: Gathering of values of the vector y within rows in processor mesh.

110

0 500
16

250

U−velocity

N
it

0 500
16

250

V−velocity

0 500
12

128

W−velocity

0 500
5

10

15

20

25

N
it(D

ia
g)

 /
N

it(L
E

B
P

)

Time step index
0 500

5

10

15

20

25

Time step index
0 500

5

10

15

20

25

Time step index

0 500
24

1050

Pressure

0 500
20

30

40

50

N
it(D

ia
g)

 /
N

it(L
E

B
P

)

Time step index

Figure 3.15: Number of PCG iterations for three velocity components and pressure. Upper
plots: number of iterations: solid line - LEBP, dash line - Diagonal Preconditioner. Lower
plots - reduction in iteration count. Problem size: 67456 Tetrahedral elements with eight-
order polynomial approximation.

111

512 1024 2048 3072

10
0

10
1

of CPU

m
ea

n
cp

u−
tim

e
pe

r
tim

e
st

ep
 [s

ec
]

 X 7.72

Diagonal Prec.
Low Energy Prec.

Figure 3.16: Blue Gene (SDSC): Mean CPU-time for simulation with Diagonal and Low
Energy Basis Preconditioner. Problem size: 67456 Tetrahedral elements with eight-order
polynomial approximation. Computation performed using 1 processors per node.

512 1024 2048
1

1.5

2

2.5

3

3.5

4

CPU

T
51

2/T
N

P=6
P=8
P=10
ideal

Figure 3.17: CRAY XT3 (ERDC): Left: Performance of NεκT αr with LEBP. Parallel
speed-up. Problem size: 120,813 Tetrahedral elements with 6th, 8th and 10th order poly-
nomial approximation. Right: geometry of the computational domain, color corresponds to
pressure values.

112

0 10 20 30 40
0

1

2

3

4

5

6

7

8

x 10
−3

iteration index

iteration

preconditioning

coarse vert. solve

P=5

0 10 20 30 40
0

1

2

3

4

5

6

7

8

x 10
−3

iteration index

iteration

preconditioning

coarse vert. solve

cp
u−

tim
e

[s
ec

]

P=4

Figure 3.18: CRAY XT3 (PSC): Performance of NεκT αr with LEBP. CPU-time balance.
Problem size: 19,270 Tetrahedral elements with 4th (left) and 5th (right) order polynomial
approximation. Computational domain of carotid artery, illustrated in figure 3.7. Compu-
tation performed on 128 CPUs.

113

3.5 Acceleration of Iterative Solution of Dynamical Systems

Effective parallel preconditioner is only one possibility to accelerate iterative solver. In

addition to efficient preconditioning, the number of conjugate iterations can be significantly

reduced by providing a good initial state. In this section we explore two approaches to

accelerate iterative solver by improving the initial state.

Discretization of first order (in time) PDEs

∂u

∂t
= f(t,u,x) ⇒ un+1 − un

∆t
= f(t,u,x)

often requires iterative solution of a system of equations Aun+1 = b, and it is common

practice to use the solution from a previous time step un as an initial state provided for

iterative solver. However, approximate solution for un+1 can be obtained using various

techniques. Depending on the method and the smoothness of u(t), the distance between

approximate solution (here and thereafter denoted by ||un+1
ap − un+1||) can be significantly

smaller than ||un − un+1|| leading to reduction in number of iterations. Reduction in the

iteration count obviously leads to a faster solution and enhances the overall parallel efficiency

of a solver, hence it is crucial that computing uap will require a minimal computational effort.

We focus on two methods to compute un+1
ap . The first method is based on a simple

extrapolation (in time)

un+1
ap (x) =

N−1∑

k=0

βku
n−k(x). (3.9)

The coefficients βk are computed using Lagrange extrapolation technique. The method is

general and can be applied in conjunction with the finite difference, finite element and spec-

tral spatial discretization. In spectral methods the solution is approximated by expansion

u(t,x) =
M∑

m=1

ûm(t)φm(x). (3.10)

In the family of nodal spectral methods the values of a function u(t,xj) at quadrature

points xj are the same as the values of coefficients ûj(t) since φm(xj) = δm,j . In the

modal spectral approximation the values ûm(t) are grid-independent, hence two choices for

time extrapolation are available: the solution can be extrapolated in physical space or in

modal space. The two choices are not always equivalent, which will be discussed in section

114

3.5.1. We will denote the operator to calculate the approximate solution using the simple

extrapolation by uap = EXT (u).

The second method is based on proper orthogonal decomposition (POD), where the field

u(t,x) is represented by orthogonal temporal (aq(t)) and spatial (Ψq(x)) modes:

u(t,x) =

Q∑

q=1

aq(t)Ψq(x)

The approximate solution uap is obtained from

uap(t + ∆t,x) =

Q∑

q=1

aq(t + ∆t)Ψq(x),

where values aq(t + ∆t) are extrapolated from aq(t − m∆t), m = 0, ..., Q − 1. We will

denote the operator to calculate the approximate solution using POD by uap = POD(u).

The two acceleration techniques are applied in solving Navier-Stokes equations with

NεκT αr . Specifically, we apply the extrapolation techniques to predict better the initial

state for Helmholtz equation for the velocity. Velocity is a dynamic variable and it is a

smooth function in time, hence a good prediction of un+1 can be obtained via extrapola-

tion methods. Pressure is not a dynamic variable but a constrain required to ensure the

incompressibility of the velocity field, for that reason it is difficult to obtain a good initial

state for the pressure solver.

115

3.5.1 Prediction of Numerical Solution Using Polynomial Extrapolation

Approximation of initial guess un+1
ap is computed using formula (3.9), and can be performed

in physical space or in the modal space (3.10). The numerical algorithm implemented in

NεκT αr requires transforming velocity values from the modal to physical space in order

to compute the non-linear term. Hence, choosing to perform extrapolation of solution in

physical space will not require additional computationally expensive operation. However, it

is still advantageous to perform the extrapolation using modal values ûm(t) due to several

reasons:

• Transformation from the physical to modal space is computationally expensive. Ex-

trapolation performed in the physical space will require solution of a projection prob-

lem Mûn+1
ap = (un+1

ap ,Φ), which demands considerable computational effort. To re-

duce the computational cost it is possible to solve a local projection problem (ele-

mentwise) directly using precomputed inverse of the mass matrix (Me)−1. The local

projection destroys the C0 continuity, hence additional computational effort might be

needed if C0 continuity of ûn+1
ap is required. It is possible to maintain the C0 require-

ment even if ûn+1
ap is computed by a local projection, such procedure is equivalent

to solution of a projection problem defined on Ωe with unique Dirichlet boundary

conditions computed on the interfaces of elements.

• The number of modal degrees of freedom is typically lower than the number of quadra-

ture points required for projection operations, consequently extrapolation in the modal

space requires less floating point operations and storage.

• Solution of a linear system arising in spectral element discretization, is typically per-

formed using Schur decomposition technique which decouples the boundary and inte-

rior modes. The interior modes are typically computed using direct solver, whereas,

the boundary modes are computed iteratively, hence extrapolation of the interior

modes is not required, which leads to considerable computational savings.

In this study uap = EXT (u) is computed using modal coefficients and the C0 continuity

is enforced by overwriting the values of boundary modes of one element with those from

the adjacent element. We note that such approach leads to slightly different values of ûn+1
ap

than would be obtained from solution of a global projection problem, however, it is the least

116

expensive technique from computational standpoint and it preserves the spectral accuracy.

We also remind, that we employ the extrapolation not to compute the velocity field un+1,

but to obtain an initial guess for the iterative solver. Hence the accuracy and stability of a

numerical scheme are not affected by methods for un+1
ap approximation.

Computational complexity: The aforementioned extrapolation technique requires storing

solution from the previous N time steps. The required storage per field is then N ×
Nqp × sizeof(double) bytes, where Nqp is the total number of quadrature points if the

extrapolation is performed in physical space; alternatively Nqp is the number of global

boundary modes. Additional storage for un+1
ap is not required since the data can be written

instead of solution field from the time step tn−N+1. At each time step one dscal and (N −1)

daxpy1 calls to BLAS library are required. Transformation of a solution into modal space

requires Nel direct solves of a linear system Meûn+1
ap = (un+1

ap , φ) which can be performed

using precomputed LU factorization or inverse of a symmetric operator M, note that only

solution for boundary modes is required. If uap is a vector field then one system with

multiple right hand sides should be solved, which is more efficient then solving a series of a

single right hand side systems.

1dscal function computes y[i] = ax[i]; daxpy function computes y[i] = ax[i] + y[i].

117

3.5.2 Prediction of numerical solution using POD

POD is a very effective method for identifying an energetically dominant set of eigenmodes

in an evolving system. For a set of data u(t,x), represented as a function of physical space x

and time t, POD determines a set of orthogonal basis functions of space Ψq
i (x) and temporal

modes aq(t); here i = 1, 2, 3 is the coordinate index and q = 1, 2, ..., Q is the mode index.

We employ the method of snapshots to compute the POD modes in a time interval

T = (Q − 1)∆t. The inner product between every pair of velocity fields (snapshots)

C(t, t′) =
∫
Ω u(x, t)u(x, t′)dx is the temporal auto-correlation covariance matrix C(t, t′)

used as the kernel. The temporal modes aq(t) are the eigenvectors of the C(t, t′) matrix

and are calculated by solving an eigenvalue problem of the form:
∫
T C(t, t′)aq(t′)dt′ =

λqaq(t). Using orthogonality, the POD spatial modes Ψq
i (x) are calculated by Ψq

i (x) =

(λq)−1
∫

aq(t)ui(t,x)dt. The eigenvalue of a single mode represents its contribution to the

total kinetic energy of the flow field
∫
Ω〈ui(x)ui(x)〉dx which is equal to the sum over all

eigenvalues. Therefore, the eigenspectrum of the decomposition can be regarded as the

primary information indicating the importance of each individual mode from the energetic

point of view. The modes with the lowest numbers are the most energetic modes and

correspond to coherent flow structures.

In order to approximate the solution at time step tn+1 the following procedure is em-

ployed:

1. The solution fields from time steps tn−k, k = 0, 1, ..., Q − 1 are stored in physical

space and at every time step tn the correlation matrix C is constructed:

Ci,j = (u(ti,x),u(tj ,x)), i, j = 1, ..., Q.

There is no need to recompute C for all indices i, j = 1, ..., Q at every time step, but

only the inner product (u(tn,x),u(tj ,x)), j = 1, ..., Q. The inner product of fields

computed at times tn−k, k = 0, ..., Q − 1 does not change. The correlation matrix is

computed in parallel and one global summation of a vector of a size Q is required. We

also considered a variation of the POD of a vector field, where the velocity components

are treated as independent (uncorrelated) scalar fields. The computational complexity

of such method is only slightly higher: a) global summation of a vector of size 3Q is

required, and b) the eigenvalues and eigenvectors of three correlation matrices (instead

118

of one) should be computed. To distinguish the two approaches we will denote the

first one by uap = POD1(u), while its variation will be denoted by uap = POD2(u).

2. The eigenvalues and eigenvectors (aq(t)) of C are calculated at each time step, then

the spatial modes Ψq
i (x), q = 1, ..., QR are computed. The value of 1 ≤ QR ≤ Q is

computed at each time step using the following criteria:

a) The total energy is computed: E1,Q =
∑Q

k=1 λq. The value of 1 ≤ QR ≤ Q is then

chosen such that the first QR eigenvalues contribute E1,Q −TOL POD of the kinetic

energy.

b) Alternatively, the threshold criteria can be applied, such that the QR parameter

satisfies λq < TOL POD, ∀q > QR.

3. The spatial modes Ψq
i (x), q = 1, ..., QR are computed. Typically QR < Q, which leads

to considerable computational savings.

4. The values of aq(tn+1) are computed using formula (3.9).

5. The approximate solution field is computed from

uap(tn+1,x) =

QR∑

q=1

aq(tn+1)Ψq
i (x). (3.11)

Note, that uap(tn+1,x) is computed in physical space and then it is transformed into the

modal space which is typically the most computationally expensive step of the POD-based

extrapolation.

Computational complexity: The POD-based extrapolation technique requires 2 × Q ×
Nqp × sizeof(double) bytes storage per field - half for solution at previous time steps and

half for spatial modes. Memory requirements for the correlation matrix C is Q × Q and

the same memory is required to store the temporal modes. At each time step the following

arithmetics is required:

i) Q values of C are computed via numerical integration

C1,i =
∑Nqp

j=1 [u(tn,xj)u(tn−i,xj)wj], i = 0, ..., Q − 1, here wj are the integration weights;

This requires one dvmul operation2 and Q vector-vector dot products.

2function dvmul computes z[i] = x[i] · y[i].

119

ii) eigenvalues and eigenvectors of C are computed by dsyev function3.

iii) QR spatial modes are computed by performing one dscal and QR − 1 daxpy operations

for each field.

iv) field uap is computed from the spatial and temporal modes, this operation holds the

same computational complexity as (iii).

v) Transformation of a solution into modal space, which computational complexity has been

estimated in section 3.5.1.

3function dsyev computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix.

120

3.5.3 Results

To investigate numerically the effectiveness of the extrapolation methods we considered sev-

eral cases: a) turbulent flow in stenosed carotid artery, b) transient flow in the domain of

brain blood vessels, consisting of very large number of spectral elements. Before we proceed

further we want to familiarize the reader with the following notations:

Nel - number of spectral elements.

∆t = tn − tn−1 - time step size, n is the time step index.

P - order of polynomial expansion for spatial approximation.

In this section xk denotes a solution vector at iteration k and vector b denotes a suitable

forcing term.

||a|| =
√∑N

i=1 a2
i .

rk = ||Axk − b|| - residual, at iteration k.

rk
Ns = rk/Ns - residual scaled by the length of vector x (number of unknowns).

rk
s = 1

||x0||
||Axk − b|| - residual scaled by the initial guess.

The accuracy of solver has been verified by simulating unsteady flow in a pipe, forced

by periodically varying pressure gradient. The numerical solution was compared to the

analytical solution (Womersley velocity profile). In table 3.7 we show the error computed

for u and w (streamwise) velocity components; comparable accuracy is achieved for all

choices of the initial guess.

P x0 = un x0 = EXT (u) x0 = POD1(u)

4 1.0E-3 (4.3E-3) 1.0E-3 (3.5E-3) 1.0E-3 (3.5E-3)

6 1.8E-5 (2.1E-4) 2.0E-5 (5.2E-5) 2.0E-5 (5.2E-5)

8 9.9E-7 (7.3E-6) 8.5E-7 (3.2E-6) 8.5E-7 (3.2E-6)

Table 3.7: Simulations of unsteady flow in a pipe: L∞-error for u (w - streamwise) velocity
components. Initial guess (x0) for conjugate gradient solver is provided by: a) x0 = un

- solution at time step tn, b) x0 = EXT (u) - simple extrapolation with N = 4, and c)
x0 = POD1(u) - POD-based extrapolation with Q = 4. ∆t = 2.0E − 4, stopping criteria
for conjugate gradient solver: rk

s < TOL CG = 1.0E − 12

Performance of the preconditioned conjugate gradient solver in conjunction with differ-

ent acceleration techniques has been examined by monitoring the residual and relative error

in the solution. Unsteady flow simulations in the domain of carotid artery were performed

121

using the three approaches for initial guess approximation, namely, x0 = un, x0 = EXT (u)

and x0 = POD1(u). The stopping criteria for the iterative solver was rk < 1E − 8. In

figure 3.19 we show typical convergence rate of rk
Ns and of the relative error in the solution

||xk − xk−1||/Ns, where Ns is the size of vector x, in the simulations considered in this

section Ns is of order O(1E5) to O(1E6). In solutions of Helmholtz equations for velocity

with LEBP the convergence rate of the residual was log10(rk
Ns) ∝ −0.3k. In simulations

with diagonal preconditioner we obtained convergence rate log10(rk
Ns) ∝ −0.021k + f(k)

for all choices of initial guess, here f(k) is a periodically varying function reflecting non-

uniform convergence rate. In figure 3.19 we present the convergence rate monitored in the

aforementioned simulations. The data in figure 3.19 was collected at time step n = 150,

analysis of data from other time steps provided similar results. The significant difference in

the initial residuals, observed in figure 3.19, and consequently in the number of iterations

is due to the choice of initial guess.

5 10 15 20 25 30 35
10

−15

10
−10

10
−5

k

X 104

A: rk
Ns

A: || xk− xk−1||/Ns

B: rk
Ns

B: || xk− xk−1||/Ns

C: rk
Ns

C: || xk− xk−1||/Ns

100 200 300 400 500
10

−15

10
−10

10
−5

k

X 104

A: rk
Ns

A: || xk− xk−1||/Ns

B: rk
Ns

B: || xk− xk−1||/Ns

C: rk
Ns

C: || xk− xk−1||/Ns

Figure 3.19: Preconditioned conjugate gradient solver: effect of improved initial guess.
Convergence of residual (rk

Ns) and solution (||xk − xk−1||/Ns). A : x0 = un, B : x0 =
EXT (u), N = 3, C : x0 = POD1(u), Q = 3. Solution with low energy (left) and diagonal
(right) preconditioners. P = 6, ∆t = 1.0E − 4, Nel = 22, 441.

The data presented in figure 3.19 shows that the difference between two consecutive

solutions (xk − xk−1) is bounded by the residual, moreover, in simulation with LEBP

||xk − xk−1|| ≈ rk−1. Indeed,

PA(xk − xk−1) = rk − rk−1 ⇒ ||PA(xk − xk−1)|| < ||rk|| + ||rk−1|| < 2||rk−1||,

where PA is a preconditioned operator A. The LEBP is spectrally close to the operator

122

A, hence PA ≈ I, which explains the short distance between ||xk − xk−1|| and rk−1.

The relatively constant rate of convergence of rk
Ns and weak dependence of the condition

number κ corresponding to the LEBP on the computational grid allow good estimate of the

number of conjugate gradient iterations for the Helmholtz solver:

Nit ≈ log10(r0/TOL CG)

0.3
.

In order to estimate the Nit the initial residual must be estimated in terms of known

parameters such as ∆t and TOL CG. The value of r0 is related to the accuracy in prediction

of the initial guess x0:

AxK − b = rK ,Ax0 − b = r0 ⇒ ||A(x0 − xK)|| ≤ ||r0|| + ||rK || < ||r0|| + TOL CG,

here K is the index of the last iteration. From the last equation we obtain ||A(x0 −
un+1)|| < ||r0|| + TOL CG. That is estimating accuracy of prediction of the initial guess

||x0 − un+1||/Ns will provide an estimate on r0
Ns.

In the case of x0 = un the initial residual is r0
Ns ≈ ∆tu̇ (where u̇ = ∂u/∂t), which is the

dominant error.

In the case x0 = EXT (u) the initial residual depends on several factors:

a) the extrapolation error ǫext ∝ (∆t)Nu(N). The upper limit corresponds to N = 1, that

is the error is of order O(∆t)u̇.

b) If the extrapolation error is very small then the dominant error in prediction of the

solution at time step tn+1 will be due to termination of the conjugate gradient iterations

at previous time steps prior to reaching rk = 0, and the error can be estimated as ǫCG ≈
TOL CG/Ns. Assuming that ||PA|| = γLEBP ||I||, with γLEBP > 1 we can relate ǫCG to the

residual as ǫCG = ||x̂ − x̂K ||/Ns ≤ TOL CG/Ns, where x̂ is the exact solution of Ax̂ = b

and x̂K is the solution obtained at the last conjugate gradient iteration. The data presented

in figure 3.19 shows that for LEBP the value of γLEBP ≈ 1+δ, while for the diagonal precon-

ditioner γDP >> γLEBP . Then x0 = EXT (u) + EXT (TOL CG) = EXT (u) + TOL CG.

The ǫCG also contaminates the right-hand-side of the Helmholtz equation through the non-

linear and pressure term, we can estimate that the last error is of order C1TOL CG. Nu-

merical experiments indicate that the constant C1 is very small and it is in the range of 1

to 10. If the extrapolation error is negligible, the convergence of the Helmholtz solver is

123

expected in just one to log10(10)/0.3 ≈ 3.3 iterations.

In the case of x0 = POD(u) the initial residual depends on:

a) the error associated with evaluation of the temporal and spatial POD modes. This error

increases if the correlation matrix is illconditioned.

b) extrapolation error in computing aq(t + ∆t) this error can be estimated as ǫext =

(∆t)Q
∑QR

q=1

(
λqa

(Q)
q

)
. The first temporal mode a1(t) is typically smooth function and

high-order derivatives of a1(t) are negligible. It is usually the high-order temporal modes

that tend to oscillate, fortunately the contribution of this modes is usually negligible, i.e.,

λq/E << 1, q > 1.

c) error due to termination of the conjugate gradient iterations ǫCG, which already has been

estimated above.

Note that high-order polynomial extrapolation may lead to erroneous results related to high

Lebesgue constants, which grows exponentially for equidistant grid. In the examples pro-

vided bellow we show that the number of conjugate gradient iterations (with LEBP) indeed

fits the provided estimate.

The results presented in table 3.7 and figure 3.19 suggest that, in terms of accuracy,

the performances of a simple and POD-based accelerator are equivalent. Both acceleration

techniques lead to significant reduction in the iteration count. There are several choices to

define stopping criteria for the conjugate gradient solver. In the performed experiments the

iterations were terminated when rk < TOL CG = 1E−8. The solution-independent criteria

allowed consistent comparison between the three methods, however, the TOL CG value

used for the tests was very low. In the following experiments we will use TOL CG typically

employed in many engineering applications and the stopping criteria for the iterative solver

will be rk < TOL CG = 1E − 5.

Turbulent flow simulations in stenosed carotid artery

In this section we consider a simulation of unsteady flow in domain of stenosed carotid artery.

The narrowing of the internal carotid artery creates a strong jet-flow, due to curvature

and geometric asymmetry the jet adheres to arterial wall and becomes unstable when flow

exceeds certain speed. In figure 3.20 we present typical velocity data, monitored downstream

of the stenosis, high frequency oscillations signify turbulence.

In table 3.8 we compare the effectiveness of the acceleration techniques, both technique

124

193.5 194 194.5 195 195.5
−10

−5

0

5

u(
t)

193.5 194 194.5 195 195.5
−5

0

5

10
v(

t)

193.5 194 194.5 195 195.5
−5

0

5

10

w
(t

)

t

Figure 3.20: (in color) Unsteady flow simulations in stenosed carotid artery. Left: Non-
dimensional velocity monitored downstream stenosis. The oscillations signify unsteadiness
of a flow. Right: a high-speed region - red iso-surfaces, back-flow regions - blue iso-surfaces;
instantaneous path-lines of swirling flow and cross-stream secondary flows.

x0 = un x0 = EXT (u), N = 3 x0 = POD(u), Q = 3

P r0
Ns Nit r0

Ns Nit Te r0
Ns Nit Te

6 2.8E-4 24 1.6E-8 9.1 1.3E-3 1.6E-8 9.1 3.6E-2

10 1.7E-5 19.2 1.9E-9 7.1 1.7E-3 1.9E-9 7.1 1.1E-1

Table 3.8: Turbulent flow simulations in stenosed carotid artery: performance of itera-
tive solver with different initial guesses. r0

N , Nit, Te - average (over time) initial residual
(normalized by the number of unknowns), number of iterations (Nit) and CPU-time (in
seconds) required for extrapolation at each time step. The initial guess is provided by:
a) x0 = un - solution at time step tn is provided as an initial guess, b) x0 = EXT (u)
- initial guess computed by a simple extrapolation, and c) x0 = POD1(u) - initial guess
computed with POD. Data is averaged over time steps 100 to 4,000, preconditioner: low
energy; ∆t = 5.0E − 5, P = 6, 10, Nel = 22, 441.

show comparable performance. Reduction of the iteration count in simulation with higher

resolution (P = 10) is intriguing. First, we note that the LEBP exhibits excellent p- and

h-scaling. Second, we may point out to two reasons for such behavior:

i) The accuracy of extrapolation depends on the smoothness of the extrapolated function.

In a separate study we verified that relatively accurate solution for the given problem may

be obtained with P ≥ 8. Simulation with P = 6 leads to under resolved solution and

erroneous oscillations, which disappear in simulations with P = 10.

ii) Stopping criteria for conjugate gradient iterations. In both simulations the iterations

were terminated when rk < TOL CG = 1E − 5. Due to higher resolution, the number

125

of unknowns corresponding to P = 10 is higher than in simulation with P = 6, hence

rk
NsP=6

> rk
NsP=10

. Lower tolerance stopping criteria minimizes the error of iterative solver.

Assume that xP1
was computed with higher spatial resolution than xP2

, but with the same

stopping criteria for the conjugate gradient iterations. Let DOF1 (DOF2) be the number

of unknown degrees of freedom corresponding to xP1
(xP2

), then rK
DOF1

< rK
DOF2

where K

signifies that the residual corresponds to the last iteration, i.e. rK < TOL CG, consequently

xP1
(t) = xP2

(t) + error(t), error(t) ≈ TOL CG/DOF1. (3.12)

Next, lets apply the extrapolation formula on both parts of (3.12) to obtain the initial guess

for solution at time step t + ∆t. The predicted solution based on the right hand side of

(3.12) is polluted by an extrapolated error term, which limits its accuracy.

The lower number of iteration corresponding to high-order polynomial approximation

is appealing particularely in the context of parallel computing. It is well known that better

scalability is achieved with higher order polynomial expansion since the ratio of computa-

tion versus communication is increasing. We recall that the most communication intensive

steps of the Navier-Stokes solver are the Helmholtz and Poisson solvers; for example, the

calculation of the non-linear term requires no communication at all. The low iteration

count reduces the communication cost in the conjugate gradient solver and the volume

of computation linearly, hence the overall scalability of the Navier-Stokes solver increases,

particularly for high P .

It is reasonable to assume that higher order extrapolation may lead to more accurate

results, as long as the extrapolated field is sufficiently smooth. In table 3.9 we present

results obtained with different order of extrapolation (N, Q = 3, N, Q = 4 and N, Q = 5).

About two order of magnitude improvement in the accuracy of initial guess x0 = EXT (u)

is observed, and the reduced number of iterations reflect this improvement. However, fifth-

order accurate extrapolation (N = 5) does not lead to lower initial residual, which can be

explained by insufficient TOL CG and possible Runge effect related to high-order interpo-

lations on equidistant grid. In the case of x0 = POD1(u) and Q = 4 the improvement is

not significant; and with higher POD expansion order (Q = 5) it even gets worse. The rela-

tively poor performance of the POD-based extrapolation is due to illconditioned correlation

matrix. For example, the condition number of the correlation matrix formed at time step

126

410 is of order 1016. Large condition number results in error in computation of temporal

and spatial POD modes, and, consequently, relatively high extrapolation error.

x0 = EXT (u) x0 = POD1(u)

r0
Ns Nit Te r0

Ns Nit Te

N,Q=3 1.6E-8 9.1 1.3E-3 1.6E-8 9.1 3.6E-2

N,Q=4 2.75E-10 3.7 1.3E-3 1.16E-8 6.75 3.9E-2

N,Q=5 1.94E-10 3.7 1.3E-3 3.33E-8 9.2 5.5E-2

Table 3.9: Turbulent flow simulations in stenosed carotid artery: high-order extrapolation.
r0
Ns, Nit, Te - average (over time) normalized initial residual number of iterations (Nit)

and CPU-time (in seconds) required for extrapolation at each time step. The initial guess
is provided by: a) x0 = un - solution at time step tn is provided as an initial guess, b) x0 =
EXT (u) - initial guess computed by a simple extrapolation, and c) x0 = POD1(u) - initial
guess computed with POD. Data is averaged over time steps 100 to 4,000, preconditioner:
low energy; ∆t = 5.0E − 5, P = 6, Nel = 22, 441.

In tables 3.8 and 3.9 we showed data averaged over many time steps and over the

three components of the velocity field. In figure 3.21 we compare the number of iterations

required at every time step for each of the three velocity components (u, v, w), up to eight-

fold reduction in iteration count is observed. The reduction is due to improved initial guess,

which minimize the initial residual r0, also shown in figure 3.21. In table 3.10 we compare

the number of iterations and initial residual (averaged over 40,000 time steps) for three

choices of the initial guess: a) solution from time step tn, b) velocity field extrapolated from

four previous time steps, and c) velocity field reconstructed by POD technique, also using

data from four previous time steps. Slightly higher number of iterations is observed when

the initial guess is computed using POD.

The low iteration count observed in the aforementioned simulation was due to two rea-

sons: 1) good initial guess and 2) application of very effective parallel low energy precondi-

tioner. The low energy preconditioner requires considerable computational effort, blocking

collective and non-blocking point-to-point communications and also matrix-vector multipli-

cations. The diagonal preconditioner requires no communication and insignificant computa-

tional effort, hence it might be feasible to use the less effective but embarrassingly parallel

preconditioner in conjunction with the methods providing a good initial guess. In table

3.11 we compare the performance of the conjugate gradient solver with the low energy and

diagonal preconditioner and two choices of initial guess. It is clearly seen that the choice of

127

0 1 2 3 4

x 10
4

0

10

20

u (a)
 I

 II

0 1 2 3 4

x 10
4

0

10

20
v (b)

 I

 II

0 1 2 3 4

x 10
4

0

10

20

w

time step index

(c)
 I

 II

0 1 2 3 4

x 10
4

10
−8

10
−3

(d)

 I

 II

0 1 2 3 4

x 10
4

10
−8

10
−3

(e)

 I

 II

0 1 2 3 4

x 10
4

10
−8

10
−3

(f)

 I

 II

time step index

Figure 3.21: Turbulent flow simulations in stenosed carotid artery: (a-c) - number of it-
erations required by iterative Helmholtz solver for three velocity components. (d-f) - ini-
tial residual r0

N = f(uap), curve marked by I (II) correspond to un+1
ap = un (un+1

ap =
EXT (u), N = 4). ∆t = 5.0E − 5, P = 6, Nel = 22, 441.

low energy preconditioner is advantageous.

x0 = un x0 = EXT (u) x0 = POD(u)

Nit r̄0
Ns Nit r̄0

Ns Nit r̄0
Ns

u 17.97 2.60E-3 2.31 6.80E-8 3.33 1.99E-7

v 18.12 3.20E-3 2.42 7.56E-8 3.55 2.54E-7

w 15.53 5.46e-3 2.36 7.65E-8 2.48 6.62E-8

Table 3.10: Turbulent flow simulations in stenosed carotid artery: average number of iter-
ations (Nit) and average initial residual r̄0

N for three choices of initial guess: a) x0 = un -
solution at time step tn is provided as an initial guess, b) x0 = EXT (u) - initial guess com-
puted by a simple extrapolation with N = 4, and c) x0 = POD1(u) - initial guess computed
by via POD with N = 4. Data is averaged over time steps 100 to 40,000, preconditioner:
low energy; ∆t = 5.0E − 5, P = 6, Nel = 22, 441.

Simulations of a transient flow in Circle of Willis

In this section we consider a simulation of transient flow in domain of Circle of Willis (CoW)

reconstructed from MRI images of a human brain. The simulation is started from the initial

solution u(t = 0) = 0, steady velocity profile is imposed at three inlets of the domain. The

simulation time considered here is significantly lower than the time required to establish

a steady state solution. The size of the computational domain of CoW comparing to the

domain of carotid artery is very large. CoW consists of 22 arteries and is discretized into

128

Nit CPU-time (sec)

preconditioner x0 = un x0 = EXT (u) x0 = un x0 = EXT (u)

low energy 17.21 2.36 0.188 0.037

diagonal 170.8 37.29 1.09 0.25

Table 3.11: Turbulent flow simulations in stenosed carotid artery: average number of itera-
tions (Nit) and average CPU-time required by three Helmholtz solves (for the three velocity
components together) for two choices of initial guess: a) x0 = un - solution at time step tn

is provided as an initial guess, b) x0 = EXT (u) - initial guess computed by a simple ex-
trapolation with N = 4; and two preconditioners: low energy and diagonal; ∆t = 5.0E − 5,
P = 6, Nel = 22, 441.

Nel = 162, 909 tetrahedral spectral elements. The flow is laminar and is characterized

by regions of recirculations and swirl. The main point of this section is to show that

the aforementioned techniques aiming to provide a good initial guess for iterative solver

can be successfully applied in simulations of a flow in very large computational domains.

The stopping criteria for conjugate gradient iterations is set to rk < TOL CG = 1E − 5

(rk
Ns ≈ 7.9E − 12). In figure 3.22 the convergence rate of residual is presented. The data

corresponds to time step 500; the presented residuals correspond to the u− component of

the velocity field, the results for v− and w− components are similar. We observe that that

an accurate prediction of the initial guess for PCG results in significantly faster convergence.

Another observation is that the rate of convergence of the residual is the same as in the

previous study, i.e., log10(rk
Ns) ∝ −0.3k and is independent of the initial guess.

In table 3.12 we compare the number of iterations required by the Helmholtz solver

with respect to three choices of initial guess. Similarly to the turbulent flow simulations, p-

refinement results in lower iteration count. The effect of improved initial guess is noticeable.

To understand the poorer performance of the POD-based extrapolation we monitor the

eigenspectra of the correlation matrix C at every time step (see table 3.13). The very

fast decay in the eigenspectra signifies that the correlation length between velocity fields is

significantly greater then the size of a time step, which results in ill-conditioned correlation

matrix. The correlation length in this simulation asymptotically approaches to infinity since

∂u/∂t → 0. The negative sign of the smallest eigenvalue λ4 is due to ill-conditioned C.

Since the number of modes used for reconstruction of the velocity field (QR, see the forth

column in table 3.13) is computed dynamically, the negative λ4 will restrict the QR < 4.

We can observe that the number of iteration is correlated with the QR parameter, and for

129

0 5 10 15 20 25
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

k

lo
g 10

(r
k N

s)

y = −0.3k −3.6

y = −0.3k −9.6

 x0= un

 x0=EXT(u)

Figure 3.22: Flow simulations in Circle of Willis: effect of improved initial guess and
convergence of residual (rk

Ns) in solution with preconditioned conjugate gradient solver. The
dash lines depict the linear least square approximation for the convergence rate. N = 4,
P = 4, Nel = 162, 909, ∆t = 5.0E − 4, preconditioner: low energy.

QR = 4, the number of iteration is comparable to what is achieved with x0 = EXT (u).

x0 = un x0 = EXT (u) x0 = POD(u)

Nit r̄0
Ns Nit r̄0

Ns Nit r̄0
Ns

P=3 24.60 2.99E-4 3.70 3.34E-10 6.81 9.70E-9

P=4 22.15 6.01E-5 3.15 1.06E-10 5.81 2.05E-9

P=5 20.85 1.77E-5 3.27 7.22E-11 4.94 5.90E-10

P=6 18.80 8.20E-6 2.67 4.50E-11 4.06 2.87E-10

Table 3.12: Flow simulations in Circle of Willis: performance of iterative solver with dif-
ferent initial guesses. Average number of iterations (Nit) and average normalized initial
residual r̄0

N for three choices of initial guess: a) x0 = un - solution at time step tn is provided
as an initial guess, b) x0 = EXT (u) - initial guess computed by a simple extrapolation with
N = 4, and c) x0 = POD1(u) - initial guess computed by via POD with Q = 4. Data is
averaged over time steps 300 to 3,000. Nel = 162, 909, ∆t = 5.0E − 4, preconditioner: low
energy.

Acceleration of Poisson solver for the pressure

In order to accelerate convergence of the Poisson solver for the pressure, the extrapolation

of the pressure field from the solutions at the previous time step has been applied. In figure

3.23 we compare the number of iterations required by the Poisson solver and plot the con-

vergence rate of the residual. Computing initial guess from for the pressure solver by the

extrapolation indeed reduces the number of conjugate gradient iterations. In many numer-

130

Uit Vit Wit QR λ4 λ3 λ2 λ1

7 6 7 3 -8.03e-14 3.37e-10 9.75e-05 1.38e+04

7 7 7 3 -8.96e-13 3.35e-10 9.74e-05 1.38e+04

4 4 4 4 1.01e-12 3.37e-10 9.73e-05 1.38e+04

7 6 7 3 -1.26e-12 3.38e-10 9.72e-05 1.38e+04

8 8 8 3 -6.90e-13 3.36e-10 9.72e-05 1.38e+04

7 7 7 3 -7.13e-13 3.39e-10 9.71e-05 1.38e+04

4 3 4 4 1.57e-12 3.39e-10 9.70e-05 1.38e+04

7 6 7 3 -1.86e-12 3.40e-10 9.70e-05 1.38e+04

4 3 4 4 4.05e-13 3.39e-10 9.69e-05 1.38e+04

3 3 3 4 1.41e-13 3.39e-10 9.68e-05 1.38e+04

Table 3.13: Flow simulations in Circle of Willis: performance of POD-based accelerator.
Uit, Vit and Wit - number of iterations required for solution of Helmholtz equations for
velocity at times teps 2991 to 3000. QR - number of POD modes used for velocity field
reconstraction. λi, i = 1, 2, 3, 4 - eigenvalues of correlation matrix C. Q = 4, P = 4,
Nel = 162, 909, ∆t = 5.0E − 4, preconditioner: low energy.

ical experiments we observed that improving the initial guess for the Poisson solver by the

polynomial extrapolation with N = 2, 3 reduced the number of iteration by approximately

50%, however, for higher order extrapolation (N ≥ 4) the iteration count started to grow.

131

200 400 600 800 1000
5

10

15

20

25

time step index

N
it

 N=1

 N=2

 N=3

0 5 10 15 20 25
−12

−11

−10

−9

−8

−7

−6

k

lo
g 10

(r
k N

s)

y = −0.23k −6.2

y = −0.25k −7.9
y = −0.15k −9.8

N=1
N=2
N=3
N=4

Figure 3.23: Flow simulations in Circle of Willis: effect of improved initial guess for the
pressure and convergence of residual (rk

Ns) in solution with preconditioned conjugate gradi-
ent solver. Top: number of iterations required by Poisson solver for the pressure during the
first 1000 time steps. Bottom: convergence of residual at time step 500. The dash lines de-
pict the linear least square approximation for the convergence rate. P = 4, Nel = 162, 909,
∆t = 5.0E − 4, preconditioner: low energy.

132

3.6 Summary

Chapter 3 focuses on robustness of iterative solution of linear system Ax = b, where A

is a symmetric positive definite matrix. The linear system is solved using preconditioned

conjugate gradient method.

In the first part of Chapter 3 we extend the work of Sherwin&Casarin [76] on the low

energy preconditioner and associated with it coarse space linear vertex solve preconditioner.

Specifically, we improve the robustness of the low energy preconditioner for prismatic ele-

ments, and developing a parallel coarse space linear vertex solver. Platform-specific opti-

mizations were considered. Very good scalability in the solution of large scale problems on

up to 4096 processors was achieved. In particular, the parallel efficiency increases with the

polynomial order of the spectral/hp element. The preconditioner was successfully applied

to simulations of unsteady bioflows in domains with complex geometry, where the dominant

cost is due to the elliptic solves. We show that the LEBP and the coarse space linear ver-

tex solver scale on up to 4096 processes of CRAY XT3 and 3072 processes of BlueGene/L

(maximum available at the time of the study).

In the second part of Chapter 3 methods to further increase effectiveness of iterative

solution of a system Ax = b are discussed. Specifically, two methods for approximation

of the initial guess are studied. As a benchmark problem unsteady 3D flow simulations in

very large and geometrically complex domain of arterial tree have been considered. The

acceleration techniques where applied for iterative solution of the Helmholtz equation for

the velocity and Poisson equation for the pressure. We show that the convergence of PCG

of Helmoltz solver can be achieved without sacrificing accuracy in just 2-4 iterations, in

addition the computational time and the parallel efficiency of a solver is improved. We

show that the convergence of PCG of Poisson solver for the pressure can also be improved

but since the pressure is not a dynamic variable, the accelerations techniques considered in

this study are less effective with respect to the Helmholtz solver for velocity.

The accurate estimate of solution at time step tn+1 has utmost importance in implicit

solution of non-linear partial differential equations. In general implicit solvers use large

size of time-step than their explicit counterpart due to superior stability. Extrapolation of

numerical solution on coarse mesh with POD might be have have a better accuracy than the

simple polynomial extrapolation, this assumption must be verified in the future research.

133

Here results corresponding to POD1 based extrapolation have been presented. Our

numerical experiments have shown that the use of x0 = POD1(u) and x0 = POD2(u)

techniques in most cases provided with similar results. The advantages of x0 = POD2(u)

appeared only in one simulation - unsteady flow in a pipe, where according to analytical

solution only one (streamwise) w-velocity component is not zero while the other two com-

ponents u = v = 0. In numerical solution values of u, v differ from the analytical solution

due to discretization error. Extrapolation with with x0 = POD1(u) considers a single

correlation matrix constructed from the inner product of the all three velocity fields, and

consequently only one set of eigenvectors is computed. The number of eigenmodes (QR)

employed to reconstruct the velocity field for all three components is then the same, which

may adversely affect the accuracy in prediction of the initial state for the u, v velocity

components. Specifically, an amplification of the numerical error may occur which conse-

quently will result in providing initial state that will only increase the number of iteration.

Use of x0 = POD2(u) allows to set up the QR parameter for each velocity component

independently, which in particular cases may help to reduce the number of iterations.

Chapter 4

Large-scale arterial flow simulation

4.1 Introduction

Figure 4.1: 3D model of major vessels and bifurcations of the human arterial tree recon-
structed with gOREK from a set of CT, DSA CT and MRA images. Colors represent
different parts of the model. Left: Aorta and adjacent arteries. Right top: Cranial arterial
network. Right bottom: Carotid artery.

Blood circulation in the human arterial tree is the envy of every engineer: for an average

134

135

adult, the blood travels in just one minute more than 60,000 miles, that is 1/4 of the distance

from the Earth to the moon. Simulating the human arterial tree is a grand challenge and

requires state-of-the-art algorithms and computers. A simple estimate of the enormous

resolution required can be obtained as follows: assuming that we use tetrahedral elements

to descritize the typical blood volume for a human (5 liter), with a 0.5mm edge for each

tetrahedron (and a corresponding volume of 0.0147mm3), we will require more than 339

million finite elements. For high-order discretizations, such as spectral/hp elements, the

number of grid points required is then 339M×(P +3)(P +2)2, which for (polynomial order)

P = 4 results in approximately 85.5 billions of grid points, an enormous number indeed!

Admittedly, this estimate is conservative because it is based on a uniform discretization of

arteries, arterioles and capillaries. However, such an estimate points to the fact that, at

present time, even with petaflop computing resources (performing up to 1015 operations per

second), the brute force approach of a full 3D simulation at all scales is not feasible and,

hence, a new hierarchical modelling approach for the human arterial tree is required; such

modelling reduces the problem size and corresponding computational complexity and can

be characterized by three distinct spatial length scales as follows:

1. The macrovascular network (MaN) consisting of large arteries, down to diameter of

0.5 mm, which are patient-specific and can be reconstructed from clinical imaging.

2. The mesovascular network (MeN) consisting of small arteries and arterioles, from

500 µm down to 10 µm, which follow a tree-like structure governed by specific fractal

laws [26, 105]. For example, the human brain contains about 10 million small arteries

and arterioles (this number is computed based on Murray’s law [63, 75] with a modified

index (q = 2.5) and asymmetric structure).

3. The microvascular network (MiN) consisting of the capillary bed, which follows a net-

like structure. Its topological statistics have recently been quantified for the human

brain in [26]. The typical number of capillary segments in the brain is more than 1

billion.

In order to make progress in simulating the human arterial tree, this hierarchical ap-

proach should involve simulations of two regimes. The first includes all arteries that can

be accurately imaged clinically at the present time (e.g. MaN ; see figure 4.1). The second

136

regime includes the subpixel dynamics (MeNand MiN , as described above) acting as clo-

sure to the large-scale arterial dynamics (MaN). Today, accurate simulations of the entire

MaNare possible on the emerging petaflop computers, whereas significant simplifications

are required for simulating MiNand MeN .

Over the past two decades, most studies of bioflows have considered a single bifurcation

as a model geometry. Recently, the widely available parallel computers, mostly in the

form of PC clusters, and their increasing use in biomechanics has led to simulations with

multiple bifurcations [36, 97, 27, 28] and even full-scale arterial trees on the supercluster

of distributed computers, such as the TeraGrid (http://www.teragrid.org), involving more

than 20 bifurcations computed on thousands of processors [35].

Briefly we can present the evolution of the large-scale blood flow dynamics modeling

as following. Till 2005 the state-of-the-art models considered 1D flow simulations in about

a hundred of arteries. At the same time the 3D simulations were performed in usually

simplified models of a few arterial bifurcations, while high resolution simulations where

performed in very small computational domains.

Figure 4.2: Blood flow simulation on distributed supercomputers. The disjoint 3D domains
are coupled by 1D domains

The first 3D simulation of blood flow in multiple arterial segments coupled with real-

time visualization was performed during the Supercomputing exhibition in Seattle at 2005

by Dong et al. [33]; this work considered a loose coupling of the 1D and 3D models. The

137

flowrates predicted by 1D simulation were imposed as inlet boundary conditions for discon-

tinuous three-dimensional domains (see figure 4.2). The solution in the 3D domains was

computed using hundreds of processors on four supercomputers, geographically distributed

across USA and also on one supercomputer in the UK. The communication was handled

using grid technology by MPICH-g2 library (recently replaced by the more advanced MPIg

library). The requirement for distributed computing was due to an insufficient number of

computer processors offered by each of the supercomputing centers. The new generation

of massively parallel supercomputers allows performing such simulations within a single

machine. From the perspective of parallel computing, this simulation was a significant

achievement [24]. Due to discontinuity in the 3D representation of the arterial network

the flow dynamics, particularly secondary flows, developed in one arterial segment did not

propagate to adjacent segments, and important information on interaction of the flow at

different arterial regions was lost. The contribution of the study presented in this Chapter is

in stepping up to the next level of modeling and algorithmical complexity in high-resolution

simulation of arterial flow in very large but continuous 3D computational domain. The

new development is in coupling of 3D domains directly, i.e., establishing interface boundary

conditions to exchange 3D data computed on both sides of interfaces in order to maintain

C0 continuity in velocity and pressure fields (see figure 4.3).

One of the first challenges in patient-specific arterial flow simulation is reconstructing

vascular geometry of arterial tree from medical images. The next challenge is setting-up

proper inflow-outflow boundary conditions. Flow simulations in geometrically complex ar-

terial networks involve many inlets and outlets and, unless the closure problem is solved

by simulating both MeNand MiN(a rather formidable task at present), proper bound-

ary conditions should be used to account for the neglected dynamics downstream. Next

challenge is performing numerical simulation. Current and projected advances in com-

puter architectures involving hundreds of thousands of processors cannot be exploited for

large-scale simulations of the human arterial tree (or of many other physical and biological

problems) based on existing domain decomposition algorithms and corresponding parallel

paradigms. Not only we have to address the tremendous complexity associated with data

transfer amongst thousands of of processors, but more fundamentally the solution of lin-

ear systems with billions degrees of freedom (DOFs) and corresponding condition number

exceeding one million is a rather formidable task.

138

Figure 4.3: Two patches A and B are connected by the interface boundary conditions.
Velocity computed at the outlet of A is imposed as Dirichlet boundary conditions at the
inlet of B; pressure and velocity flux computed at inlet of B are imposed as boundary
conditions at outlet of A.

Chapter 4 focuses on the three aforementioned challenges. In section 4.2 we briefly re-

view existing techniques for processing medical images in order to reconstruct the vascular

geometry. Then we present two new numerical methods developed for large scale 3D flow

simulations in arterial networks counting hundreds of arteries. The first method is designed

to seamlessly integrate an available clinical data (flow rates) in numerical simulations in

order to impose outlet boundary conditions. The theoretical and numerical study on the

new type of boundary conditions is presented in the first part of Chapter 4. The second

method addresses the numerical and computational challenges in solving billions degrees of

freedom problems on tens of thousands computer processors. Ultra-parallel flow simula-

tions on hundreds of thousands of processors require new multi-level domain decomposition

methods. In the second part of Chapter 4 we present such a new two-level method that has

features of discontinuous and continuous Galerkin formulations. Specifically, at the coarse

level the domain is subdivided into several big overlapping or non-overlapping patches and

within each patch a spectral element discretization (fine level) is employed. New interface

conditions for the Navier-Stokes equations are developed to connect the patches, relaxing

the C0 continuity and minimizing data transfer at the patch interface. Communication

between thousands of processors is handled by Multilevel Communicating Interface (MCI).

139

We perform several 3D flow simulations of a benchmark problem and of arterial flows to

evaluate the performance of the new method and investigate its accuracy. In the last section

of this Chapter we focus on unsteady flow simulations of a flow in intracranial arterial tree.

The 1D and 3D simulations are performed.

List of Symbols/Notations

Ω - computational domain.

x - cartesian coordinate system or solution space, depends on context.

ξ - coordinates of cartesian system, defined on Ωe.

P - order of polynomial expansion.

u = [u v w] - velocity field.

p - pressure field.

R - resistance.

C - capacitance.

140

4.2 Reconstruction of vascular networks from medical im-

ages

Several techniques for obtaining information of arterial geometries exist:

• Computed tomography (CT): This method is based on the idea of the Italian radi-

ologist Alessandro Vallebona who first suggested in the 1930s that it is possible to

map a slice of a human body on a radiographic film. CT produces two-dimensional

(2D) images (slices) of a human body, which, upon assembly in a 3D field, demon-

strate various structures (organs) based on their ability to block the X-ray beam. CT

angiography is an enhancement of the method, where a contrast material is injected

into the blood to allow clear capturing of the blood volume and thus detection of the

shape of the vessels’ internal wall.

• Digital subtraction angiography CT, (DSA CT): This is a recent enhancement of the

CT technique allowing a seamless 3D-based digital separation of vessels from the bones

[56, 55]. This method is particularly valuable for visualization and reconstruction of

the cranial arterial network, in figure 4.4(left) an example of DSA CT is provided.

• Magnetic resonance angiography (MRA): MRA is based on magnetic resonance imag-

ing and provides images with superior contrast resolution compared to CT. The draw-

back of the MRA method for arterial shape reconstruction is its inability to capture

a volume where blood is stagnant, since the method is based on detecting a moving

fluid.

The aforementioned methods provide a set of 2D images which upon integration into

a 3D data set is processed using different numerical procedures. Example of 3D image

data is shown in figure 4.4(right). The reconstruction of arterial wall geometries is based

on analysis of the data encoded in the images. Two common approaches for arterial wall

identification are: (a) level set method - a numerical technique for identifying interfaces

and shapes [101, 74], and (b) detection of arterial wall with a threshold method. The

decision on what technique to use is typically based on the quality of the medical data and

availability of proper software, however, at the present time there is no preferred method

[62]. All methods have the same weakness in automatically distinguishing between vessel

bifurcation and vessel fusion generated as an artifact in the image, as well as in the ability

141

Figure 4.4: Computed tomography. Left: DSA CT of intracranial vasculature - view from
above, the upper part of the image correspond to the front. Right: 2D images assembled
into 3D domain. The large curved vessel is aorta.

to separate between adjacent bones and vessels. Another weakness of current automated

arterial network reconstruction is in removing some features, such as presence of small

vessels that are not supposed to be included in the simulation or, otherwise, in dealing with

incomplete data when a part of the vessel is not seen.

To alleviate the aforementioned difficulties we developed a software package named

gOREK1 with a user-friendly Graphic User Interface, which allows the researcher to inter-

act with medical data and to choose an appropriate numerical routine for reconstruction.

The GUI is schematically presented in figure 4.5. Full automation of the geometry recon-

struction process is not feasible, and in fact there is no commercial or free software which

can guarantee automatic high quality geometry reconstruction and meshing. It is crucial

to control the segmentation process to avoid “digitally” merged vessels, insertion of veins

and bones as arterial walls. gOREK was optimized for interactive processing of the im-

ages to manage the geometry reconstruction. The end product is a geometric model of the

arterial wall saved in PLOT3D or STL format and is compatible with different mesh gen-

eration softwares. We use Gridgen - a commercial mesh generator developed by Pointwise

[6], which also allows editing and construction of geometric databases. Typical time for

geometry reconstruction is 2 to 12 hours, depending on the image quality and the users

experience. From the computational standpoint, the task can be performed on a standard

1the word OREK in Hebrew translates artery.

142

Figure 4.5: Reconstruction of arterial geometry with gOREK.

desktop computer with 2-4GB of RAM.

In figure 4.1(top right) we present an example of a cranial arterial model reconstructed

from MRA and DSA CT images. The model has 65 arteries, 4 inlets and 31 outlets. Due to

high complexity of the arterial network, which also includes vessels of different sizes, several

numerical approaches to reconstruct the vessel wall geometries were integrated. The inner

part of the arterial network (Circle of Willis, CoW) was reconstructed by extracting iso-

surfaces from MRA data with predefined threshold. The left and right anterior cerebral

arteries are located very close to each other and their iso-surfaces were merged, hence these

arteries had to be digitally separated. The small vessels, such as posterior temporal, were

reconstructed using another technique: initially, the arterial medial axis is computed and

the vessel diameter along the medial axis is approximated. Then, ring-like contours are

seeded along the medial axis to form a pipe-like structure. Once all parts of the arterial

tree are extracted the data are uploaded into Gridgen, where additional editing is performed

to integrate all parts into one smooth surface, eliminate remaining small features, and form

the inlet and outlet regions of the arteries. As a final step, a finite element mesh was

143

generated. Example of arterial surface reconstructed with gOREK and edited in Gridgen

is shown in figure 4.6.

Figure 4.6: (in color) Reconstruction of Circle of Willis from MRI images. colors represent
different patches of arterial surface reconstructed with gOREK and also created in Gridgen.
Red and light blue triangles depict finite element surface mesh.

In figure 4.7(left) we plot the surface of a carotid artery bifurcation, reconstructed from

a set of MRA images. The arterial wall is represented by several patches of a parametric

surface. The surfaces corresponding to the arterial branches were generated by gOREK

while the smaller patches were created in Gridgen.

Arterial geometry in NεκT αr : Spectral/hp element method employed in

NεκT αr provides a dual path to convergence (i.e. decay of numerical error): (a) h-

convergence, with the accuracy of the solution depending on the size of elements; and (b) p-

convergence with the accuracy depending on the order of polynomial approximation and on

the smoothness of the approximated solution. In the case of a smooth solution, exponential

144

rate of convergence is obtained. The unstructured surface mesh generated using any meshing

technique is an ensemble of many flat triangular or quadrilateral elements. The sharp angles,

created by the merging of the surface elements may affect adversely the smoothness of the

approximated solution leading to poor p-convergence. To recover exponential convergence,

the flat surfaces of boundary elements can be mapped on curved (smooth) arterial wall

surfaces. This points to the importance of a consistent mesh generation procedure. The

surface mesh must be generated on a smooth surface provided by a geometric database,

extracted during image processing. Then, the same database must be used to map a flat

elemental surfaces on a curved boundary [70, 80]. In reconstructed carotid artery, illustrated

in figure 4.7(left), the parametric surfaces were used for mesh generation and subsequently

for projection of faces of the boundary elements on the smooth surface. However, it was

observed that if the original geometric database suffers from some degree of roughness then

it cannot be used for projection of flat surfaces. In such cases, alternative methods for

surface smoothing are available [98]. In our numerical algorithms we use a combination

of techniques. The plot in figure 4.7(right) demonstrates a part of the geometric model of

the cranial arterial network. The spectral element mesh was created using the smoothing

technique described in [98].

145

Figure 4.7: (in color) Left: Common, external and internal carotid arteries (CCA, ECA
and ICA, respectively) reconstructed from magnetic resonance angiography (MRA) data.
The arterial wall is represented by parametric surfaces. Right: Cranial arterial network.
The geometrical model was reconstructed from MRA and digital subtraction angiography
computed tomography images. Smoothing of the surface boundary was done with the
technique described by Volino and Magnenat-Thalmann [98].

146

4.3 Outflow boundary conditions for arterial networks with

multiple outlets

Geometrically-complex arterial networks involve many inlets and outlets, and consequently

simple boundary conditions employed in a single arterial junction are not suitable for mul-

tiple junctions as they may lead to explosive instabilities, e.g., due to erroneous backflow

induced at one or more of the outlets, the loss of mass conservation, etc. However, even if the

outflow boundary conditions employed lead to stable simulations, the results are often very

sensitive to the type of the boundary conditions employed. The arterial geometry affects

the results but the effects are typically local, e.g., pockets of secondary flow, recirculation,

etc. In contrast, inflow and outflow boundary conditions affect the large scale features of

the flow, such as the flow rate ratio in junctions and the pressure distribution. Moreover,

different inflow/outflow boundary conditions in domains with multiple outlets may lead to

a variation of local features such as wall shear stress (WSS) even at regions located far

away from the terminal vessels. Hence, whenever it is possible, in simulations of arterial

flow in patient-specific geometries, corresponding patient-specific inlet and outlet boundary

conditions should be applied as well.

An example of this sensitivity, in terms of the pressure distribution, is shown in the

simulation results presented in figure 4.8; the two plots corresponding to constant pressure

outflow boundary condition and the RC-type boundary conditions presented in this paper.

The geometry consists of cranial arteries located in the left hemisphere of a human brain.

The arterial network has twenty vessels, one inlet (Middle Cerebral artery) and ten outlets.

The significant difference in pressure distribution even in the upstream vessels is clearly

seen, and this leads to 300% difference in flow rates through the outlets. In table 4.1 we

summarize the results of these two simulations.

outlet ID 1 2 3 4 5 6 7 8 9 10

pout = 0: ∆p 22 22 22 22 22 22 22 22 22 22

RC: ∆p 44.4 54.4 42.5 7.1 42.6 44.7 27.9 33.2 29.9 18.8

pout = 0: Q 4.8 0.9 0.8 19.3 2.8 2.9 1.7 1.1 3.4 6.6

RC: Q 9.5 2.9 1.6 6.1 5.3 5.3 2.2 1.8 5.4 5.1

Table 4.1: Simulation with RC and fixed pressure boundary conditions (pout = 0): pressure
drop between inlet and outlets and flow rates computed at each outlet. Data is presented
in non-dimensional units.

147

Figure 4.8: (in color) Steady flow simulation in a three-dimensional domain with 20 cranial
arteries. Effect of different outflow boundary conditions. Upper - resistance boundary
condition; Lower - constant pressure boundary condition (pout = 0). Colors represent
pressure distribution (red - high, blue - low). Numbers correspond to outlet IDs, consistent
with table 4.1.

A similar result was obtained in simulating brain aneurysms for the inflow boundary

condition [15], where it was found that for the fusiform aneurysm there was a 100% WSS

variation by changing the effective inflow profile whereas for the saccular aneurysms the

effect was not as pronounced.

The importance of outflow boundary conditions has been long recognized by the com-

munity and the large literature reflects that [97, 66, 81, 39, 84]. Some works have attempted

to model the peripheral arterial network in order to derive more realistic pressure boundary

conditions at the outflow. In the following we provide a brief overview of the four main

approaches:

148

Constant pressure boundary conditions: In many 1D, 2D and 3D simulations the outflow

boundary conditions at each outlet are provided by fixing the pressure. This type of bound-

ary condition is reasonable for simulations of steady and unsteady flows in a domain with a

single outlet but also for steady flow simulations in domains with multiple outlets, provided

that the pressure at each outlet is known from measurements. Care must be taken to ac-

count for phase shift in pressure waves at the different outlets. In unsteady flow simulations

in domains with multiple branches, fixing the pressure at outlets provides physiologically

incorrect results. From the computational standpoint, prescribing constant pressure at each

outlet is the least complicated.

Resistance boundary conditions: The Resistance boundary condition (R-BC) is based on

the assumption of a linear dependence between the pressure and flow rate at each outlet.

R-BC has been applied by many researchers for flow simulation in 1D domains with multiple

outlets, see [97, 81, 39]; it can also be applied to 2D and 3D flow simulations. However,

application of R-BC for a flow in rigid domains may lead to numerical instabilities since flow

rate fluctuations at all frequencies are transferred to pressure oscillations. The resistance

boundary condition is equivalent to constant pressure boundary condition for steady flow

simulations. Pressure computed in steady flow simulation with the R-BC can be imposed in

simulation with the fixed pressure boundary condition, and the results of the two simulations

will be identical. In terms of computational complexity, R-BC is more expensive than the

constant pressure BC, since the integral of velocity at each outlet must be computed at

each time step. Nevertheless, it involves a perfectly parallelizable implementation, which

requires only a subset of processors for computing the integral and performing blocking

communication (blocking communication requires synchronization of processors, i.e., if one

completes its task early it will still wait for other processors to finish their tasks, which

degrades the performance of the numerical solver). [83]. Moreover, these processors can be

grouped in disjoint groups - one per each outlet in order to overlap the computation of the

integral and perform blocking communication within each group concurrently.

Windkessel model boundary conditions: There are several variations of the Windkessel model

for boundary conditions. The most common is the three element Windkessel model, which

is often denoted as RCR [39, 64, 42]. This type of BC can be applied to both steady and

unsteady flow simulations. There are two major drawbacks for this method: (a) similarly to

the R-BC, flow rate fluctuations at all frequencies are transferred to the pressure, and (b)

149

there are several parameters at each outlet that must be adjusted (typically two resistances

and a capacitance, e.g. 30 parameters for the example of figure 4.8). The fitting of resis-

tances and capacitances is usually done iteratively [84], thus simulations over several cycles

are required, which increases the computational cost considerably. The selection of param-

eters is based on the values published in [87], but such values are clearly patient-specific.

Detailed discussion on the RCR model is provided in section 4.3.1, where we compare it

with the proposed RC method. From the computational standpoint, the integral of flow

rate at each outlet must be computed at each time step.

Impedance boundary conditions: This type of boundary condition was investigated in [66,

65], and it involves an analytical approach for modeling the outflow boundary conditions.

More recently, new results with the impedance boundary condition were presented in [97, 84,

85]. This method is based on approximating the arterial network as 1D tree-like structure,

where the linearized flow equations can be solved analytically, time-periodicity of the flow

is assumed; it can be applied to 1D, 2D or 3D flow simulations in domains with multiple

outlets. Although accurate, convergence of the solution is achieved after several cardiac

cycles, which makes the simulation expensive, particularly in the 3D case. For example, in

simulation of unsteady flow in the cranial arterial tree (see figure 4.8) the solution converged

to a periodic state with reasonable accuracy only after eight cycles. The computational

cost of simulation of one cycle on 512 processors of CRAY XT3 was three hours. Using

the impedance boundary condition, pressure at each outlet is computed from a convolution

integral of the impedance and flow rate, which is taken over one cardiac cycle. At the

beginning of simulation, values of flow rates are unknown and the convolution integral

uses some “predicted” values. Accurate prediction of flow rates at outlets may improve

the convergence rate. The convolution integral of the impedance and flow rate must be

computed at each time step. The last operation is parallelizable, however it involves a

blocking communication [83]. The flow rate for each outlet and at each time step must be

also computed.

Alternative techniques to specify outflow boundary conditions in hemodynamics simu-

lations can be found in the literature. One such method is based on a suitable variatonal

formulation of the flow rate problem [46], the drawback of this problem is the introduction

of non standard finite element subspaces. Another method is to impose prescribed flow rates

at multiple outlets by means of Lagrangian multipliers [37, 96]. Additional technique is to

150

couple 3D simulation with reduced model (1D) simulation by means of interface boundary

conditions [38, 40, 94]. In the 3D-1D approach the outflow pressure boundary condition

for 3D solver is provided by 1D simulation. However, the outflow boundary conditions for

the 1D simulations should still be imposed, possibly by one of the aforementioned methods.

From computational point of view, these two techniques involve considerable computational

effort compared to the aforementioned four approaches.

Our goal is to develop a new scalable and efficient type of pressure boundary condition

applicable to vascular flow simulations in domains with multiple outlets. Our method is

not a new model that attempts to mimic the peripheral resistance but rather a numerical

procedure that allows to impose accurately and in a straight-forward manner measured

in-vivo flow rates at terminal outlets. The method is valid for steady and unsteady flow

simulation; moreover, periodicity of flow is not required. In summary, we base our choice

of the boundary conditions on the following physiological and numerical considerations:

• Accuracy: One outcome is to obtain a model that has a high level of accuracy (in terms

of patient-specific flow simulation) both with respect to geometry and inflow/outflow.

• Simplicity: Flow simulation in complex arterial networks may require imposing out-

flow boundary condition on tens or hundreds of terminal vessels.

• Robustness: Solution of Navier-Stokes equations in large domains, especially with

high-order methods, is very expensive. Currently, a typical numerical simulation of

flow in a modest size of vascular tree during one cardiac cycle may take from one

to three days and requires hundreds or thousands of processors. Thus, the depen-

dence of convergence of the numerical solution on the boundary conditions should be

minimized.

• Scalability: It is essential that the outflow boundary conditions can be scaled, such

that multilevel parallelism can be used. Three-dimensional simulation of a flow in

arterial tree with tens or hundreds of vessels, junctions and multiple inlets and outlets

requires use of hundreds or thousands processors. Several types of outflow boundary

conditions involve additional computation and blocking communication, e.g., to com-

pute flow rates. Multi-level parallelism allows blocking of subset of processors (instead

of synchronizing thousands) [34].

151

• Stability: The boundary condition should not lead to spurious oscillations that render

the simulation unstable.

With regards to spatial discretization, we employ the spectral/hp element code NεκT αr

validated in many biological flow studies [67]. The computational domain, used by NεκT αr ,

consists of structured or unstructured grids or a combination of both. In each element the

solution is approximated in terms of hierarchical mixed-order Jacobi polynomial expan-

sions. In the current study, the computational domains are subdivided into tetrahedral

elements and the solution is approximated with polynomials of order P = 4 and P = 5. A

second-order splitting scheme was employed for temporal discretization [48].

The section is organized as follows: In section 4.3.1 we review suitable filtering for

bioflow simulations. In section 4.3.2 we analyze Stokes flow in 1D arterial network and

derive the relationship between the flow rates at the domain outlets and resistance. In

section 4.3.3 we present results.

152

4.3.1 Filtering the high-frequency Oscillations

The relation of pressure and flow waves in arteries has been studied for centuries; a compre-

hensive review of the topic can be found in [64]. As illustrated in figure 4.9 the velocity and

pressure waves in different arteries have different forms, however, there are some similarities

in the pressure-flow relationship. From the plots in figure 4.9 we observe that the peak of

the flow wave precedes the peak of the pressure wave. Also, the high frequency components

of the flow wave are attenuated and are not reflected in the pressure wave. This last ob-

servation is key in the success of the three-element Windkessel (RCR) model to relate the

pressure and the flow waves.

Figure 4.9: Pressure and flow waveforms in different regions of a human arterial system.
Adopted from Mills et al. [61] and published in [64].

153

Pterm

Q(t), Pin(t)

R C

Pterm

Q(t), Pin(t)

R2 C

R1

Figure 4.10: Left: Low-pass filter - RC circuit. Right: Three-element Windkessel model -
RCR circuit.

In this section we compare the three element Windkessel (RCR) model and a simple

low-pass filter, which we will refer to as the RC model. The two basic components of the

low-pass filter are a resistor and a capacitor while in the RCR an additional resistor is

added. The the RC and the RCR filters are shown in figure 4.10. In an electric circuit the

value (pin − pterm) is the difference of electrical potential between two points (the voltage

potential) while Q is the electric current. In fluid dynamics the pressure p and the flow

rate Q correspond to the voltage potential and current. In a low-pass filter, the relationship

between electric potential and current (or correspondingly the pressure and flow rate) is

given by

pin − pterm + RC
dpin

dt
= RQ, (4.1)

where R and C are coefficients for the resistance and capacitance and pterm = const. Later,

we will use formula (4.1) to define the RC-type of boundary condition for pressure. Next,

we represent pin and Q by a Fourier series:

pin(t) =
∞∑

k=0

p̂ke
iωkt, (4.2a)

Q(t) =
∞∑

k=0

Q̂ke
iωkt (4.2b)

and we assume that Pterm = const to obtain:

p̂0 = RQ̂0 + pterm (4.2c)

154

p̂k = Q̂k
R

1 + iωkRC
, k > 0. (4.2d)

Equation (4.2c) suggests that for steady input we obtain a linear dependence between Q

and P and defines the Resistance boundary condition. Equation (4.2d) implies that high

frequency oscillations in flow rate, Q(t), are attenuated and not reflected on the pressure

Pin(t), consistent with the aforementioned requirements.

In the Windkessel (RCR) model, the capacitance C reflects the elastic properties of

a vessel, while R is the resistance of the downstream arterial network. As we will show

below, the parameters of the RC models can be tuned such that one can obtain a good

approximation to the RCR circuit for low frequency waves. That is, the resistance and

capacitance in the RC model are related to those of the RCR model and have the same

physiological meaning. However, in this study, we use the RC circuit as a numerical model

and not as a physiological model, thus the values of R and C are based on numerical

considerations only.

For a fixed resistance parameter R, the effectiveness of the filter depends on the capacitance

C. Very low values of C will result in poor filtering of waves with low and intermediate

wave number, whereas large values of C will result in very effective filtering. In electric

circuits, the value ωB = 1/(RC) is denoted as a “breakpoint” or the “half-power” point.

For ω > ωB, very fast decay in the amplitude of reflected wave is observed. The solution

to equation (4.1) has two parts, a transient solution and a periodic state. Although, larger

values of C are desirable for effective filtering, they prolong the transient state. The rate

of decay of the transient solution pin ∝ p(t = 0)e−t/(RC) depends on the value of RC; small

RC leads to very fast convergence to periodic state. In section 4.3.3, we will show that

during the initialization of the simulation high frequency oscillations appear, whose decay

rate depends on C.

In the RCR circuit the relationship between the electric potential and the current is

given by:

pin + R2C
dpin

dt
= (R1 + R2)Q + ptrem + R1R2C

dQ

dt
, (4.3)

Fourier analysis of (4.3) gives:

p̂0 = (R1 + R2)Q̂0 + pterm (4.4)

155

p̂k = Q̂k
R1 + R2 + iωkR1R2C

1 + iωkR2C
= Q̂k

[
R1 + R2

1 + iωkR2C
+

iωkR1R2C

1 + iωkR2C

]
, k > 0. (4.5)

An important difference between the RC and RCR circuits is that the high frequency

waves (e.g., any numerical noise) in flow rate are not filtered sufficiently by the RCR circuit

for any values of R1 and R2. Clearly, when R1 ≪ R2 the RCR and RC circuits perform

similarly, except for the response at very high frequencies in Q. However, for relatively larger

values of R1 any random noise added to Q(t) is transferred to Pin(t) without significant

attenuation.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
−5

0

5

10

15

20

t

P
in

(t
)

+
 α

[m

m
H

g]

RCR

RC

Q(t)+Qε(t)

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
−5

0

5

10

15

20

t

P
in

(t
)

+
 α

[m

m
H

g]
RCR

RC

Q(t)+Qε(t)

Figure 4.11: Pressure response to incoming flow wave Q(t) + Qǫ(t). Left: RCR model:
R1 = 50, R2 = 250, C = 0.05/(R1 + R2), α = 5 and RC model: R = R1 + R2 = 300,
C = 0.05/R(R2/R), α = 0. Right: RCR model: R1 = 100, R2 = 200, C = 0.05/(R1 + R2),
α = 5 and RC model: R = R1 + R2 = 300, C = 0.05/R(0.8R2/R), α = 0.

In figure 4.11 we compare the pressure wave generated by the RC and RCR models in

response to the same flow wave. The curve Q(t) represents typical flow rate in a carotid

artery [89]. The mean value of Q(t) was set to zero and the random perturbation Qǫ(t) =

0.2Q(t)η(t), − 1 ≤ η ≤ 1, was added to the flow rate to highlight the filtering properties

of the RC and RCR models. We note that the mean value of pin(t) was set to zero, which

explains the negative pressure values in figure 4.11. The curve corresponding to the RCR

model was shifted by α = 5 for illustration purposes only to avoid overlapping between the

RC and RCR curves. As expected, the random noise added to the imposed flow rate is

filtered out when the RC model is applied but it is not filtered as effectively for the RCR

model, particularly for higher R1 values.

The relationship between pressure wave and flow wave, known as impedance Z(ω), is

156

0 10 20 30 40 50 60
100

120

140

160

180

200

220

240

260

280

300

ω

| P
(ω

)
/ Q

(ω
)

|

RCR
RC

0 10 20 30 40 50 60
180

200

220

240

260

280

300

ω

| P
(ω

)
/ Q

(ω
)

|

RCR
RC

Figure 4.12: Magnitude of impedance versus mode number in the RC and RCR circuits.
Left: RCR model: R1 = 50, R2 = 250, C = 0.05/(R1 + R2) and RC model: R = 300,
C = 0.05/R(R2/R). Right: RCR model: R1 = 100, R2 = 200, C = 0.05/(R1 + R2) and
RC model: R = 300, C = 0.05/R(R2/R).

defined in Fourier space by

Z(ω) =
p(ω)

Q(ω)
.

Low values of impedance suggest that P (ω) is not sensitive to corresponding values of Q(ω).

In the RC model, according to (4.2d), the impedance for high frequency waves vanishes,

while in the RCR model it converges to a constant. In the numerical solution of flow

equations, especially in large rigid domains with multiple outlets, high frequency oscillations

in flow rate – that typically occur at different frequencies for different outlets – may lead

to instabilities. Hence, from the numerical standpoint, filtering high frequency waves using

the RC model enhances stability. In figure 4.12 we show the impedance corresponding to

the RC and RCR models. Here, we use the same resistance and capacitance parameters

as in figure 4.11. Note, that both models predict practically the same impedance for the

low frequency modes typically considered in numerical studies of arterial flow. For high

frequency the value of impedance predicted by the RC model will vanish to zero, while the

value of impedance predicted by the RCR model according to formula (4.5) will converge

to R1.

157

4.3.2 Analysis of Stokes flow in simple networks

In this section we derive the relationship between the resistances, defined by the RC bound-

ary condition, and the flow rates at outlets. We use two simplified models of arterial-like

networks: the first model consists of one inlet and two outlets (Y-shaped bifurcation) while

the second network of one inlet and three outlets. We show that the ratio of flow rates

through terminal vessels can be approximated by the inverse of the ratio of the terminal

resistances, namely
Qi(t)

Qj(t)
≈ Rj

Ri
,

where Qj and Rj are the flow rate measured at outlet j and the resistance parameter at

the same outlet, respectively. This result is valid for any number of outlets as we will see

in the simulations presented in section 4.3.3.

We can also extend the RC boundary condition to time-dependent cases by employing

the R(t)C boundary condition. Based on this extension, we can then impose in numerical

simulation an experimentally measured Qi(t)/Qj(t) ratio using the simple approximation

Qi(t)

Qj(t)
≈ Rj(t)

Ri(t)
,

which is the same relation as before for the steady case.

4.3.2.1 Steady RC boundary condition

First, we consider Poiseuille flow in a single pipe of radius r and length L. The pressure -

flow rate relationship (P-Q) is given by

dp

dz
=

poutlet − pinlet

L
= KQ, K = − 8

πR4Re
, (4.6)

where Re is the Reynolds number.

Next, we consider a simplified Y-shaped arterial bifurcation with one inlet and two

outlets, as illustrated in figure 4.13. As in a case of a single pipe, here we also assume that

the flow is fully developed, z-independent and the pressure drops linearly in each segment.

We denote the values of the pressure at the inlet, the bifurcation point and the two outlets,

respectively, as pin, pb, p1, and p2, while the values of flow rates are denoted similarly. By

158

p
in

p
b

p
1

p
2

Figure 4.13: 1D model arterial bifurcation: one inlet and two outlets.

applying (4.6) to each of the three segments we obtain

pb − pin = LinKinQin

p1 − pb = L1K1Q1

p2 − pb = L2K2Q2

and from the last two equations we get:

p2 − p1 = L2K2Q2 − L1K1Q1.

Our goal is to choose appropriate pressure boundary conditions pj in order to achieve the

specified Qj . Substituting the resistance boundary condition pj = RjQj , j = 1, 2, (which

is a particular case of the RC boundary condition in the steady regime) into the equation

above, yields:

Q2R2 − Q1R1 = L2K2Q2 − L1K1Q1,

and thus
Q1

Q2
=

L2K2 − R2

L1K1 − R1
, (4.7)

here and thereafter we assume that pterm = 0. So, in order to achieve the desired flow rates

in the numerical simulation we can set the parameters Rj according to (4.7).

Next we consider pulsatile flow in a 1D Y-shaped bifurcation. The bifurcation consists

of pipe-like segments which are rigid and have constant diameter. The equation for the flow

159

rate is obtained by integrating the equation for the velocity V = (0,0,W(t, r)), which is

assumed to be unidirectional:

∂

∂t

∫ D/2

0
Wrdr = − ∂

∂z

∫ D/2

0
prdr +

1

Re

∫ D/2

0

1

r

∂

∂r
r
∂W

∂r
rdr.

The integral on the left hand side represents flow rate. The first integral on the right hand

side is a force equivalent to p̄A, where p̄ is the average pressure and A is the cross-sectional

area of the pipe-like segment. For simplicity of notation and without loss of generality, in

the following the quantity p̄A is denoted by p. The second integral on the right hand side

can be written in terms of the flow rate scaled by an appropriate parameter K, namely KQ.

Then, in each segment the flow is approximated by:

∂Q

∂t
= −∂p

∂z
+ KQ.

We note that the parameter K in this case is the same as in (4.6) under the assumption of

parabolic flow profile only. In the case of a Womersley velocity profile, the parameter K(t)

will oscillate around some value Km, which corresponds to the steady component of the

Womersley flow. The amplitude of oscillation is bounded and depends on the coefficients

of Womersley modes.

The 1D flow equations in the terminal segments are:

Lj
∂Qj

∂t
= pb − pj + LjKjQj , j = 1, 2,

here again we assume that the pressure depends linearly on z as in the case of Poiseuille or

Womersly flow. Applying the last equation for two terminal segments (j = 1 and j = 2) we

obtain:

L1
∂Q1

∂t
− L2

∂Q2

∂t
= p2 − p1 + L1K1Q1 − L2K1Q2.

The RC boundary condition reads

pj = −RjCj
∂pj

∂t
+ RjQj = −αj

∂pj

∂t
+ βjQj .

Using the Fourier transform of Q and P and the formula for the RC boundary condition,

160

starting from:

L1
∂Q1

∂t
− L2

∂Q2

∂t
= −α2

∂p2

∂t
+ α1

∂p1

∂t
+ Q1(L1K1 − β1) − Q2(L2K2 − β2),

L1Q̂1,k − L2Q̂2,k = −α2p̂2,k + α1p̂1,k − i

ωk
Q̂1,kγ1 +

i

ωk
Q̂2,kγ2, γj = LjKj − Rj ,

we obtain:
Q̂1,k

Q̂2,k

=
L2 + i

ωk
γ2 − R2R2C2

1+iωkR2C2

L1 + i
ωk

γ1 − R1R1C1

1+iωkR1C1

. (4.8)

Note that for ω = 0 in equation (4.8) we recover equation (4.7). Setting RC = O(1) (our

numerical experiments suggest that C ≤ 0.2/R), R ≫ L and R ≫ LK, we can approximate

equation (4.8) as

Q̂1,k

Q̂2,k

=
R2

R1
+ O(ǫ) if Rj ≫ Ljωj , (4.9a)

Q̂1,k

Q̂2,k

=
L2

L1
+ O(ǫ) if Rj ≪ Ljωj , (4.9b)

which means that for sufficiently large values of Rj we can control effectively Q̂1,k/Q̂2,k

ratio for certain frequencies ωk and, consequently, obtain required Q1(t)/Q2(t). In practice,

non-linear effects may lead to small deviations in Q1(t)/Q2(t); we will investigate this point

further in numerical simulations in section 4.3.3.3.

Let us now investigate the error in (4.9a) using a 3D model of the Y-shaped bifurcation

shown in figure 4.14. The dimensions of the model are comparable to the size of common

carotid artery, which bifurcates to internal and external carotid arteries. For simplicity,

for now we consider steady flow with low Reynolds number Re = 1. The error in (4.9a)

depends on the values of Lj , Kj and the effects of 3D geometry of the model. In order

to minimize the error in (4.9a) we require Rj ≫ |LjKj |. We recall that Kj ∝ 1
Re , thus

the selection of Re = 1 is more restrictive in terms of choosing a value for Rj . In flows in

arteries with radius of 2mm to 20mm the Reynolds number varies between 50 to 2000, the

increased Reynolds number may be a result of physical exercise [90]. We should also note

here that high Reynolds flows in arteries may result in transition to turbulence, e.g. in a

case of stenosed carotid artery. In that case nonlinear effects, ignored in the derivation of

the Q−R relation, will influence the accuracy of approximation. In a study of a turbulent

flow in a stenosed carotid artery, where the RC model was implemented, we observed a

161

Figure 4.14: (in color) 3D model of Y-shaped bifurcation: Top left: 3D computational
Domain intersected by a plane at y=0; colors represent pressure. Bottom right: Flow
pattern at midplane; colors represent the velocity component in the flow direction. Bottom
left: Corresponding 1D model; L and D denote the length and the diameter of each segment.
The 3D domain is subdivided into 4026 spectral elements with polynomial order P = 5.
The simulation was performed on 32 processors of CRAY XT3.

deviation of up to 5% in the ratio of flow rates through the two outlets with respect to

imposed resistance ratio. Results of this study are presented in section 4.3.3.3.

In our simulation, according to 1D model, L1K1 = −0.63 and L2K2 = −5.03. The two

limiting cases for the Q1/Q2 ratios are

1. Q1/Q2 → 8, when Rj ≪ |LjKj |, and

2. Q1/Q2 → 1.5, when Rj ≫ |LjKj | and R2 = 1.5R1.

In table 4.2 we present results of 3D numerical simulations with different values of Rj .

We observe that for sufficiently large Rj the approximation error in (4.8) vanishes and the

pressure drop between the inlet and the two outlets converges to fixed values.

In the case of pulsatile flow, the approximation error ǫ in (4.8) should be analyzed for

each wave number ωk. In figure 4.15 we plot the Q1(ω)/Q2(ω) ratio computed from equation

(4.8) for Re = [1, 10, 100]. Here, the Lj parameters are the same as in the previous

example and the parameters Kj are computed from equation (4.6). The Q1(ω)/Q2(ω) ratio

was computed for terminal resistances R1 = [10, 100, 1000] and R2 = [15, 150, 1500]. As

we can see in the three plots, the Q1(ω)/Q2(ω) ratio remains constant for sufficiently large

162

R1 R2 Q1/Q2 error pin − p1 pin − p2

0.0 0.0 10.40 593% 0.0151 0.0151

0.1 0.15 3.69 146% 0.0139 0.0271

1 1.5 1.80 20% 0.0125 0.0412

10 15 1.53 0.20% 0.0122 0.0446

100 150 1.50 0.00 % 0.0120 0.0450

Table 4.2: Steady flow in 3D domain with two outlets: Re = 1. Dependence of the Q1/Q2

ratio and ∆P on the terminal resistances R1, R2 in 3D simulation of steady flow in a
bifurcation. The error is computed as (Q1/Q2 − R2/R1)/(R2/R1) %.

values of R1 and R2.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2
Re = 1

|Q
1,

ω
 /

Q
2,

ω
|

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2
Re = 10

|Q
1,

ω
 /

Q
2,

ω
|

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

2
Re = 100

|Q
1,

ω
 /

Q
2,

ω
|

ω

Figure 4.15: Q1(ω)/Q2(ω) ratio computed using formula (4.8). Solid-line R1 = 10, R2 = 15;
dash-line R1 = 100, R2 = 150; dot-line R1 = 1000, R2 = 1500, Cj = 0.2Rj .

In appendix C we derive the resistance - flow rate relationship in a network of five

vessels. We show that by neglecting friction we can extend the R − Q relation to the

network with an arbitrary number of segments:

R1Q1 ≈ R2Q2 ≈ R3Q3... ≈ RjQj ...

163

Stability of the RC boundary condition

In order to show that the RC boundary condition does not affect stability adversly we

analyze a unidirectional (V = V(0,0,W(t,r))) and time-periodic flow in a pipe of constant

radius. The pressure boundary condition at the outlet is provided by the RC model, and

Dirichlet velocity boundary condition at the inlet and Neumann boundary condition at the

outlet are imposed. We consider a spatial domain Ω = {r, z : 0 ≤ r ≤ R, 0 ≤ z ≤ L} with

a fully developed flow described by

∂W

∂t
= −∂p

∂z
+ ν

1

r

∂

∂r
r
∂W

∂r
. (4.10)

Let us multiply (4.10) by W and integrate over Ω and over a time period T to obtain the

kinetic energy E(t):

E(T) =
L

2

∫ R

0
(W 2|t+T

t)rdr =

∫ t+T

t
Q(p|z=0 − p|z=L)dτ − L

∫ t+T

t
β2dτ, (4.11)

where

β2 = ν

∫ R

0
r

∫ L

0

(
∂W

∂r

)2

dzdr.

We will analyze separately the two terms of (4.11):

• First term: I1 =
∫ t+T
t Q(p|z=0 − p|z=L)dτ .

• Second term: I2 = L
∫ t+T
t β2dτ .

Our goal is to show that the energy E(T) will not grow without bounds as time t increases.

The term I2 is not negative and bounded due to the Dirichlet velocity boundary condition

and incompressibility ∇ · V = 0. Thus, in order to guarantee that the energy is bounded,

we need to show that the term I1, which depends on the boundary conditions, will not grow

without bounds. First, we note that the flow rate Q is prescribed at the inlet of the domain

by a finite periodic function and is bounded. Second, the values of the pressure amplitudes

p̂k are computed from the prescribed resistance R, capacitance C and the corresponding

finite flow rate amplitudes Q̂k, and, according to (4.2c) and (4.2d), |p̂k| ≤ |RQ̂k| for any

wave number ωk. Also, since Q is a periodic in time, p(z = L) is periodic, and consequently

∫ t+T

t
Qp|z=Ldτ ≤ RQ2

0T,

164

and is not a function of t. The pressure at the domain inlet depends linearly on the

pressure at the outlet, thus it is also bounded in terms of the mean flow rate and the length

of computational domain. Hence, the RHS of (4.11) is not increasing with t, consequently

E(T) ≤ E0, E0 > 0.

4.3.2.2 Time-dependent R(t)C-type boundary condition

The RC boundary condition prescribes a constant ratio of flow rates at terminal vessels,

however this is not the case in physiological flows, where Qi(t)/Qj(t) = f(t). In this section

we provide a procedure on imposing time-dependent R(t)C boundary conditions in order

to incorporate measured (at outlets) in-vivo or in-vitro flow rates.

Figure 4.16: Human Carotid Artery - reconstruction from MRA images: Common Carotid
Artery leads to Internal (left branch) and External (right branch) Carotid Arteries. Velocity
profiles in ICA (a) and ECA (c), measured with Doppler Ultrasound technique and extracted
from image (with Matlab), are marked by wide white curves.

Consider a simple Y-shaped bifurcation, such as the carotid artery, where the common

carotid artery (CCA) is divided into external and internal carotid arteries (ECA and ICA),

as shown in figure 4.16(b). It is possible to measure the flow rate at each of the arteries using

non-invasive techniques such as Doppler Ultrasound or MRA. In figure 4.16(a,c) we present

typical Ultrasound based measurements of velocity in the right ECA and ICA. The velocity

is measured close to the center of the artery. From the velocity profile (marked by wide white

curves) and the vessel diameter (D) measured during the same procedure, we can compute

the flow rate through the two arteries. In general, measuring velocity at one point inside the

vessel is not sufficient to estimate the flow rate. In the absence of additional measurements,

the flow rate can be approximated as a linear function of velocity, scaled by the vessel’s

area. Alternative way for estimating the flow rate by introducing a relation between the flow

165

rate, the velocity and the Womersley number was proposed in [71]. MRA measurements

provide a spatial distribution of the velocity, which leads to an accurate estimate of the flow

rate. In figure 4.17 we plot the velocity waves and also the exact and approximate (with

25 Fourier modes) VECA(t)/VICA(t) ratio extracted from the medical data. Assuming a

linear flow rate-velocity relation Q(t) = cV (t)0.25πD2, where c is a scaling coefficient, the

QECA(t)/QICA(t) ratio can be readily computed. Using physiological flow rates and fixing

one of the resistance parameters to be constant, for example RECA = const, we can compute

the required resistance at the second outlet, i.e.,

RICA(t) = RECA
QECA(t)

QICA(t)
= RECAf(t)

and assuming that the function f(t) is periodic, we approximate it by a Fourier expansion

RICA(t) ≈ RECA

[
A0 +

M∑

k=1

(Akcos(ωkt) + Bksin(ωkt))

]
,

where A0, Ak and Bk are coefficients of Fourier transform of a function f(t). Alternatively,

one can fix RICA and compute RECA(t) = RICA
QICA(t)
QECA(t) .

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

t/T

V
(t

)
[c

m
 /

se
c]

ICA
ECA

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

t/T

V
E

C
A
(t

)
/ V

IC
A
(t

)

exact
Fourier transform, 25 modes

Figure 4.17: Velocity waves in carotid arteries measured with Doppler Ultrasound.
Top: V (t) in ECA and ICA. Bottom: Exact and approximated with 25 Fourier modes
VECA(t)/VICA(t).

166

4.3.2.3 Numerical implementation of RC and R(t)C boundary conditions

From the algorithmic standpoint, implementation of the RC boundary condition is straight-

forward and comparable to the Resistance boundary condition. Equation (4.1) can be

discretized using, for example, the semi-implicit (first-order) scheme, i.e.,

pn+1 + RC
pn+1 − pn

∆t
= RQn

but higher order semi-implicit time-stepping schemes can be also employed. The most

computationally demanding part of imposing the RC-type boundary condition is the com-

putation of the integral of velocity over each of the outlets, i.e.,

Q =

∫
V · n̂dA.

The element-wise domain decomposition, usually implemented in spectral/hp element (and

also finite element) parallel solvers, results in assigning different processors to elements with

faces on different outlets. Thus, the integral of velocity at each outlet is naturally computed

in parallel. We can also map processors which contain mesh elements facing different out-

lets to a set of disjoint communicators, using the MPI Comm Split() command. Note,

that elements from different outlets can belong to the same partition and in this situation

additional care must be taken in splitting the communicator. If individual partitions do

not contain elements at multiple outlets then splitting is accomplished in just one call to

MPI Comm Split():

if (partition_contains_outlet == TRUE)

color = outlet_ID;

else

color = MPI_UNDEFINED;

MPI_Comm_split (MPI_COMM_WORLD, \\ communicator we want to split

color, \\ outlet ID or MPI_UNDEFINED

rank_in_comm_world, \\

&comm_out); \\ new communicator

if (color == MPI_UNDEFINED)

comm_out = MPI_COMM_NULL;

167

If a particular partition (or several partitions) contains elements from more then one outlets,

then several new communicators are formed:

MPI_COMM *comm_out;

comm_out = new MPI_COMM[Number_of_outlets];

for (outlet = 0; outlet < Number_of_outlets; ++outlet){

if (partition_contains_outlet[outlet] == TRUE)

color = 1;

else

color = MPI_UNDEFINED;

MPI_Comm_split (MPI_COMM_WORLD, \\ communicator we want to split

color, \\ outlet ID or MPI_UNDEFINED

rank_in_comm_world, \\

&comm_out[outlet]); \\ new communicator for outlet

if (color == MPI_UNDEFINED)

comm_out = MPI_COMM_NULL;

}

As a result of communicator splitting, the blocking MPI Allreduce function, required

to sum contributions from different processors, is executed over different sub-groups of

processors. Processors which do not have elements facing the outlets will not participate

in communication at all. A case when one or more processors hold elements from two

or more outlets and consequently belong to two or more communicators usually happens

when the number of processors is small (for example if number of processors is less then

the number of outlets). However, in most situations it is very unlikely that one partition

contains elements from multiple outlets, particularly when the number of processors is

large, and partitioner software (like METIS, [3]) provides additional optimization generating

contiguous sub-domains.

The memory requirements for RC boundary condition are negligible but an additional

relatively small work is required to apply time-dependent R(t)C boundary conditions. In

order to avoid keeping in memory values of Rj(t) at each outlet for every time step we can

approximate the measured Rj(t) with a smooth function fj(t) and perform interpolation

168

at every time step tn. There is no requirement for time periodicity. In the case of periodic

Qi(t)/Qj(t), we can use a Fourier transform, so we need to store in memory only M modes

and the mean value A0 for each outlet. In the case of non periodic Qi(t)/Qj(t), we can use

spline or high-order polynomial approximation.

169

4.3.3 Simulation results

In the results presented in this section we used 3D models to test the RC and R(t)C bound-

ary conditions. Specifically, for the first two tests the geometrical models were constructed

using cylindrical pipes attached together as illustrated in figure 4.18. The axis of all pipes

belong to the same plane y = 0. The diameters of the three pipes are D1 = 6, D2 = 3 and

D3 = 2, here the subscripts denote the outlet index. Our goal is to verify numerically our

analytical result, i.e.,
Qi(t)

Qj(t)
≈ Rj

Ri
.

4.3.3.1 Prototype case

Figure 4.18: (in color) 3D computational domains with two and three outlets. They consist
of pipe-like branches with diameters D1 = 6, D2 = 3 and D3 = 2. Colors represent
instantaneous w-velocity. The number of spectral elements in the domain with two outlets
is 4026 while in the domain with three outlets is 5238; the solution is approximated with
polynomial order p = 5. Simulations were performed on 32 processors of CRAY XT3.

In the first test we use a computational domain with two outlets (figure 4.18 left).

First, we perform unsteady flow simulation with inlet boundary condition prescribed by

two Womersley modes: the first mode corresponds to the mean flow while the second mode

corresponds to ω = 2π/T , where T is the nondimensional time period; here the Reynolds

and the Womersley numbers are Rem = UmDinlet

ν = 200 and Ws = 0.5Dinlet

(
ω
ν

)1/2
= 4,

where Um is a mean velocity at the inlet and ν is a kinematic viscosity. The results are

170

0 20 40 60 80 100 120
0

10

20

30

Q
(t

)

R
1
=100 R

2
=200 C

1
 = 1e−3 C

2
=5e−4

 a)

Q
1

Q
2

0 20 40 60 80 100 120
−10

0

10

P
(t

)

 b)

P
1
−P

in
P

2
−P

in

0 20 40 60 80 100 120
0
1
2
3
4
5
6

Q
1(t

)
/ Q

2(t
)

 c)
0 20 40 60 80 100 120

0.4
0.6
0.8
1
1.2
1.4
1.6

P
1(t

)
/ P

2(t
)

t

0 20 40 60 80 100 120
0

20

40

Q
(t

)

R
1
=100 R

2
=200 C

1
 = 2e−2 C

2
=1e−2

 d)

Q
1

Q
2

0 20 40 60 80 100 120
−10

0

10

P
(t

)

 e)

P
1
−P

in
P

2
−P

in

0 20 40 60 80 100 120
0
1
2
3
4
5
6

Q
1(t

)
/ Q

2(t
)

 f)
0 20 40 60 80 100 120

0.4
0.6
0.8
1
1.2
1.4
1.6

P
1(t

)
/ P

2(t
)

t

Figure 4.19: Numerical solution of 3D unsteady flow in a domain with two outlets using the
RC boundary condition. Inlet boundary condition are specified with two Womersley modes.
(a) and (d) show flow rates at outlet 1 (Q1) and outlet 2 (Q2); (b) and (e) show pressure
differences; (c) and (f) flow rate (solid line, left Y-axis) and pressure (dash line, right Y-axis)
ratios, Results in (a), (b) and (c) were computed with parameters C1 = 1e− 3, C2 = 5e− 4
while results in (d) (e) and (f) were computed with parameters C1 = 2e − 2, C2 = 1e − 2.

shown in figure 4.19 and confirm that the flow rate ratio satisfies Q1(t)/Q2(t) = R2/R1 = 2,

the specified resistance ratio. The difference between the first two simulations (see figure

4.19) is in the Cj parameters. In particular, we observe prolonged oscillations in the flow

rate and the corresponding pressure waveform during the transient period in the second

case, where the Cj parameter is increased by a factor of 20.

In figure 4.20 we present results from a simulation where the inlet boundary condition

for velocity is prescribed by five Womersley modes; the first mode corresponds to the mean

flow and the rest are for the unsteady components. Note that in this case the Q1(t)/Q2(t) =

R2/R1 = 2 is also satisfied.

In the next examples we consider simulations with time-dependent R(t)C boundary con-

ditions. The 3D computation domain for this test has three outlets (see figure 4.18 right).

We use a time-dependent resistance R = R(t) in order to impose the desired flow rate at

all outlets. First, the solution with the impedance boundary conditions was computed.

Second, a Fourier transform was applied to the monitored Q1(t)/Q2(t) from the last cycle.

Having the Fourier coefficients for the flow ratio, we then compute R2(t) = R1Q1(t)/Q2(t)

and R3(t) = R1Q1(t)/Q3(t), where the reference resistance R1 > 0 is a constant; in this

simulation we used R1 = 100. Alternatively, one may fix R2 or R3 and then compute the

171

0 20 40 60 80 100 120
0

20

40

Q
(t

)

R
1
=100 R

2
=200 C

1
 = 2e−2 C

2
=1e−2

a)

Q
1

Q
2

0 20 40 60 80 100 120
−20

−10

0

10

P
(t

)

b)

P
1
−P

in
P

2
−P

in

0 20 40 60 80 100 120
0
1
2
3
4
5
6

Q
1(t

)
/ Q

2(t
)

c)
0 20 40 60 80 100 120

0.4
0.6
0.8
1
1.2
1.4
1.6

P
1(t

)
/ P

2(t
)

t

Figure 4.20: Simulation of 3D unsteady flow in a domain with two outlets using the RC
boundary condition. The inlet boundary condition is specified with five Womersley modes.
(a) flow rates at outlet 1 (Q1) and outlet 2 (Q2); (b) pressure differences; (c) flow rate (solid
line, left Y-axis) and pressure (dash line).

values of R1(t) and R3(t) or R1(t) and R2(t). The choice of R is important, and according

to our model we require that Rj ≫ LjKj . We note that one can also use a time-dependent

value for the reference resistance. In our simulations this was not necessary, however, if

Qi(t)/Qj(t) is extremely large, then adjusting the value of Ri such that Ri(t)Qi(t)/Qj(t)

will be in certain range, may be considered. In figures 4.21a and 4.21b we show the ref-

erence and the approximate (using 20 Fourier modes) Q1(t)/Q2(t) and Q1(t)/Q3(t) ratios.

By “reference” data we denote the Qj computed with the impedance boundary condition.

In figure 4.21c we compare the results of the simulation. We observe very good agreement

between the reference solution and the numerical solution computed with the R(t)C bound-

ary condition. We also note that a very short transient period develops for the convergence

of Qj(t). The oscillations in pressure and flow rate values captured in figures 4.19 and 4.20

are due to two factors: a) The initial velocity field does not satisfy the continuity equation

∇ · V = 0, and b) the transient solution of equation (4.1) decays slowly when the value of

RC is large. The incompressibility state is achieved after first few time steps. During that

period large pressure fluctuations are observed at the inlet of the computational domain

and flow rate fluctuations are observed at the outlets. This situation is typical for simu-

172

0 10 20 30 40 50 60
4

5

6

7

8

Q
1/Q

2

a)

reference
Fourier transform, 20 modes

0 10 20 30 40 50 60
5

10

15

20

25

t

Q
1/Q

3

b)

reference
Fourier transform, 20 modes

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

t

Q
(t

)

c)

Q
1
−simulation

Q
2
−simulation

Q
3
−simulation

Q
1
−reference

Q
2
−reference

Q
3
−reference

Figure 4.21: Numerical solution of 3D unsteady flow in a domain with three outlets using
R(t)C boundary condition. The inlet boundary condition is specified with five Womersley
modes. Left top and bottom: Reference solution and solution approximated with 20 Fourier
modes for Q1(t)/Qj(t), j = 2, 3. Right: Similar plot but for Qj(t).

lation with any type of boundary condition (including fixed pressure boundary condition)

when the incompressibility constraint of the initial velocity field is violated. When RC

or R(t)C-type boundary conditions are employed, flow rate oscillations are transfered into

the pressure at outlets and consequently to the entire domain. These oscillations can be

considered as numerical noise. The advantage of the RC and R(t)C boundary condition is

in attenuation of high frequency oscillations.

4.3.3.2 Cranial arterial tree

In the next example, we consider a computational domain containing 20 cranial arteries

reconstructed from high resolution CTA images (see top plot of figure 4.8). The arterial

network has 10 outlets and one inlet. In table 4.3 we provide details of this large-scale

simulation on 512 Cray XT3 processors.

Number of elements 111,214

Polynomial order p 5

∆t 0.0025

Number of processors 512

Average cpu-time per time step 0.35 sec

Wall-clock time per one cycle 3 hours

Table 4.3: Flow simulation in domain of 20 cranial arteries. Computational details.

173

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

j

Q
j
/Q

1

R
1
/R

j

Figure 4.22: Steady flow simulation in a domain of 20 cranial arteries with RC boundary
condition. Comparison between Qj/Q1 and R1/Rj ratios. Re = 200, Ws = 4.95.

First, we simulate steady flow. In figure 4.22 we compare the ratio Qj/Q1 to R1/Rj

ratios for j = 1, 2, ...10 . We observe very small deviation between the data. Second,

we consider time-dependent flow. Initially, we performed a simulation with the impedance

boundary condition [66], and reasonably good convergence of flow rates at all ten outlets

was achieved after 6 to 8 cardiac cycles. In figure 4.23(left) we show the difference between

flow rates over two successive time periods. In figure 4.23(right) we plot two convergence

rates of Qj at outlet with the fastest convergence (j = 3) and with the slowest convergence

(j = 4). The curves for the convergence rates of Qj at other outlets are located between the

curves plotted for Q3 and Q4. The convergence of flow rate was estimated from a difference

in flow rate at two subsequent cycles:

L2(i) =
M−1∑

k=0

√
(Q(tk + (i + 1)T) − Q(tk + iT))2

M
,

where M is a number of time steps in each cycle, i is the cycle index and T is the nondi-

mensional time period; here time 0 ≤ tk < T, tk = k∆t is measured from the beginning of

a cycle.

Finally, we considered the recorded flow rate history at each outlet as a reference so-

174

0 100 200 300 400 500 600
0

5

10

15

t

Q
(t

−
kT

)

k = 0
k = 1

0 100 200 300 400 500 600
10

−4

10
−2

10
0

| (
Q

(t
)−

Q
(t

−
T

))
 /

Q
(t

)
|

t
1 2 3 4 5 6 7

10
−4

10
−3

10
−2

10
−1

i

L 2(i)

out
3

out
4

Figure 4.23: Unsteady flow simulation in a domain of 20 cranial arteries, convergence of flow
rates. Left: pointwise difference in a flow rate at outlet No. 3. Convergence in the difference
|Q(t)−Q(t−T)| indicates convergence to periodic state. Right: convergence rate at outlets
No. 3 (fastest convergence) and No. 4 (slowest convergence). Re = 200, Ws = 4.95.

lution and performed the simulation with the R(t)C boundary condition. In figure 4.24

we compare the reference flow rates and the flow rates computed with the time-dependent

R(t)C boundary conditions during the first cycle. The initial condition for velocity in the

last simulation was V = 0, and as we can see from the data presented in figure 4.24 a very

fast convergence of flow rates through all 10 outlets is achieved.

In order to verify that velocity fields computed with the R(t)C and with the impedance

boundary conditions are the same, instantaneous velocity fields from two simulations were

compared. In figure 4.25 we show a section of an artery with a saccular aneurysm where the

velocity fields were extracted. In figure 4.26 we plot the three components of the velocity

extracted at y = 185. We observe that the velocity fields computed in simulations with

different boundary conditions are practically the same.

The computational cost of simulation with impedance boundary condition was 27 hours

on 512 processors of CRAY XT3. The computational saving in the simulation with the

R(t)C boundary conditions compared to the simulation with impedance boundary condition

is more then 20 hours on 512 processors of CRAY XT3.

There is a fundamental difference between the R(t)C and the impedance boundary

condition. In patient-specific simulations with the R(t)C method, measurement of flow

rates only are required, while the impedance method requires measurements of both the

175

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

t

Q
(t

)

Figure 4.24: Unsteady flow simulation in a domain of 20 cranial arteries with two types of
boundary conditions. Comparison of the reference and computed flow rate at 10 outlets.
Solid line - reference solution, obtained with the Impedance boundary conditions; dot line -
results of numerical simulation with corresponding R(t)C-type boundary conditions. Re =
200, Ws = 4.95.

flow rates and the pressure waves at each outlet in order to compute the patient-specific

impedance. While it is reasonable to obtain the flow rates using existing medical equipment

in non-invasive measurements, it is practically impossible to measure pressure in most of

the arteries, since it requires complicated invasive procedures. Thus, in order to achieve

patient-specific flow rates in simulations of a flow with multiple outlets using the impedance

boundary condition, a costly iterative optimization over several parameters for each outlet

is required. Moreover, at each iteration a simulation of several cardiac cycles must be

completed before a reasonable convergence is achieved.

4.3.3.3 Stenosed carotid artery

In the next example we simulate unsteady flow in a stenosed carotid artery. The compu-

tational domain used for the study was reconstructed from MRA images and discretized

into 19270 tetrahedral spectral elements, with the solution approximated with eighth-order

polynomial expansion. In figure 4.27 we show the geometry of the model, flow patterns and

time history of velocity at selected points. Due to the relatively high Reynolds number and

176

Figure 4.25: Cranial arterial tree geometry. Plane y = 185 intersects a small saccular
aneurysm developed at the Middle Cerebral and Anterior Temporal (U-shaped) arteries.
The velocity field in this section is characterized by strong secondary flows. Colors corre-
spond to the z-coordinate.

complexity of the geometry, the flow develops an intermittent laminar-turbulent-laminar

regime. A detailed study of the flow in stenosed carotid artery will be published else-

where, so here we focus only on the boundary conditions imposed at the outlets. At the

inlet we imposed Womersley velocity profile with 20 modes. The main characteristics of

the flow at the inlet are: Reynolds number based on mean velocity and inlet diameter is

MEAN(Reinlet) = 350, peak Reynolds number based on inlet average (in space) velocity

at the systolic peak (at t = 0.15, see figure 4.28) MAX(Reinlet) = 1345, Ws = 4.375. The

time period for one cycle is T = 0.9sec. Due to stenosis, the internal carotid artery has

a 77% oclusion (based on cross-sectional area). The peak Reynolds number at the narrow

part of the internal carotid artery is MAX(Restenosis) = 395. At the outlets of the internal

(outlet 1) and external (outlet 2) carotid arteries we imposed the RC boundary condition,

with R1 = 100, C1 = 0.002 and R2 = 60, C2 = 0.005.

In figure 4.28 we plot the computed flow rates and the Q1/Q2 ratio. The error in imposing

Q1/Q2 = R2/R1 = 0.6 is less then 5%. The error reaches its maximum when the instanta-

neous Reynolds number is very low (MIN(Reinlet) = 46) and at the onset of the turbulent

regime. In the next simulation we imposed the time dependent resistance boundary condi-

tion, R(t)C. The value of the resistance at outlet 1 (ICA) was fixed R1 = 100, while the

value of the resistance at outlet 2 (ECA) was computed using prescribed Q1(t)/Q2(t) flow

177

rate ratio. Results for two cases of Q1(t)/Q2(t) ratio are presented in figure 4.29, very good

agreement between the computed and reference flow rates is observed.

178

Figure 4.26: (in color) Unsteady flow simulation in a domain of 20 cranial arteries. Compar-
ison of velocity fields at slice y = 185 depicted in figure 4.25. Left plots: solution with the
Impedance boundary condition. Right plots: difference between velocity fields computed
with the Impedance boundary condition and the corresponding R(t)C boundary condition.

179

1 1.2 1.4 1.6 1.8
0

2

4

6

 point (a)

w
(L

,t)
 [m

/s
ec

]

1 1.2 1.4 1.6 1.8
0

1

2

 point (f)

w
(L

,t)
 [m

/s
ec

]

1 1.2 1.4 1.6 1.8
0

1

2

 point (h)

w
(L

,t)
 [m

/s
ec

]

1 1.2 1.4 1.6 1.8
0

10

20

30

Q
(t

)
[m

l/s
ec

]

t [sec]

Q
CCA

 comp Q
ICA

Q
ECA

Figure 4.27: Simulation of intermittent laminar-turbulent-laminar flow in a stenosed carotid
artery with RC-type boundary condition. Left: flow patterns: red iso-surface depicts high
speed flow region (jet), blue iso-surfaces show regions of backflow; instantaneous stream lines
demonstrate swirling flow. Right: flow rates and negative z-component of the velocity field
monitored at the selected history points (in ICA); the locations of the points are marked
by the red dots. MEAN(Reinlet) = 350, MIN(Reinlet) = 46, MAX(Reinlet) = 1345,
Ws = 4.375.

180

0 0.5 1 1.5
0

10

20

30

Q
(t

)
[m

l /
se

c]

t [sec]

Q
in

Q
1

Q
2

0 0.5 1 1.5

0.57

0.6

0.63

Q
1 /

Q
2

t [sec]

Figure 4.28: Simulation of intermittent laminar-turbulent-laminar flow in stenosed carotid
artery with RC-type boundary condition. The prescribed by RC-type boundary condition
flow rate ration Q1/Q2 = R2/R1 = 0.6 is obtained within 5% error. R1 = 100, R2 = 60,
C1 = 0.002, C2 = 0.005. MEAN(Reinlet) = 350, MIN(Reinlet) = 46, MAX(Reinlet) =
1345, Ws = 4.375.

181

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

Q
(t

)
[m

l/s
ec

]

Q
in

Q
1

Q
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

t [sec]

Q
(t

)
[m

l/s
ec

]

Q
in

Q
1

Q
2

Figure 4.29: Simulation of intermittent laminar-turbulent-laminar flow in stenosed carotid
artery with R(t)C-type boundary condition. Prescribed values of the flow rates are marked
with lines; computed values of the flow rates are marked with dots. R1 = 100, R2(t) =
R1(Q1(t)/Q2(t)), C1 = 0.002, C2 = 0.005. MEAN(Reinlet) = 350, MIN(Reinlet) = 46,
MAX(Reinlet) = 1345, Ws = 4.375.

182

4.4 Two level domain partitioning

Advances in computer architecture present new challenges in developing parallel numerical

algorithms. For example, many of the existing today parallel solvers show lower scalability

on the new multi-core based supercomputers, when compared with the scalability achieved

on the previous generation of a single-core computers. The number of communication paths

between cores of different compute-nodes is significantly lower then the core count. Hence,

the performance is adversly affected by the network contention when several messages are

competing over a single path. To emphasize the need for new parallel paradigms we compare

the performance of NεκT αr on CRAY XT3 (with one dual-core processor per node) and

CRAY XT5 (with two quad-core processors per node) computers. On CRAY XT3 we used

less optimized version of NεκT αr , i.e., without implementing the acceleration techniques

presented section 3.5, while on CRAY XT5 the most optimized solver with lower iteration

count and consequently lower volume of communication2 has been employed. The results

are presented in figure 4.30. We observe almost two-fold reduction in the computational

time on XT5 due to implementation of the fast numerical algorithms; and at the same time

the reduction in the scalability is clearly seen.

512 1024 2048 4096 8192
0

2

4

6

8

10

12

14

16

 CPU time: XT3 (XT5)

T
512

 = 2.50 (1.15) s

T
1024

 = 1.37 (0.64) s

T
2048

 = 0.78 (0.38) s

T
4096

 = 0.50 (0.26) s

T
8192

 = NA (0.21) s

CPU

T
51

2/T
N

XT3
XT5
ideal

Figure 4.30: Performance of NεκT αr on CRAY XT3 and CRAY XT5: Left: Parallel
speed-up. Problem size: 120,813 tetrahedral elements, P = 10, (226,161,936 quadrature
points); preconditioner: LEBP. Right: geometry of the computational domain; color cor-
responds to pressure values. Computation performed on CRAY XT3 (ERDC) and CRAY
XT3 (PSC, for 4096 processors), and CRAY XT5 (NICS). CRAY XT3 has one dual-core
processor per node, CRAY XT5 has two quad-core processors per node.

2It was verified that scalability of N εκT αr increases due to acceleration techniques reducing the iteration
count.

183

Hierarchical patterns of communication between processors and different speed of com-

munications should be taken into account in design of new parallel algorithms. For example

the architecture of a half petaflop Sun Constellation Linux Cluster (Ranger) located in

Texas, Austin has several levels of hierarchy: four quad-core processors are composing a

blade (a node), 12 nodes connected by local network create a “chassis”, four “chassis” are

contained in each of 82 “racks”. The communication between cores located within the

same blade is about ten times faster than the communication between cores from different

nodes. Similarly, communication between processors within the same “shassi” is faster than

between processors belonging to different racks. One of the challenges in designing scal-

able parallel algorithms is minimizing the slow communications by topology aware domain

decomposition and “lamping” the communication intensive part of the code to processors

connected with the fastest network. Another challenge is minimizing blocking collective

operations.

In 3D large-scale simulations, the number of spectral elements can be well over a million,

and due to the high-order polynomial expansion the number of DOFs may be over several

billions. This large number of unknowns leads to construction of a global linear operator

matrix with very high rank and consequently with very large condition number. Decoupling

of the interior degrees of freedom by applying Schur decomposition leads to reduction in the

size of the linear operator that must be inverted, however, the rank of the Schur complement

is still very large.

In figures 3.17 and 4.30 we plot the performance of NεκT αr on the CRAY XT3 and

XT5 for a simulation involving 120,813 elements. The scaling is favorable for high-order

polynomial approximation, however there is a clear saturation in performance of the code

on large number of CPUs. One of the bottle neck in scaling iterative solvers is scalability

of efficient preconditioners. In section 3.4 we have discussed an implementation of parallel

LEBP and the coarse space linear vertex solver. The coarse space linear vertex solver is

implemented in two steps: In the first step, the global operator VSC is constructed from the

linear (vertex) modes, which are shared by different partitions, is constructed and inverted

in parallel. In the second step, the local operator constructed from linear modes within

each partition is inverted. The size of VSC is increasing with the number of partitions, and

this imposes two problems: (1) Inversion of a full matrix with large rank. For example, in

a domain of 120,813 tetrahedral elements the rank of VSC for the pressure solver is 12,496

184

when 256 processes are used and almost 25,066 when the domain is sub-divided (using

METIS [3]) onto 8192 partitions. The rank of VSC grows almost linearly with an increase

in the number of processes. (2) The volume of computation performed by each process

decreases relatively to the volume of communication between processes required by parallel

matrix-vector multiply; hence the parallel efficiency of the preconditioner degrades.

To overcome the aforementioned problems, we propose to decompose the arterial net-

work into a series of weakly coupled sub-domains or patches of manageable size for which

high parallel efficiency can be achieved on a sub-cluster of processors. The continuity of

numerical solution across different patches is achieved by providing appropriate interface

conditions, based on a hybrid C0−DG-like approach. The method preserves the advantages

of C0 discretization, namely low number of DOFs compared to a full DG discretization and

implicit treatment of the viscous terms of Navier-Stokes equation within a patch. The entire

simulation is performed in two levels: (i) in the inner level, we solve conqurently a series

of tightly coupled problems in each sub-domain using semi-implicit time stepping scheme

and C0 polynomial approximation, and (ii) in the outer level, we explicitly solve the weakly

coupled problems by imposing interface boundary conditions on the sub-domains inter-

faces with a DG-like approach. In this Chapter we use NεκT αrG - a numerical software

employing the two-level domain decomposition method and Multi Level Communicating

interface.

185

4.4.1 Formulation

The numerical approach is based on a two-level domain decomposition (2DD), where the

large computational domain is initially decomposed into several overlapping or non-overlapping

patches (coarse level) and SEM domain decomposition (1DD) is applied within each patch.

In the illustration of figure 4.31 the computational domain Ω is subdivided into two non-

overlapping patches ΩA and ΩB, with the thick dash black line depicting the location of

the patch interface denoted by Γ. At every time step the tightly coupled problem defined

within each patch is solved using the semi-implicit numerical scheme(2.34a). The bound-

ary conditions at the interface are provided by exchanging values of the numerical solution

across Γ.

Figure 4.31: Large computational domain is subdivided into two non-overlapping patches.
The red arrows indicate direction of a primary flow.

Solution of flow equations with overlapping patches adds additional layer of complexity.

In figure 4.32 we provide an illustration of two overlapping domains. In simulations with

overlapping domains the data for the pressure and velocity boundary conditions is taken

from the inner elements of the patch, thus decoupling the pressure and velocity interfaces. It

is known that the error introduced by the time-splitting scheme is larger at the boundaries

of the domain and decays exponentially in the inward direction. In the case of zero overlap

the error contaminating, for example, the pressure at the inlet of domain ΩB is transfered

across the interface and becomes a part of Direchlet boundary condition imposed at the

outlet of ΩA. The velocity computed at the outlet of ΩA (where erroneous pressure boundary

186

condition is imposed) is transfered across the interface and imposed as Dirichlet boundary

condition at the inlet of ΩB. If the solution is not sufficiently smooth, the described above

mechanism may lead to amplification of numerical error and instability. Use of overlapping

domains overcomes the aforementioned difficulty and enhances stability.

Figure 4.32: Schematic representation of two overlapping patches and interfaces.

Multilayer Communicating Interface (MCI)

A parallel numerical simulation performed with 2DD involves two types of communication:

(a) local or intra-patch communications, where processes from the same group communicate,

and (b) global or inter-patch communications, where processes from different groups commu-

nicate. The inter-patch communication developed for the two-level domain decomposition

can be efficiently performed within a single supercomputer as well as across geographically

distributed computers. The latter is characterized by high latency (in comparison to the

local communication). Therefore, the MCI implemented in NεκT αrG is designed to opti-

mize the inter-patch message passing, when executed on distributed supercomputers or on

clusters using multi-core processors.

A schematic representation of MCI semi-hierarchical decomposition of the global com-

municator is illustrated in figures 4.33 to 4.34. The first three layers (L1, L2 and L3) of

process groups (depicted in figure 4.33) are created by hierarchical decomposition of the

global communicator. The fourth layer (L4), shown in figure 4.34(left), allows some degree

of overlap, e.g., a process can belong to two or more L4 communicators. On the fifth layer

187

(L5), communication between ROOTs 3 of different L4 or/and L5 process sub-groups takes

place. In the following we provide a more detailed description of the sub-communicators.

Figure 4.33: Multilayer Communicating Interface: High level communicator splitting.
MPI COMM WORLD is subdivided according to the computer topology to form three
non-overlapping process sub-group (Sj). The S2 group is sub-divided using task-oriented
splitting and four non-overlapping Tj groups are created. Cells represent processes.

The first layer (L1) of the MCI is composed of all available processes composing a

default communicator setup by MPI Init() function (i.e., MPI COMM WORLD). The L2

is derived from L1 using topology-aware splitting of MPI COMM WORLD, where processes

executing on the same computer are grouped in non-overlapping manner (groups S1, S2

and S3 in figure 4.33). The splitting of the global communicator is done dynamically, the

MPICH-g2 and MPIg middlewares provide a functionality to easily split processes according

to topology [7]. The L3 is derived from L2 using task oriented decomposition; each L3 sub-

group is dedicated to parallel solution of one tightly coupled problem (groups T1, T2, T3 and

T4 in figure 4.33). The task oriented decomposition is controlled by information provided

as an input to NεκT αrG (see Appendix G). When the program is executed on a single

supercomputer the L3 communicators are derived directly from the MPI COMM WORLD.

Solving the tightly coupled problem may involve specific tasks typically executed by a

subset of processes, hence a fourth layer (L4) of MCI is created. In the arterial flow simula-

tion such tasks involve treatment of boundary conditions at the arterial inlets and outlets.

In NεκT αrG different types of inlets and outlets are represented by three objects: 1) class

TerminalBoundary (see Appendix D); 2) class OvrLapBoundary (see Appendix E); and 3)

class MergingBoundary (see Appendix F). Each of the three objects handles communication

and provide required functionality for inlets and outlets, i.e., computing flowrates, mean

pressure, mapping between patches, exchanging data for inter-patch conditions, etc. To this

end, let us present the following L4 sub-communicators implemented in NεκT αrG (see

3process with rank zero.

188

also an illustration presented in figure 4.32):

• T inlet: sub-communicator consists of processes assigned to partitions with elements

facing inlet of the global domain Ω.

• T outlet: sub-communicator consists of processes assigned to partitions with elements

facing outlet of the global domain Ω.

• M inlet: sub-communicator consists of processes assigned to partitions with elements

facing inlet of the patch that interfaces with the adjacent patch.

• M outlet: sub-communicator consists of processes assigned to partitions with elements

facing outlet of the patch that interfaces with the adjacent patch.

• O inlet: sub-communicator consists of processes assigned to partitions with elements

which faces are conforming with the faces of elements of the outlet of the adjacent

patch.

• O outlet: sub-communicator consists of processes assigned to partitions with elements

which faces are conforming with the faces of elements of the inlet of the adjacent patch.

The point-to-point communication between the ROOTs of L4 is performed over the global

communicator (MPI COMM WORLD), while the communication between the processes

within L4 is performed over the local L4 sub-communicator. Additional sub-communicator

connecting the ROOTs of all L4 sub-communicators derived from the same L3 communi-

cator and also the ROOT of corresponding L3 is required to transfer flowrates and mean

pressures computed locally to the ROOT of L3, which outputs this data to a file (or trans-

fers it to the dedicated IO processor), or communicates with coupled 1D flow solver. The

mapping as well as number of processes in the L4 communicators is not known a priori,

and it is done at the beginning of the simulation. The zero overlap can be considered as a

limiting case of the overlapping domains, and from the standpoint of parallel algorithm the

two cases can be treated in exactly the same way.

Figure 4.34(left) depicts an example of a solver executing four tasks in the third MCI

layer. Only one process is assigned to the first task, while 14 processes are assigned to tasks

2, 3 and 4. Task 1 is dedicated to the 1D arterial flow solver and used for co-processing of

the intermediate results, e.g. IO, system calls and etc., while tasks 2-4 solve the 3D flow

equations in arterial domains schematically represented at the right of figure 4.34(left).

189

Figure 4.34: Multilayer Communicating Interface. Left: Low level communicator splitting.
Here four third-level process sub-groups (Tj) are shown. The low level communicator split-
ting is performed within each of the Tj sub-group. The inlet and outlet communicators are
created. Data exchange between processes from each task Tj is performed through commu-
nicators from the fifth-layer of MCI, which combines roots of the third-level communicators.
Right: three-step algorithm for inter-patch communication.

In the illustration of figure 4.34(left) each patch has one inlet and different number of

outlets, and accordingly different number of process sub-groups (denoted by inlet and outlet

sub-groups) are created on the fourth MCI layer. Due to high geometrical complexity of

the computational domain, the standard domain decomposition (performed by METIS [3])

may result in some degree of overlap on the fourth-level of process sub-groups, since spectral

elements from different outlets or inlets may belong to the same partition, the limiting case

would be assigning one process for entire patch. However, when the number of processes

assigned to the solution of tightly-coupled problem increases, the possibility of the overlap

vanishes. In section 4.3.2.3 we have presented a simple algorithm for communicator splitting

in a case of one-to-many mapping between a partition and inlets or outlets. The fifth-layer

of MCI is responsible for data exchange across the sub-groups Tj of the third-layer.

Solving flow equations with 2DD, requires imposing interface boundary conditions for

the velocity and pressure as explained earlier in this section, which necessitates data ex-

change across the patch interfaces. The inter-patch communication is implemented in three

steps, as illustrated in figure 4.34(right) and explained next. Consider two patches, which

share an interface Γ as shown in figure 4.31. As a result of the standard (1DD) domain

decomposition within each patch, only a fraction of partitions will be assigned elements

which faces belong to Γ; let us denote this partitions as interface partitions. Since we have

one-to-one mapping between processes and partitions, only processes that are assigned to

190

the interface partitions should communicate in order to exchange data required by the IPC.

For example, in the illustration of figure 4.34(right) processes 4-6 are assigned the interface

partitions of the blue patch, while processes 0-2 assigned the interface partitions of the

green patch. On the first step, data from the interface partitions, is gathered to the ROOT

process of L4 sub-communicator. On the second step, point-to-point communication be-

tween the ROOTs of corresponding L4 sub-communicators occurs in passing data between

the adjacent patches. In the third step, data received by the ROOT of L4 is scattered (or

broadcasted) to the interface partitions only.

We should note that exchanging data through the ROOT processes of L4 sub-groups is an

optimization made for simulations on distributed computers to minimize the traffic over the

slower network. The alternative approach is to allow each process assigned to the interface

partition of one patch to communicate with processes assigned to the interface partition of

the neighbor patch, which decreases the intra-patch but increases the inter-patch commu-

nication.

Inter-patch conditions

The inter-patch conditions (IPC), required for coupling 3D patches, are computed explicitly

and include the velocity boundary condition at the inlets along with pressure and velocity

fluxes at the outlets. An illustration of two non-overlapping patches coupled by IPC is

presented in figure 4.31. The outlet of patch ΩA marked as Γ− conforms with the inlet of

patch ΩB marked as Γ+.

To impose IPC we follow a procedure similar to the discontinuous Galerkin (DG) method

[32]. The hyperbolic component of the Navier-Stokes equation dictates the choice of inter-

face condition for the velocity based on the upwinding principle. Assuming that u · n ≥ 0

(with n pointing outward) at the patch outlet we impose the inlet velocity condition in

patch B as

un+1|Γ+ = un|Γ− , (4.12)

where the superscripts denote time steps. The velocity flux at the patch A outlet is com-

puted as weighted average of the normal velocity derivatives from both sides of the interface,

i.e.,
dun+1

dn

∣∣∣∣
Γ−

= c1
dun

dn

∣∣∣∣
Γ−

−(1 − c1)
dun

dn

∣∣∣∣
Γ+

, (4.13)

191

where the coefficient c1 is in the range 0 ≤ c1 < 1. In the present study we use c1 = 0.5.

Alternative choices of numerical fluxes may be considered; for example, imposing the total

flux for the velocity at Γ+ was advocated in [41, 47]. Also, different choices for the flux in

the DG formulation can be found in [10, 11].

The pressure at the patch outlet is given by

pn+1|Γ− = F (t − t0)p̄ + (1 − F (t − t0))pIC , (4.14)

where p̄ = 0.5(pn|Γ− + pn|Γ+), F (t − t0) = (1 − e−α(tn+1−t0))β with α > 0 and β > 0 and

pIC is the initial conditions for the pressure; in our simulations we used α = 20 and β = 2.

The role of pIC is explained bellow. The filter function F (t − t0) suppresses erroneous

0 5 10 15
−1

−0.5

0

0.5

1
x 10

4

n

p(
n)

,
∆

t =
 0

.0
05

(a)

Γ−

Γ+

0 5 10 15
−1

−0.5

0

0.5

1
x 10

4

n

p(
n)

,
∆

t =
 0

.0
01

25

(b)

Γ−

Γ+

Figure 4.35: Steady flow simulation with 2DD: High amplitude oscillations of the pressure
at the patch interface in the beginning of a simulation performed in a convergent pipe
domain subdivided as illustrated in figure 4.39 (left). Solution is computed with third-
order approximation in space and different size of time steps: (a) ∆t = 0.005, and (b)
∆t = 0.00125. High amplitude oscillations in pΓ+ are reduced by the filter function F (t−t0)
resulting in low amplitude oscillations in pΓ− .

large pressure oscillations. The pressure oscillations at the inlet are due to the numerical

scheme and incompatible initial conditions; e.g., in the beginning of the simulation the initial

velocity field may not satisfy the continuity equation ∇ · v = 0. In simulations on a single

domain (1DD), the pressure oscillations at the beginning of a simulation do not affect the

stability of the solver. However, in the 2DD formulation, the pressure computed at the inlet

Γ+ is imposed as Dirichlet B.C. at the outlet Γ−, thus oscillations in pΓ+ propagate to the

adjacent patch. In the case of multiple interfaces required in complex arterial networks, out-

of-phase pressure oscillations at outlets may lead to catastrophic results. Large oscillations

192

in pressure may also appear when the simulation is restarted; in this case, the last term of

Eqn. (4.14) works to reduce the oscillations and, during the first few time steps, it keeps the

pressure values at the patch interface close to pIC . In figure 4.35 we show the oscillations

of the mean pressure p̃ = (AΓ)−1
∫
Γ pdA, computed at the patch interface for two choices of

∆t. The dramatic reduction in the amplitude of the oscillations at Γ− is a result of applying

the filter function F (t − t0) of Eqn. (4.14). In the case of overlapping domains the values

of velocity and pressure from inside of a patch are used to impose boundary conditions at

the adjacent patch.

The error introduced by the explicit treatment of the interface boundary conditions is

controlled by the size of time step. In order to minimize the error, an iterative procedure for

computing un+1 and pn+1 may be applied. However, from the computational standpoint,

such procedure is inefficient in a sense that the computational time will grow almost linearly

with the number of sub-iterations required for convergence of the velocity and the pressure

at patch interfaces. In large scale simulations of blood flow in the human arterial tree,

computing the solution over one cardiac cycle typically takes 1-3 days at the present time,

thus such sub-iterations are computationally prohibitive. We should note, that the typical

size of a time step in such simulations is 1E − 5 - 1E − 6 s., and the space discretization

error is usually dominant.

An alternative way for enhancing the numerical accuracy is to approximate the boundary

condition at the time step t(n+1) by applying a penalty term, i.e.,

un+1|Γ+ = un|Γ− + αBCF (t − t0)(un|Γ− − un|Γ+) (4.15)

or by extrapolation, i.e.,

un+1|Γ+ = un|Γ− + αBCF (t − t0)(un − un−1)|Γ− , (4.16)

where 0 ≤ αBC ≤ 1 is a relaxation parameter and 0 ≤ F (t − t0) ≤ 1. The choice of αBC

affects both accuracy and stability, however, the latter dictates its value.

In the SEM approach, the solution for velocity and pressure is performed in modal

space, hence, the values of velocity and pressure can be transfered and imposed as B.C. in

modal space bypassing expensive transformation from modal to physical space and vice-

versa. Of course, this can be done only when the computational meshes at Γ− and Γ+ are

193

conforming. Imposing B.C. in modal space has an additional advantage: we can exploit the

hierarchical structure of the base functions and reduce communication by imposing IPC by

transferring only the most energetic modes. Although a small reduction in accuracy may

occur, from the computational standpoint, limiting the number of modes to be collected

from one subset of processors to another leads to shorter messages and consequently to

reduction in computation time associated with imposing IPC. The latter is very important

in ultra-parallel simulations.

194

4.4.2 Non-overlapping domains: Results

In this section we compare the parallel efficiency of two solvers based on the 1DD and 2DD

approaches. Subsequently, we investigate the accuracy of numerical simulations of steady

and unsteady flow performed with the 1DD and 2DD methods.

From the computational standpoint, one of the advantages of the 2DD approach over

the 1DD approach is the minimization of blocking communication between processes, which

enhances parallel efficiency. In the first simulation we use a computational domain consisting

of 67456 tetrahedral elements elements sub-divided into two equal size patches. Separate

runs are performed using the 1DD and the 2DD approaches, and in figure 4.36 we plot the

mean CPU-time per time step. The computational saving with the 2DD approach is clear

even for this relatively small size problem.

64 128 256

0.5

0.75

1

1.25

1.5

2

2.25

N
CPU

m
ea

n
cp

u−
tim

e
[s

ec
]

P=4, 1DD
P=4, 2DD
P=5, 1DD
P=5, 2DD

Figure 4.36: Simulation with 1DD and 2DD: performance. Y-axis is the mean CPU-time
required per time step. Problem size: 67456 tetrahedral elements, polynomial order P = 4
(dash line) and P = 5 (solid line). Computation performed on the CRAY XT3 supercom-
puter.

In figure 6 we plot the CPU-time per time step for the solution of large problem com-

puted with the 1DD and 2DD approach. The relatively large deviation in the CPU-time

is due to different number of iterations at different time steps and also due to sharing the

communication network with other users during our tests. The computational savings with

the 2DD approach is clear and increase with the number of processors.

195

0 200 400 600 800 1000
0.5

0.6

0.7

0.8

0.9

1

1.1

time step

cp
u−

tim
e

[s
ec

] 1DD

 2DD

Figure 4.37: Simulation with 1DD and 2DD on 1024 cores of Ranger: The domain is sub-
divided into two parts: patches C and D (106,219 and 77,966 elements, P = 4) in figure
4.38(right). Dots - CPU-time per time step; solid lines - least-square approximation.

The potentially great advantage of the 2DD approach is in simulating very large scale

problems. There are two difficulties in the solution of a such problems: (a) limited avail-

able memory per processor, and (b) tight communication between thousands of processors.

Limited memory requires the use of many processors, which decreases the volume of com-

putation versus volume of communication ratio. Implementation of coarse partitioning of

a computational domains into M patches leads to partitioning of the communicator into

M non-overlapping groups of processes [44]. The tight communication between processes

is performed as intra-group message passing only. The communication between groups is

required to exchange data across patch interfaces and it is limited to a small number of

processes. This communication is non-blocking and is performed once in a time step. The

overall computational efficiency is strongly affected by the parallel efficiency in the solution

of a problem within a patch. In figure 4.38 we show the parallel efficiency of NεκT αrG in

simulation of a steady flow in aorta. On a coarse level the domain is partitioned into four

patches. The parallel efficiency Ep is computed as:

Ep(N) =
Tn/TN

N/n
,

where N is the number of processes employed in simulation, n is the reference (minimum)

196

number of processes used for parallel solution of a given problem and TN (Tn) is the mean

CPU-time per time step required for simulation on N (n) processes. The results of figure

4.38 verify that the overall parallel efficiency depends on the parallel efficiency of each

subproblem on the different patches. Here patches A and C suffer from relatively low

efficiency. In terms of optimizing the overall performance, this implies that we should

optimize the parallel performance on the individual patches – a much simpler task than

dealing with tens or hundreds of thousands of processors involved in the solution of the

overall problem.

patch Nel P # DOF

A 120,813 6 69,588,288

B 20,797 6 11,979,072

C 106,219 6 61,182,144

D 77,966 6 44,908,416

total 325,795 6 187,657,920

Table 4.4: Solution of large scale problem, computational complexity: flow simulation in
the domain of figure 4.38(right). On a coarse level the computational domain is subdivided
into four patches A-D. Nel - number of spectral elements. DOF - number of degrees of
freedom, computed as a total number of quadrature points: DOF = Nel ∗ (P + 3)(P + 2)2

required for exact integration of linear terms.

Our last example in this section is simulation of unsteady flow in a domain of 147 arter-

ies, subdivided to 12 non-overlapping patches. The domain consists of 1,244,295 spectral

element, and the solution is approximated with P = 6, which results in 2.87B degrees of

freedom problem. The dimensions of L3 communicator are from 16 to 3072 ranks, and the

total number of cores used for the test is 18,576. Simulation performed on Ranger (TACC)

showed that the solution of a such large problem can be obtained in about one second per

time step. The acceleration techniques described in section 3.5 were not implemented in

this test, we project that with acceleration technique the solution can be obtained in about

0.6s to 0.65s at each time step. The goal of the performed test was to demonstrate the

capabilities of the two-level approach and MCI.

4.4.2.1 Accuracy verification

Our objective is to evaluate the potential loss of spectral accuracy in the numerical solution

obtained using the 2DD approach. The accuracy degrades due to two factors: a) explicit

treatment of the IPC; and b) incomplete transfer of the velocity and pressure modes in

197

256 994 1976
100%

85%

69%

N
CPU

96 384 768
100%
80%
64%

 patch A

15 49 88
100%
98%
92%

 patch B

88 344 688
100%
85%
68%

 patch C

56 216 432
100%
91%
75%

N
CPU

 patch D

Figure 4.38: Simulation with 2DD: parallel efficiency. Steady flow simulation in the human
aorta. The domain is sub-divided into four patches. Details on computational complexity
are summarized in table 4.4. Y-axis - parallel efficiency of a solver, Ep. Left: parallel
efficiency in solution of tightly coupled system withing a patch. Center: overall parallel
efficiency. Right: geometry of a human aorta; large computational domain is subdivided
into four patches. Computation performed on the CRAY XT3 supercomputer.

imposing the inter-patch conditions.

We use the following notations:

P - order of polynomial expansion.

PV BC - maximum order of polynomial expansion in imposing the velocity IPC.

PPBC - maximum order of polynomial expansion in imposing the pressure IPC.

PFBC - maximum order of polynomial expansion in imposing the velocity flux IPC.

4.4.2.2 Benchmark Problem

Numerical simulations were performed in a simple computational domain whose shape is

similar to a converging blood vessel. Although the domain is axi-symmetric, we use full 3D

solver and non axisymmetric mesh to perform the simulations.

The domain consists of two blocks A and B as illustrated in figure 4.39. For reference,

we also combined the two blocks into one, i.e., block AB. In the first configuration, the

patch interface is normal to the z-axis and in the second configuration it intersects the

198

z-axis at 80 degrees. First, we performed a steady flow simulation with Reynolds number

A B A B

Figure 4.39: Illustration of two configurations of two-level domain decomposition into
patches A and B. The interfaces are centered at z = 5. Left: interface is normal to the pipe
axis. Patch A (red) has 4203 tetrahedral spectral elements and patch B (green) has 8906
elements. Right: interface is at an angle of 80o to the pipe-axis. The sizes of patches A and
B are 7246 and 11331 tetrahedral spectral elements, respectively. Primary flow direction
(z−) is from left to right.

Re = DAUm

ν = 350 where DA is a diameter of the inlet of patch A, Um is the mean velocity

at the inlet and ν is a kinematic viscosity. Poiseuille flow is imposed at the entrance of the

block A. At the outlet of the patch B a fully developed flow is assumed defined by zero

velocity flux and constant pressure. Second, we simulate unsteady flow by imposing the

Womersley velocity profile at the inlet of patch A. In this simulation the main characteristics

of the flow are Re = 350 and Womersley number Ws = (DA/2)2
√

ω/ν = 4.375, which are

typical values for the arterial flow in vessels with diameter of 4 to 5mm.

4.4.2.3 Convergence of flowrate and mean pressure at patch interface

We define the error in mass conservation across the interface as:

ǫQ =

∣∣∣∣
Q|Γ+ − Q|Γ−

Q|Γ+

∣∣∣∣ , (4.17)

where Q = |
∫
Γ v ·ndA| and n is an unit vector normal to Γ. The error in the mean pressure

p̃ is computed from

ǫp =

∣∣∣∣
p̃|Γ+ − p̃|Γ−

p̃|Γ+

∣∣∣∣ . (4.18)

First, we consider steady flow simulation with relatively low spatial resolution within a

patch, P = 3. In figure 4.40 we plot p̃(t) at the interface. In the first simulation the pressure

IPC were imposed with PPBC = 1 (i.e., using vertex modes only) and relatively large size

of time step was used i.e., ∆t = 0.005. Low spatial and temporal resolution result in high

frequency oscillations in p̃(t), whose amplitude is of order ∆t at Γ+ and considerably lower

199

at Γ−, as shown in figure 4.40(a). The next two simulations are performed with smaller size

of the time step ∆t = 0.00125 (figure 4.40(b)) or with higher spatial accuracy in imposing

the pressure IPC, i.e., PPBC = 2 (figure 4.40(c)); we observe that the oscillations can be

removed by either reducing the size of a time step or by increasing PPBC .

34 34.2 34.4 34.6 34.8 35

2.464

2.465

p(
t) (a)

34 34.2 34.4 34.6 34.8 35

2.464

2.465

t

p(
t) (b)

34 34.2 34.4 34.6 34.8 35

2.464

2.465

t

p(
t)

(c)
Γ− Γ+

Figure 4.40: Steady flow simulation with 2DD: Simulation performed in domain of conver-
gent pipe, sub-divided as illustrated in figure 4.39 (left). Convergence of the mean pressure
at the patch interface. Solution computed with P = 3. Velocity IPC is imposed with
PV BC = 3.
(a) - ∆t = 0.005 pressure IPC is imposed with PPBC = 1.
(b) - ∆t = 0.00125 pressure IPC is imposed with PPBC = 1.
(c) - ∆t = 0.005 pressure IPC is imposed with PPBC = 2.

To investigate further the effect of spatial under-resolution we consider a steady flow sim-

ulation in the domain illustrated in figure 4.39(left) performed with higher order of accuracy

i.e., P = 5 and ∆t = 0.00125. We focus on the effects of spatial under-resolution in imposing

IPC. In table 4.5 we summarize details of simulations where the velocity IPC were imposed

with PV BC = 1, 2, 3 and pressure IPC with PPBC = 1, 2. Exponential convergence in ǫQ and

ǫp̃ is observed. Simulations (a), (b) and (c) also show that imposing velocity IPC with higher

order of accuracy has significant effect on both ǫp and ǫQ. We should note that the time

splitting scheme (2.34b)-(2.34e) introduces an error in mass conservation. For example, the

error in mass conservation in simulation (d) was ǫQ = |(Qinlet − Qoutlet)/Qinlet| = 6.1e − 7

200

in patch A and ǫQ = 1.4e − 6 in patch B, which is comparable to the error introduced by

incomplete transfer of modes in imposing the velocity IPC.

Decoupling the solution for the velocity and the pressure allows to approximate the

two fields with the same polynomial order. The solution for the Poisson equation for

the pressure, supplemented with Dirichlet boundary condition at the outlet and Neumann

boundary condition at the Dirichlet-velocity boundaries, is unique and the spurious pressure

modes are eliminated [79]. However, imposing outlet pressure boundary condition with

PPBC = P or PPBC = P −1 may lead to an instability. In our tests, we observed that using

PPBC = P or PPBC = P − 1 (in the domain of figure 4.39) led to unstable simulations.

In steady flow simulation, only PPBC = P led to instability. This issue deserves additional

investigation in the future. In simulations (c) and (d) (see table 4.5) we observed that

using PPBC = P − 1 gave practically the same result as PPBC = P − 2 as far as the mass

conservation is concerned.

simulation N ∆t NV BC NPBC NFBC ǫQ ǫP

a 5 1.25E-3 1 1 5 3.3E-2 1.0E-2

b 5 1.25E-3 2 1 5 8.2E-4 6.8E-4

c 5 1.25E-3 3 1 5 1.3E-7 3.1E-4

d 5 1.25E-3 3 2 5 1.6E-7 1.7E-5

Table 4.5: Steady flow simulation with 2DD: exponential convergence in the error of a flow
rate Q and mean pressure p̃ computed across the patch interface. Simulation performed in
a domain of convergent pipe, sub-divided as illustrated in figure 4.39(left).

In figure 4.41 we plot the pressure distribution from both sides of the interface. The

upper plots show the computed pressure at the inlet of the patch B, p|Γ+ , while the lower

plots show the pressure imposed as IPC, p|Γ− at the outlet of patch A. Under-resolution

in imposing velocity boundary condition results in significant discontinuity in the second

derivatives of velocity computed at the inlet, and this induces pressure oscillations due

to pressure-velocity coupling through the pressure B.C. In contrast, incomplete transfer

of pressure modes from Γ+ to Γ− is equivalent to applying a cut-off filter and results in

considerable smoothing of the pressure field particularly in a case of under-resolved velocity

field.

The effect of explicit treatment of velocity IPC on the mass conservation across the

interface was investigated also using unsteady flow simulation, where third-order accuracy

in space (P = 3) and second-order accuracy in time discretisation within each patch was

201

Figure 4.41: Steady flow simulation with 2DD: pressure distribution from both sides of patch
interface. Simulation performed in a domain of convergent pipe, sub-divided as illustrated
in figure 4.39(left) with P = 5 and ∆t = 0.00125. The set-up is consistent with table 4.5.
Top plots: p|Γ+ ; bottom plots: plots p|Γ− . Left: case (a), PV BC = 1, PPBC = 1. Center:
case (c), PV BC = 3, PPBC = 1. Right: case (d), PV BC = 3, PPBC = 2.

employed. Velocity and flux IPC were imposed with full resolution (PV BC = 3, PFBC = 3)

and pressure IPC with PPBC = 1. Velocity and flux boundary conditions were imposed

using three different methods: a) according to formula (4.12); b) using the penalty formu-

lation (4.15) with α = 0.5; and c) using the extrapolation formula (4.16) with α = 0.5. The

results are summarized in figure 4.42. All three methods are based on first-order (in time)

explicit scheme in imposing IPC, however the coefficients (Ci) of the leading term in the

truncation error are different as we show in figure 4.42(right).

4.4.2.4 Errors due to inter-patch interface

Here we compare the error in the pressure and vorticity fields obtain with the 1DD and

2DD approaches. In figure 4.43 we show the computational domain and the location where

the pressure field was extracted for comparison. In figure 4.44 we compare the pressure

computed with the two methods. We observe that the error in the numerical solution is

202

0 1 2 3 4
0

5
x 10

−4

ε Q
(t

)
0 1 2 3 4

0

5
x 10

−4

ε Q
(t

)

0 1 2 3 4
0

5
x 10

−4

t

ε Q
(t

)

−2.9031 −2.6021 −2.301

−4.2

−4.1

−4

−3.9

−3.8

−3.7

−3.6

−3.5

−3.4

−3.3

LOG
10

(∆ t)

LO
G

10
(ε

Q
)

O(C
0
∆ t)

penalty: O(C
1
∆ t)

extrap.: O(C
2
∆ t)

Figure 4.42: Unsteady flow simulation with 2DD: Convergence of flow rates at the patch
interface. Simulation performed in a domain of convergent pipe, sub-divided as illustrated in
figure 4.39 (left). Left upper plot: α = 0.0. Left center plot: penalty formulation, α = 0.5.
Left lower plot: extrapolation, α = 0.5. Solid line ∆t = 0.005, dash line ∆t = 0.0025,
dash-dot line ∆t = 0.00125. Right: convergence rate of numerical error ǫQ at time t = 1.9.

greatest in the vicinity of patch interface and rapidly decays upstream where it is of order

∆t, and downstream, where it converges to the imposed value of the pressure at the outlet,

i.e., p = 0. The localization of numerical error at the vicinity of the patch interface is due

to reduced space for imposing IPC and also due to explicit treatment of the IPC.

Next we compare the vorticity field. In figure 4.45 we plot the y− component of the vorticity,

ωy computed with 1DD and 2DD. We define the maximum deviation in the vorticity field

by:

ǫω =
MAX(|ω(1DD) − ω(2DD)|)

ωs(1DD)
,

here the value of a scaling factor ωs(1DD) is computed at a point where the difference

|ω(1DD)−ω(2DD)| is maximum; results are presented in figure 4.46. The maximum value

of ǫωy in simulation with PPBC = 1 (PPBC = 2) is about 4% (2%) and decreases by an

order of magnitude a short distance from the interface.

203

Figure 4.43: Illustration of computational domain and location of slice y = 0 and lines
x = 0, y = 0 (black) and x = −1.6, y = 0 (blue); colors represent the non-dimensional
u-velocity.

0 5 10 15
0

10

20

30

40

z

p(
0,

0,
z)

(a)

1DD
2DD

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

z

ε P
 /

p(
z

=
 5

)

(c)

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

z

(d)

ε P
 /

p(
z

=
 5

)

0 5 10 15
0

10

20

30

40

z

p(
−

1.
6,

0,
z)

(b)

1DD
2DD

x = 0
x = −1.6

x = 0
x = −1.6

Figure 4.44: Unsteady flow simulation with 2DD in the computational domain of figure
4.39(right). Pressure along lines y = 0, x = 0 and y = 0, x = −1.6 as marked in figure
4.43. (a) and (b) non-dimensional pressure values computed with 1DD and 2DD. (c) and (d)
normalized difference between the pressure computed with 2DD and 1DD; (c) - PV BC = 3,
PPBC = 1, (d) PV BC = 3, PPBC = 2. P = 5, ∆t = 0.0005.

204

Figure 4.45: Unsteady flow simulation with 2DD: comparison of vorticity filed computed
with 1DD and 2DD: Y-component of vorticity field (ωy) contours at slices y = 0. Y-axis is
ωy. Solid lines represent location (z = 5 and z = 7.5) where ωy was extracted. Dash line
depicts the location of patch interface. P = 5, ∆t = 0.0005.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−60

−40

−20

0

20

40

60

x

ω
y(x

,0
,5

)

(a)

P
PBC

 = 1: ε
ω
=0.04

P
PBC

 = 2: ε
ω
=0.02

1DD 2DD

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−50

0

50

x

ω
y(x

,0
,7

.5
)

(b)

P
PBC

 = 1: ε
ω
=0.006

P
PBC

 = 2: ε
ω
=0.002

1DD 2DD

Figure 4.46: Unsteady flow simulation with 2DD: comparison of vorticity filed computed
with 1DD and 2DD. Computational domain is illustrated in figure 4.39(right). Y-component
of vorticity field, ωy, extracted at (a) - y = 0, z = 5 and (b) - y = 0, z = 7.5. ǫω - deviation
in ωy. PV BC = 3, PPBC = 1, 2, P = 5, ∆t = 0.0005.

205

4.4.3 Overlapping domains: Results

In this section we consider transient and unsteady flow simulations using the two-level

method and overlapping patches. We start with evaluating parallel efficiency of NεκT αrG ,

by solving transient flow problem in a pipe-like domain with multiple constrictions. The

large computational domain has been subdivided into several overlapping patches as illus-

trated in figure 4.47. The first simulation is performed on 1024 cores of Ranger and Kraken

(CRAY XT5), solution has been integrated for 1000 time steps with ∆t = 0.002, P = 4,

and initial condition u = 0. In this test we do not implement any acceleration techniques

described in section 3.5, LEBP is employed. At the inlet parabolic velocity profile cor-

responding to Re = 470 is imposed, at the outlet fully developed flow is assumed. The

number of spectral elements in a single-patch domain is Nel1 = 130, 880, while in the cases

of 2, 4 and 8 patches the total number of elements is Nel2 = 131, 994, Nel4 = 134, 222

and Nel8 = 138, 678, respectively. The increasing number of elements is due to overlapping

regions, each overlapping region has 1114 elements, shared by two neighbor patches. Simu-

lations are performed 10 times on each computer and for each level of coarse discretization.

The mean CPU-time required for 1000 time-steps along with the standard deviations are

presented in figure 4.48(top). Note, that despite the increasing problem size (due to the

overlap), the computational cost is decreasing, as a result of lower volume of communica-

tions. In figure 4.48(bottom) we present the strong scaling in simulations with one and four

patches. For this test we use relatively low-order polynomial approximation (P = 4), which

results in the poor scaling in simulations with one patch. However, in simulations with four

patches we observe considerably better scalability.

The weak and strong scaling tests have been extended up to 32,768 cores of the Blue-

Gene/P computer of ANL, for that purpose the domain size was increased by adding 16

more patches of equal size. The results are summarized in table 4.6. The excellent scaling

obtained on the BlueGene computer is due to factors: a) very good distribution of work

load, and b) computer characteristics, specifically extremely low system noise.

Next we perform simulations on CRAY XT5 with 3,8 and 16 patches, using 2048 cores

per patch. Unlike BlueGene, CRAY XT5 is more sensitive to the system noise, which

typically results in non-uniform CPU-time per time step as presented in figure 4.49. Very

good weak scaling is observed. We note that the total number of DOF for 16 patches is about

206

Figure 4.47: Large computational domain is sub-divided into several overlapping patches.

case Np # of cores/patch total # of cores CPU-time [s] weak (strong) scaling

A1 3 (A-C) 1,024 3,072 996.98 100% (100%)

A2 8 (A-H) 1,024 8,192 1025.33 97.2% (100%)

A3 16 (A-P) 1,024 16,384 1048.75 95.1% (100%)

B1 3 (A-C) 2,048 6,144 650.67 100% (76.6%)

B2 8 (A-H) 2,048 16,384 685.23 95% (74.8%)

B3 16 (A-P) 2,048 32,768 703.4 92% (74.5%)

Table 4.6: BlueGene/P: flow simulation in the domain of figure 4.47 using 3,8 and 16
patches. Np - number of patches. CPU-time - time required for 1000 time steps (excluding
preprocessing). P = 10, ∆t = 0.0005, Re = 470, preconditioner - LEBP, acceleration is not
implemented. Simulations have been performed using four cores per node (mode vn).

2.07B. and it takes only about 0.5s to solve such a large system, even without implementing

acceleration techniques described in section 3.5. The total solution time required for 1000

time steps with 3,8 and 16 patches was 462.3s, 477.2s and 505.05s, respectively. Moreover,

considering the very good weak scaling, there is a potential to solve much larger problem

within the same wall-clock time.

207

1 2 4 8
200

300

400

500

600

700

800

900

1000

1100

Np

C
P

U
−

tim
e

[s
]

XT5
Sun

256 512 1024
1

1.2

1.4

1.6

1.8

2

2.2

2.4

N
cpu

T
25

6 /
T N

cp
u

T = 583.41

T = 349.91

T = 850.67

T = 420.86

XT5: Np=1
XT5: Np=4
RANGER: Np=1
RANGER: Np=4

Figure 4.48: Flow simulations in a domain of figure 4.47. Top: simulations with 1, 2, 4
and 8 patches with 1024, 512, 256 and 128 cores per patch, respectively. Mean CPU-time
and standard deviation, CPU-time - time required for 1000 time-steps, Np - number of
patches, NCPU - number of cores. The measurements are based on 10 simulations on each
computer and for each coarse discretization. Bottom: Strong scaling in simulations with
1 and 4 patches, computing cores are equally subdivided between the patches. Re = 470,
P = 4, ∆t = 0.002. Simulation is performed on CRAY XT5 (Kraken, NICS), and Sun
Constellation Linux Cluster (Ranger, TACC).

208

0 200 400 600 800 1000
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time step index

C
P

U
−

tim
e

Np=3
Np=8
Np=16

Figure 4.49: Flow simulations in a domain of figure 4.47: weak scaling. Simulation with 3
(A-C), 8 (A-H) and 16 patches (A-P) using 2048 cores per patch. Np - number of patches.
Re = 470, P = 10, ∆t = 0.0005. Simulation is performed on 6,144, 16,384 and 32,768 cores
of CRAY XT5 (NICS).

209

Accuracy verification

To evaluate the accuracy of the two-level domain decomposition with overlapping patches,

we first consider unsteady simulation in a domain of convergent pipe, which we used in the

previous section, but this time the domain is discretized (on the outer level) into two over-

lapping patches as presented in figure 4.50. In figure 4.51 we plot the difference between the

pressure computed with 2DD and 1DD. We observe that decoupling the pressure and veloc-

ity interfaces reduces the error associated with the IPC (compare results of figure 4.44(d)

and 4.51(c,d)).

Figure 4.50: Domain of converging pipe: computational mesh and inter-patch interfaces
(S1, S2). S0 (S2) - inlet (outlet) of sub-domain ΩA, S1 (S3) - inlet (outlet) of sub-domain
ΩB.

Next we perform steady flow simulations in a channel with backward facing step illus-

trated in figure 4.52. In figure 4.53 contours of the streamwise (w−) component of velocity

vector are presented for a) simulation with 1DD; b,c) and d) simulation with 2DD and

overlapping patches as specified in the captions of figure 4.53. Very good agreement be-

tween the simulation results is observed. In figure 4.54 we plot the pressure contours for

the aforementioned three simulations. Pressure field presented in plot (b) slightly varies

from the pressure presented in plots (a, c) and (d) (see pressure contour around z = 9). The

larger deviation is due to insufficient resolution in imposing the interface boundary condi-

tions; specifically, truncation error corresponding to the choice of PV BC = 3, PPBC = 3. In

simulation with interface located between S1 and S5 the inter-patch interface is located in

the region of relatively high velocity and pressure spatial gradients, while in the simulation

corresponding to figures 4.54(c,d) the interface is located in the region where velocity and

pressure are very smooth, consequently the truncation error in IPC is lower. In order to

“zoom-in” into the differences between the velocity and pressure computed with 1DD and

2DD we extract data along a line x = 1.25, y = 2.5. The results are presented in figures

210

0 5 10 15
0

10

20

30

40

z

p(
0,

0,
z)

(a)

1DD
2DD: A
2DD: B

0 5 10 15
0

0.2

0.4

0.6

0.8

1

x 10
−3

z

x
=

 0
; y

 =
 0

:
ε p/p

(z
 =

 5
)

(c)

2DD: A
2DD: B

0 5 10 15
0

10

20

30

40

z

p(
1.

6,
0,

z)

(b)

1DD
2DD: A
2DD: B

0 5 10 15
0

0.2

0.4

0.6

0.8

1

x 10
−3

z

x
=

 1
.6

; y
 =

 0
:

ε p/p
(z

 =
 5

)

(d)

2DD: A
2DD: B

Figure 4.51: Unsteady flow simulation with 2DD and overlapping patches (see figure 4.50.
Pressure along lines y = 0, x = 0 and y = 0, x = 1.6 as marked in figure (a) and (b) non-
dimensional pressure values computed with 1DD and 2DD. (c) and (d) normalized absolute
value of difference between the pressure computed with 2DD and 1DD: (c) - y = 0, x = 0;
(d) - y = 0, x = 1.6. PV BC = 3, PPBC = 2, P = 5, ∆t = 0.0005.

4.55 and 4.56. Figures 4.55(a) and 4.56(a) correspond to three simulations performed with

different sizes of overlapping region: i) S1 − S5, ii) S2 − S4, and iii) S3 − S4. The interface

is located very close to the “step” and intersects the recirculation region. In simulations

corresponding to 4.55(b) and 4.56(b) the interface is located at the end and also outside

the recirculation region, and as we observe it leads to about one order of magnitude lower

difference between the data from 1DD and 2DD simulations.

Next, let us compare the computational efficiency in simulating the step-flow with 1DD

and 2DD. In table 4.7 we summarize the results.

211

Figure 4.52: Domain of a 3D channel with backward facing step: computational mesh and
inter-patch interfaces. S0 (S12) - inlet (outlet) of domain Ω. Sj , j = 1, ..., 12 - possible
inter-patch interfaces. The width of the channel is 5 length units.

overlap Nel NCPU CPU-time P = 3 CPU-time P = 5

1DD 31,518 240 0.21 0.31

S1 − S5 16,651+23,636 96+144 0.13 0.26

S3 − S4 14,633+18,930 96+144 0.11 0.22

S6 − S8 24,492+9148 176+64 0.14 0.25

Table 4.7: Steady flow simulation in 3D channel with backward facing step: performance on
CRAY XT5 (NICS). Nel - number of elements in two patches (Nel(ΩA) +Nel(ΩB). NCPU

- number of processes assigned to patches. The first line correspond to 1DD simulation,
and the next lines to simulations with 2DD and different overlapping regions.

212

Figure 4.53: Steady flow simulation in 3D channel with backward facing step with 2DD
and overlapping patches: contours of w-velocity components: w(x, 2.5, z). a) 1DD; b) 2DD;
patch ΩA is located between S0 and S5, patch ΩB is located between S1 and S12; c) 2DD;
patch ΩA is located between S0 and S8, patch ΩB is located between S6 and S12; d) 2DD;
patch ΩA is located between S0 and S11, patch ΩB is located between S9 and S12; Coarse
discretization is illustrated in figure 4.52. P = 5, PV BC = 3, PPBC = 3, ∆t = 0.002,
Re = 72.

213

Figure 4.54: (in color) Steady flow simulation in 3D channel with backward facing step with
2DD and overlapping patches: pressure contours: p(x, 2.5, z). a) 1DD; b) 2DD; patch ΩA is
located between S0 and S5, patch ΩB is located between S1 and S12; c) 2DD; patch ΩA is
located between S0 and S8, patch ΩB is located between S6 and S12; d) 2DD; patch ΩA is
located between S0 and S11, patch ΩB is located between S9 and S12 Coarse discretization
is illustrated in figure 4.52. P = 5, PV BC = 3, PPBC = 3, ∆t = 0.002, Re = 72.

214

0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

0.012

z

| w
1D

D
(z

)−
w

2D
D
(z

)
|

(a)
S

1
−S

5
: A

S
1
−S

5
: B

S
2
−S

4
: A

S
2
−S

4
: B

S
3
−S

4
: A

S
3
−S

4
: B

0 5 10 15
0

1

2
x 10

−4

z

| w
1D

D
(z

)−
w

2D
D
(z

)
|

(b)
S

6
−S

8
: A

S
6
−S

8
: B

S
9
−S

11
: A

S
9
−S

11
: B

Figure 4.55: Steady flow simulation in 3D channel with backward facing step with 2DD and
overlapping patches: difference in w−velocity component for various sizes and location of
overlap. The data is extracted along x = 1.25, y = 2.5. a) overlapping region is located close
to the step; solution is obtained to three different width of the overlap. b) overlapping region
is located at the end of the recirculation region (solid line); and behind the recirculation
region (dash line); (see figure 4.52). Arrow indicates increase in the overlapping. P =
5, PV BC = 3, PPBC = 3, ∆t = 0.002, Re = 72.

215

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

z

| p
1D

D
(z

)−
p 2D

D
(z

)
|

(a)
S

1
−S

5
: A

S
1
−S

5
: B

S
2
−S

4
: A

S
2
−S

4
: B

S
3
−S

4
: A

S
3
−S

4
: B

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

z

| p
1D

D
(z

)−
p 2D

D
(z

)
|

(b)
S

6
−S

8
: A

S
6
−S

8
: B

S
9
−S

11
: A

S
9
−S

11
: B

Figure 4.56: Steady flow simulation in 3D channel with backward facing step with 2DD and
overlapping patches: difference in pressure for various sizes and location of overlap. The
data is extracted along x = 1.25, y = 2.5. a) overlapping region is located close to the
step; solution is obtained to three different width of the overlap. b) overlapping region is
located at the end of the recirculation region (solid line); and behind the recirculation region
(dash line); (see figure 4.52). Arrow indicates increase in the overlapping. P = 5, PV BC =
3, PPBC = 3, ∆t = 0.002, Re = 72.

216

4.4.4 Arterial Flow simulations on TeraGrid: Results

In this section we present results of flow simulation with NεκT αrG on TeraGrid - a super-

cluster of supercomputers geographically distributed across the USA. The main objective

here is to show that high latency associated with long-distance communication can be ef-

ficiently hidden by overlapping computation and communication and also by performing

full-duplex communication, and proper scheduling of communications.

Simulation of arterial flow in human aorta was performed. The computational domain

was decomposed initially into four sub-domains as presented in figure 4.38(right), however

only the first three sub-domains were used for the performance analysis (the sub-domain

D was omitted). In space, fourth-order polynomial approximation for the velocity com-

ponents and pressure was employed; in time, second-order semi-implicit numerical scheme

was implemented. The size of computational sub-domains in terms of number of spectral

elements (Nel) and degrees of freedom (DOF) is summarized in table 4.8. The computation

sub- Nel DOF
domain

A 120,813 30,444,876

B 20,797 5,240,844

C 106,219 26,767,188

total 247,829 62,452,908

Table 4.8: Arterial flow simulation, numerical challenge: size of computational sub-domains.
Nel - number of spectral elements; DOF - number of degrees of freedom per one variable.

was carried out on computers from the National Center for Supercomputing Applications

(NCSA) and San Diego Supercomputer Center (SDSC) integrated by high-performance net-

work connections. The application was executed on 225 and 128 processes of the NCSA

and SDSC supercomputers, respectively. At NCSA two subjobs (S1 and S2) were submitted

and only one subjob was submitted at SDSC. In table 4.9 computational details are sum-

marized. Since the number of computational tasks exceeds the number of sub-jobs the S1

group of processors was subdivided and two new communicators (T1 and T2) were derived.

Processors grouped in communicators T2, T3 and T4 were assigned for parallel solution of

three 3D flow problems on the inner level. On the outer level, the boundary conditions at

the sub-domain interfaces were imposed by exchanging values of the velocity and pressure

fields. For the data exchange the ROOT of T2 communicates with the ROOT of T3 and

the ROOT of T3 communicates with the ROOT of T4. The performance of the inter-site

217

sub-
domain site NCPU S-group T -group

O NCSA 1 S1 T1

A NCSA 192 S1 T2

B NCSA 32 S2 T3

C SDSC 128 S3 T4

Table 4.9: Arterial flow simulation on TeraGrid: Simulation performed on NCSA and SDSC
supercomputers. The 3D computational domain is decomposed into 3 parts, parallel solution
in each sub-domain was performed on NCPU processes, additional processor is dedicated
for co-processing. Second layer of MCI consists of three processor groups (Sj), third layer
consists of four groups (Tj).

communication between the processes from T3 and the T4 was the primary point of interest

in the performed simulation.

The schematic representation of the numerical algorithm implemented in NεκT αrG is

as follows:

for (time_step = 1:N)

MPI_Wtime(t1)

1: MPI_Irecv(P,V,dV/dn) [L5]

2: MPI_Gatherv(V), MPI_Isend(V) [L4]

3: Compute(dV/dn) [L4]

4: MPI_Gatherv(dV/dn), MPI_Isend(dV/dn) [L4,5]

5: Compute flow rate and average

pressure at all inlets/outlets [L4,5]

6: MPI_Wait(P), MPI_Scatterv(P) [L5,4]

7: MPI_Wait(V), MPI_Scatterv(V) [L5,4]

8: MPI_Wait(dV/dn), MPI_Scatterv(dV/dn) [L5,4]

MPI_Wtime(t2)

9: Solve(NL) [L3]

10: Solve(P) [L3]

11: MPI_Gatherv(P), MPI_Isend(P) [L4,5]

12: Solve(V) [L3]

MPI_Wtime(t3)

endfor

In the square parenthesis we specify which layer(s) of the MCI is involved in communication

218

at each steps. In the communication between ROOTs of T2 and T3 the velocity values

(V) are transfered from T2 to T3 while the pressure (P) and the velocity flux (dV/dn) are

transfered in the opposite direction (see figure 4.34(right)). Similar data transfer takes place

in communication between T3 and T4. Computational domains A and C are not physically

connected thus no communication is required between processes in T2 and T4. During step 5,

as presented in the numerical algorithm, flowrate values and average pressure are computed

at the all inlets and outlets by processes of MCI level 4. The computed values are gathered

in the ROOT of corresponding Tj communicator and then passed using MPI Isend to the

processor of T1 via MCI level 5 communicator.

During steps 9, 10 and 12 the tightly coupled 3D problems are solved in parallel. The steps

10 and 12 are characterized by high volume of communication between processes of MCI

level 3, no inter-site communication is required at these steps.

Simulations have been performed using two message passing interfaces designed for

parallel computing on distributed processors: i) MPICH-g2, and ii) MPIg. Unlike MPICH-

G2, MPIgs new multithreaded design allows applications executing on mulitcore systems,

like those found on the TeraGrid, to effectively hide inter-site latency. In order to compare

performance of NεκT αrG using MPIg and MPICH-G2 libraries we monitored the CPU-

time on the ROOT of Tj communicators. In figure 4.57 we compare the overall performance

of NεκT αrG . The superiority of MPIg library over MPICH-G2 is clear. In table 4.10 we

provide more details on the NεκT αrG performance. We compare the CPU-time required

to execute steps 1-8 (t2 − t1) and steps 9-12 (t3 − t2) monitored over the last 5 steps

(the data monitored during the first 195 steps is similar). The data leads to the following

observations:

• The t3 − t2 time required for solution of a problem in sub-domain C is considerably

higher then the time required for solution of the problems in the sub-domains A and

B. The difference is explained by different size of computational sub-domains and also

by different number of iterations required at steps 10 and 12 where Poisson problem

for the pressure and Helmholtz problem for the three velocity components are solved.

Better load balancing can be achieved by increasing the number of processors in the

T4 communicator.

• The t2 − t1 CPU-time consumed by steps 1-8 and monitored on T2 and T3 is con-

219

0 50 100 150 200
1

2

3

T
2, t

3−
t1

MPIG
MPICHG2

0 50 100 150 200
1

2

3

T
3, t

3−
t1

MPIG
MPICHG2

0 50 100 150 200
1

2

3

T
4, t

3−
t1

time step

MPIG
MPICHG2

Figure 4.57: Arterial flow simulation, performance: Cross-site simulation using MPIg and
MPICH-G2 libraries. CPU-time (in sec.) required for solution of a flow equation in each
sub-domain.

siderably higher then the CPU-time monitored on T4. This is a consequence of two

factors:

(i) the velocity flux dV/dn, is transfered from the sub-domain C to B (and from B

to A) but not vise versa. The message length for dV/dn is also the largest compar-

ing to the other messages. The CPU-time (in seconds) required for steps 6, 7 and 8

monitored on the ROOT of T3 for the last 5 time steps is as follows:

MPICH-G2: MPIg

STEP 6 STEP 7 STEP 8 | STEP 6 STEP 7 STEP 8

2.31E-4; 2.87E-4; 0.8668; | 9.3E-5; 4E-6; 0.3545;

2.32E-4; 2.95E-4; 1.3460; | 9.1E-5; 3E-6; 0.3984;

2.36E-4; 2.99E-4; 1.0580; | 9.6E-5; 4E-6; 0.3409;

2.31E-4; 2.91E-4; 1.0599; | 9.2E-5; 3E-6; 0.3659;

2.30E-4; 3.42E-4; 1.1591; | 9.1E-5; 4E-6; 0.4322;

that is the time (t2− t1) is almost entirely spent on the step 8. Also the considerable

difference between performance of the code linked to MPIg and MPICH-G2 libraries

is observed.

220

(ii) aforementioned load imbalance: processors of T3 wait for data (dV/dn) that must

be sent from T4. Again, by minimizing the (t3 − t2) time on the T4 sub-group we

effectively can reduce the waiting time spent by processes of T3 (and consequently by

T2). However, processes of T4 have zero waiting time for messages received from T3,

thus measured (t2−t1) time difference reflects the true cost of inte-rsite communication

plus the cost of additional minor computational effort required for processing the

received messages (including MPI Scatterv, executed on withing an inlet group of

MCI L4) and on preparing the outgoing messages (including MPI Gatherv executed

on MCI L4).

• On the step 11 of the numerical algorithm the values of pressure are transfered from

T4 to T3 over a wide area network with MPI Isend. Sending data on step 11 through

the fifth level communicator of MCI overlaps with computation and communication

(step 12) performed on the third level of the MCI. The difference in (t3−t2) measured

on the ROOT of T4 which communicate with the ROOT of T3 reflects the superiority

of the multithreaded MPIg library over MPICH-G2.

In summary, distributed computing opens an opportunity to extend the range of large

mechanical simulations. The major obstacle in solution of coupled problems on distributed

computers is high latency cost associated with inter-site communication. Use of multi-

threaded libraries for message passing for non-blocking communication, such as MPIg, pro-

vides a true overlap between communication and computation.

221

T2

time MPIg MPICH-G2 MPIg MPICH-G2
step t2 − t1 t2 − t1 t3 − t2 t3 − t2

196 0.388 0.533 1.364 1.575

197 0.432 0.375 1.347 1.590

198 0.374 0.857 1.334 1.606

199 0.399 0.549 1.300 1.606

200 0.466 0.514 1.416 1.599

T3

time MPIg MPICH-G2 MPIg MPICH-G2
step t2 − t1 t2 − t1 t3 − t2 t3 − t2

196 0.707 0.890 1.089 1.060

197 0.670 1.369 1.051 1.078

198 0.693 1.081 1.040 1.073

199 0.742 1.083 1.025 1.037

200 0.716 1.182 1.101 1.059

T4

time MPIg MPICH-G2 MPIg MPICH-G2
step t2 − t1 t2 − t1 t3 − t2 t3 − t2

196 0.022 0.123 1.737 2.123

197 0.022 0.122 1.723 2.040

198 0.022 0.122 1.761 2.035

199 0.022 0.122 1.719 2.092

200 0.022 0.122 1.760 2.159

Table 4.10: Arterial flow simulation on TeraGrid: Simulation performed on NCSA and
SDSC supercomputers. The 3D computational domain is decomposed into 3 parts, parallel
solution in each sub-domain was performed on NCPU processors, additional processor is
dedicated for co-processing. Second layer of MCI consists of three processor groups (Sj),
third layer consists of four groups (Tj).

222

4.5 Blood flow circulation in Circle of Willis

The dynamics of blood flow in the human brain depends upon a complex network of vessels

under a variety of temporal and spatial constraints. Abnormalities in the delivery of blood to

the brain clearly underlie the pathophysiology of stroke, vasospasm, traumatic brain injury,

vascular dementias, and probably conditions such as migraine and hydrocephalus. Clinical

decisions are often made on the basis of steady state conditions (e.g., mean intracranial

pressures, mean cerebral blood flow, etc), but there is clearly a risk that ignoring the range of

spatial and temporal scales present may limit understanding, and hence clinical effectiveness.

Considerable interest attends the recent observation that a frequency dependent pulsation

absorber may be a part of normal physiology, dampening the effect of cardiac pulsation on

microvessels (Zou et al. 2008). A detailed understanding of such a phenomenon categorically

depends on development of new techniques to grasp the importance of dynamic processes

at a variety of different scales.

Figure 4.58: (in color) Brain blood flow simulation in complete Circle of Willis: Geometrical
model of 65 cranial arteries. Colors represent pressure, arrows represent velocity fields, XY
plots depict the flow rate in ml/s and pressure drop ∆P = P −Pref in mmHg, where Pref

is the average pressure at ICA inlet. Top right: instantaneous streamlines showing swirling
flow in communicating arteries. Bottom left: MRA image of the cranial arterial system.

223

The range of length and times scales which need be considered spans several orders of

magnitude, from flow in large arteries to subcellular processes. Interactions of blood flow

in the human body occur between different scales, in which the large-scale flow features are

being coupled to cellular and sub-cellular biology, or at similar scales in different regions

of the vascular system. The human brain is a fascinating object of study in this regard

since 20% of cardiac output must be distributed to tissues with exquisite regulation from a

pulsatile cardiac pump, with the unique boundary condition that the intracranial volume

is bounded by the skull, a rigid exoskeleton. The typical anatomy includes delivery of

blood by two internal carotid (ICA) and two vertebral arteries, which branch and link to

form a ring - the Circle of Willis (CoW, presented in figure 4.58), which can potentially

provide alternative supply to any area of the brain if one or more of the supply trunks

is interrupted. Abnormalities in the CoW are not uncommon, affecting up to 50% of

the population, according to Lippert & Pabst (1985). However, the effectiveness of the

normal CoW arrangement, or the consequence of an abnormality, relies on downstream

responses, and thus critically on interaction between events observable on different scales.

Development of tools to simulate the events simultaneously at many scales becomes critical

to understanding, and perhaps clinical effectiveness. We have focused on hydrocephalus,

where interactions between pressures and flows in large compartments (the ventricles) may

have a clinical manifestation through changes in flow pattern in microvessels (Zou et al.

2008).

We can begin to probe differences between dynamics in the normal state and hydro-

cephalus by looking at normal versus abnormal flows in an unusual subject with hydro-

cephalus and a CoW abnormality. The goal here is to get the first insight into brain flow

patterns, understand the capabilities of different arterial flow models. Application of these

techniques to more subtle abnormalities may clarify the true dynamic abnormality in hydro-

cephalus, and perhaps many other vascular conditions where changes in the topology and

geometry of the vascular tree may directly impact risk of later severe clinical events such

as ischemic stroke and hemorrhage. Examples include abnormal arteriovenous fistulae and

complex connections such as arteriovenous malformations (Friedlander 2007), atheroscle-

rotic narrowing of vessels (Amin-Hanjani et al. 2005), and moyamoya syndrome (Scott

et al. 2004; Smith & Scott 2005), where a consequence of large vessel occlusion in child-

hood results in development of a dense network of microvessels to replace the function of

224

an occluded part of the vascular tree. Therapeutic goals in these cases involve occluding

abnormal channels, stenting partially occluded channels, and providing alternative routes

for blood to revascularize the tissue, respectively. Planning for pharmacological, surgical

or endovascular treatment of these abnormalities of blood vessels could all benefit from

insights derived from realistic models of the circulatory dynamics in the diseased arterial

network. Preliminary work on the use of quantitative MR angiography to predict stroke

appears promising (Amin-Hanjani et al. 2005).

Full 3D simulation of the intracranial flow and its interaction with the brain tissues at

all length scales is not feasible, and hence we should follow the MaN -MeN -MiNapproach

described in section 4.1. In this work we concentrate on blood flow simulations at the

MaNscale, and present results of 1D simulations and of high-resolution 3D blood flow

simulations in CoW. High resolution 3D flow simulation in tens of brain arteries and bifur-

cations present a significant challenge from the standpoint of parallel computing and nu-

merics, hence we shell employ all advanced methods described in the previous sections. We

use patient-specific geometrical models of the arterial networks, measured in-vivo flowrates

for the inlet boundary conditions and the RC-type outflow boundary condition as a closure

problem for the 3D simulation. We also make use of the described in section 4.4.1 two-level

domain decomposition and multilevel communicating interface.

In this section we consider intracranial flow simulation based on clinical data corre-

sponding to the following cases:

(a) healthy subject with complete CoW,

(b) patient with hydrocephalus and incomplete CoW (Patient No. 1), and

(c) patient with hydrocephalus and incomplete CoW (Patient No. 2).

The geometry of complete CoW of a healthy subject has been reconstructed from high-

resolution DSCTA and MRI images, and geometry of other two arterial trees was obtained

from MRI images. To reconstruct the arterial geometry we used “in-house” developed

software gOREK, presented in section 4.2. The intracranial arterial trees corresponding to

the three aforementioned cases are presented in figure 4.59. Following the two-level domain

decomposition strategy, we subdivide the large computational domains into 2 to 4 patches

as also illustrated in 4.59 by coloring each patch into a different color. The summary

on spectral discretization is provided in table 4.11. Simulations of the unsteady 3D flow

225

have been done on Sun Constellation Linux Cluster (Ranger, TACC) and CRAY XT4

(Kraken, NICS). The number of computer processes (cores) used for the three cases was

3344, 1040 and 1404 correspondingly. The simulations have been performed with second-

order semi-implicit time splitting scheme and nondimensional time step was in the range

∆t = [1E − 3 5E − 5], the small size of a time-step was required during the systolic peak

in order to satisfy the CFL conditions. The approximate simulation time for one cardiac

cycle was 27 hours.

Figure 4.59: (in clolor) Domain of cranial arteries of: a) healthy subject with complete
CoW, b) a patient with hydrocephalus and incomplete CoW (Patient No. 1, only the right
part of CoW is shown), and (c) a patient with hydrocephalus and complete CoW (Patient
No. 2). The geometry obtained from DSCTA and MRI images; colors represent different
patches.

case patch orange blue green pink total

(a) Nel 162,909 44,632 128,508 123,201 459,250

(a) # DOF (P=5) 63,860,328 17,495,744 50,375,136 48,294,792 180,026,000

(b) Nel 112,495 19,161 131,656

(b) # DOF (P=4) 28,348,740 4,828,572 33,177,312

(c) Nel 149,411 26,432 31,048 206,891

(c) # DOF (P=4) 37,651,572 6,660,864 7,824,096 52,136,532

Table 4.11: CoW simulation: computational complexity. Nel - number of spectral elements.
DOF - number of degrees of freedom per one variables, computed as a total number of
quadrature points: DOF = Nel ∗ (P + 3)(P + 2)2 required for exact integration of linear
terms.

226

4.5.1 1D and 3D arterial flow simulations

The 3D simulations provide deep insight into flow patterns, Wall Shear Stress, and may be

used for particle tracking instead of dye angiograms. However, sometimes the only informa-

tions required is the direction of the mean flow, arterial pressure drops and flow distribution.

Such requirements might be fulfilled by performing computationally inexpensive one dimen-

sional simulations. The 1D model has gained popularity owing to its ability to predict, with

reasonable accuracy, pulse wave propagation. The 1D model is computationally inexpen-

sive and can be applied successfully in simulations where blood flow does not exhibit strong

3D effects (e.g. in straight vessels with a diameter < 2mm). It can also be applied to

simulate the pulse wave propagation in large vessels; however, only large-scale features can

be predicted. However, no information on the local flow dynamics can be obtained using

the 1D model, for example it is impossible to simulate a flow in aneurysms using the 1D

model. Overviews and examples of 1D modeling of blood flow are available in the literature

[81, 13, 100]. The 1D model, considered here, incorporates elastic properties of the arterial

walls; a recent study accounts also for the variability of the elastic properties in the 1D

model using stochastic modeling [104]. The flow equations considered by the 1D model are:

∂A

∂t
+

∂AU

∂x
= 0

∂U

∂t
+ U

∂U

∂t
+

1

ρ

∂p

∂x
=

f

ρA
,

where, x is the local to each arterial segment 1D coordinate axis, A(t, x) is the cross-section

area, U(t, x) and p(x, t) are the averaged over cross-section axial velocity and pressure, ρ is

the blood density, and f = −2µπα/(α − 1)U is the friction force per unit length, µ is the

blood viscousity and α is the nondimensional correction factor, that depends on the assumed

velocity profile. In our study we used α = 1.1 we have also verified that the sensitivity of

U(t, x), p(t, x) and A(t, x) on α is very low. The closure for the system is provided by the

pressure-area relation:

p =
β

A0

(√
A −

√
A0

)
, β = β0

√
πhE

1 − σ2
,

where h is the arterial wall thickness, E is the Young’s modules, A0 is the reference area,

and β0 is a scaling parameter. The physiological parameters in this study were choosen

227

according to data provided in [13].

In the following we compare the predictive capabilities of the 1D and 3D models. We use

patient-specific geometry and flowrates measured (with PC-MRI) at internal carotid and

vertebral arteries. The geometry and the blood flowrates at internal carotid and vertebral

arteries have been clinically acquired in the Children’s Hospital in Boston, department of

neurosurgery.

Figure 4.60: (in color) Brain blood flow simulation in incomplete CoW with one- and three-
dimensional models. (a) Arterial geometry, (b) flow rates and (c) pressure drop at (i) ICA
and (ii) basilar artery.

For the first experiment we chose a relatively small part of arterial network of patient

with multiple brain disorder (patient No. 1) who also has an incomplete CoW. The geometry

of the part of CoW we have used for simulations is presented in figure 4.60. To compare

results of 1D and 3D simulations we performed skeletonization of the model shown in figure

4.60; then, setting pressure at all outlets to p = 0, using sufficiently large value of β

and imposing the same patient specific flowrates at the two inlets, we performed 1D and

3D simulations. The large β was required to stiffen the arterial walls. The zero pressure

boundary conditions and stiff arterial walls were rather simplifications of the model required

for the preliminary comparative analysis of the 1D and 3D models. The 1D simulation over

228

eight cardiac cycles took only 20 minutes on a single processor, while about 24 hours/per

cycle were required for the 3D simulation on 256 cores of CRAY XT4. In figure 4.60

we compare the pressure drop between the terminal branches and the two inlets and the

flowrates computed at terminal branches using the 3D and the 1D models; the similarity in

the waveforms is remarkable in most of the arterial domain. The discrepancies between the

flowrates predicted by the 1D and 3D, usually appear at the vessels located farther from the

inlets (outlets 1, 2, 11 and 12 in figure 4.60). The primary reasons for such deviation are: a)

the 1D model does not take into account the angle at which a particular vessel bifurcates;

and b) the shape of the velocity profile at any point of the arterial tree is assumed to be

the same, which introduces errors in modeling the wall friction in arteries with swirling or

reversal flow.

In the first experiment we used a rigid arterial wall models for both the 1D and 3D

simulations. In the next example we employ the same 3D flow model but now the 1D model

predicts also the elastic behavior of the blood vessels. We compare the results predicted by

the 3D and 1D simulation with various levels of elasticity (β0 = 1, 8). The purpose of this

study is to estimate the deviation in prediction of flowrates and pressure drop by the rigid

3D and elastic 1D models. To this end, we reconstruct from (MRI images) the geometry

of cranial arterial vasculature of a patient treated for hydrocephalus(patient No. 2). This

patient has a complete CoW. The flowrates at the inlets have been acquired using PC-MRI

technique. The 3D model and flowrates measured at the internal carotid and vertebral

arteries are presented in figure 4.61. To perform the 1D simulation we measure the length

and the average area of each arterial segment using the reconstructed 3D geometry and

construct the corresponding 1D arterial tree. To impose outlet boundary conditions we

employ the RC boundary conditions for the 3D simulations and the RCR model for the

1D simulation. The parameters of the RCR model have been adjusted similarly to the

method used in section 4.3.1 (also see captions to figure 4.11). In table 4.12 we summarize

the parameters for the 1D and 3D simulations.

To examine the effect of stiffening the arterial walls we perform 1D simulations with

different β0 parameters: β0 = 1 and β0 = 8. In figure 4.62 we compare the flowrates and

pressure difference predicted by the 3D and 1D simulations. Results of the 3D simulation

and of the 1D simulation with β0 = 1 reveal significant discrepancy in the amplitude of

the flowrate and pressure oscillations during a cardiac cycle, although, the two simulations

229

showed remarkable agreement in predicting the time-average flowrate and pressure drop. In

1D simulation with relatively stiff arterial walls (β0 = 8) convergence of the data predicted

by 1D model to data predicted by the 3D model is observed. Clearly, the discrepancy

in the results is due to different modeling approaches, specifically, modeling of interaction

between the elastic arterial walls and flow. Use of stiff arterial walls for simulation can

be appropriate in some situations, for example it is well known that aging as well as some

pathophysiological processes in the human body may lead to calcification of arterial walls.

However, the large discrepancy in the 3D and 1D results suggest that elastic properties of

the walls should not be ignored. In figure 4.63 we present the area fluctuations during one

cardiac cycle. Note that in the case of β0 = 1 the area fluctuations is less then two per cent,

which is an acceptable range from the standpoint of physiology. Such small area fluctuations

typically lead to conclusion that the wall flexibility can be ignored and the rigid wall model

is sufficiently accurate. However, as we learn from the last numerical experiment such small

local area fluctuations have significant contribution to the capacitance of the relatively large

arterial network and long range effects on the flow and pressure waveforms in distant regions.

Due to elasticity of the blood vessels the arterial system exhibits the Windkessel effect,

where the blood, ejected by heart at the systolic phase, is partially stored in the vessels due

to cross-sectional area (volume) expansion, during the diastolic phase the vessels contract

slowly releasing the excess blood volume. It is clear that long elastic arterial segments and

also networks of multiple elastic arterial segments have the capability of storing relatively

large amount of blood, consequently reducing the amplitude of flow oscillations at the

regions located farther from the heart. Reduction in the amplitude of mean flow translates

to lower peak Reynolds number. From the standpoint of fluid dynamics, high Reynolds

number flows typically trigger secondary flows and even transition to turbulence. This

highlights the importance of choosing the correct and preferably patient-specific elasticity

parameters for flow simulation in large arterial networks, and also an importance of modeling

elastic behavior of the vessels even if the local area fluctuations are very small.

230

Figure 4.61: Brain blood flow simulation in complete CoW of a patient with hydrocephalus
(patient No. 2). Arterial geometry and measured by PC-MRI flowrates at four inlets.
Numbers correspond to IDs of the arterial segments. The arterial tree is subdivided into
three patches - P1, P2 and P3.

231

segment Ao[10−6m2] L[m] β[106] R[109Pasm−3] C[1012m3Pa−1]

1 5.77 0.148 111.03

2 5.77 0.148 111.03

3 3.37 0.0214 449.26

4 3.46 0.086 286.57 36.8 5.43

5 4.85 0.001 311.98

6 3.46 0.086 286.57 36.8 5.43

7 3.37 0.0066 449.26

8 3.37 0.0045 303.25

9 0.842 0.0124 606.5

10 3.46 0.086 286.57 36.8 5.43

11 3.46 0.086 286.57 36.8 5.43

12 1.67 0.0151 412.19

13 1.67 0.0151 412.19

14 13.6 0.1703 69.674

15 15.7 0.1703 60.278

16 1.81 0.0071 541.79 73.6 2.72

17 0.985 0.0055 997.89 73.6 2.72

18 13.6 0.0067 69.55

19 15.7 0.0067 60.508

20 12.6 0.005 150.45

21 12.6 0.005 150.45

22 6.42 0.0144 210.42 36.8 5.43

23 6.42 0.0131 210.42 36.8 5.43

24 4.3 0.0117 257.18

25 4.3 0.0117 257.18

26 5.23 0.0114 188.05

27 6.33 0.0117 155.2

28 1.72 0.0093 417.61 36.8 5.43

29 2.22 0.0059 324.1 36.8 5.43

30 3.4 0.0249 289.33 36.8 5.43

31 3.14 0.0161 312.94 36.8 5.43

32 1.67 0.0032 412.19

33 1.72 0.011 417.61 36.8 5.43

34 5.9 0.008 166.73

35 2.27 0.018 316.52

36 1.63 0.005 441.14 36.8 5.43

37 2.43 0.014 295.31 36.8 5.43

38 5.9 0.008 166.73

39 1.37 0.019 524.99 36.8 5.43

40 3.53 0.008 278.51

41 1.67 0.005 429.13 36.8 5.43

42 3.33 0.007 294.97 36.8 5.43

43 4.52 0.0022 217.32

44 3.8 0.0221 258.63 36.8 5.43

45 2.54 0.0171 282.33 36.8 5.43

46 4.52 0.0154 217.32

47 2.54 0.0092 282.33

48 6.16 0.0123 159.66 36.8 5.43

49 2.01 0.0243 357.32 36.8 5.43

50 3.8 0.0329 258.63 36.8 5.43

Table 4.12: Flow simulations in the arterial tree of patient No. 2: parameters and dimen-
sions.

232

6.4 6.6 6.8 7 7.2 7.4
2

4

6

8
x 10

−6

23

Q
(t

)
[m

3 /s
ec

]
6.4 6.6 6.8 7 7.2 7.4
2

4

6

8
x 10

−6

22

6.4 6.6 6.8 7 7.2 7.4
0

0.5

1

1.5
x 10

−6

11

6.4 6.6 6.8 7 7.2 7.4
0

0.5

1

1.5
x 10

−6

10

Q
(t

)
[m

3 /s
ec

]

6.4 6.6 6.8 7 7.2 7.4
0

0.5

1

1.5
x 10

−6

4

6.4 6.6 6.8 7 7.2 7.4
0

0.5

1

1.5
x 10

−6

6

6.4 6.6 6.8 7 7.2 7.4
2

3

4

5

6
x 10

−7

17

Q
(t

)
[m

3 /s
ec

]

6.4 6.6 6.8 7 7.2 7.4
2

3

4

5

6
x 10

−7

16

6.4 6.6 6.8 7 7.2 7.4
0

0.5

1

1.5
x 10

−6

29

6.4 6.6 6.8 7 7.2 7.4
0

0.5

1

1.5
x 10

−6

28

t [s]

Q
(t

)
[m

3 /s
ec

]

6.4 6.6 6.8 7 7.2 7.4
0

0.5

1

1.5
x 10

−6

31

t [s]
6.4 6.6 6.8 7 7.2 7.4
0

0.5

1

1.5
x 10

−6

30

t [s]

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

A

P
 −

 P
0 [P

a]

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

B

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

C

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

D

P
 −

 P
0 [P

a]

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

E

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

F

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

G

P
 −

 P
0 [P

a]

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

H

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

I

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

J

Time [s]

P
 −

 P
0 [P

a]

6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

K

Time [s]
6.4 6.6 6.8 7 7.2 7.4
0

2

4

6
x 10

4

L

Time [s]

Figure 4.62: Brain blood flow simulation in complete CoW with one- and three-dimensional
models: comparison of flowrates and pressure drop computed at different arteries. Input
data corresponds to patient No. 2.

233

6.4 6.6 6.8 7 7.2 7.4
6

6.5

7

7.5
x 10

−6

23

β
0
 = 1: Std = 1.8% (β

0
 = 8: Std = 0.3%)

A
(t

)
[m

2]

6.4 6.6 6.8 7 7.2 7.4
6

6.5

7

7.5
x 10

−6

22

β
0
 = 1: Std = 1.8% (β

0
 = 8: Std = 0.3%)

6.4 6.6 6.8 7 7.2 7.4

3.2

3.4

3.6

3.8

4
x 10

−6

11

β
0
 = 1: Std = 1.7% (β

0
 = 8: Std = 0.29%)

6.4 6.6 6.8 7 7.2 7.4

3.2

3.4

3.6

3.8

4
x 10

−6

10

β
0
 = 1: Std = 1.8% (β

0
 = 8: Std = 0.31%)

A
(t

)
[m

2]

6.4 6.6 6.8 7 7.2 7.4

3.2

3.4

3.6

3.8

4
x 10

−6

4

β
0
 = 1: Std = 1.8% (β

0
 = 8: Std = 0.31%)

6.4 6.6 6.8 7 7.2 7.4

3.2

3.4

3.6

3.8

4
x 10

−6

6

β
0
 = 1: Std = 1.8% (β

0
 = 8: Std = 0.31%)

6.4 6.6 6.8 7 7.2 7.4
0.9

0.95

1

1.05

1.1
x 10

−6

17

β
0
 = 1: Std = 0.98% (β

0
 = 8: Std = 0.16%)

A
(t

)
[m

2]

6.4 6.6 6.8 7 7.2 7.4
1.75

1.8

1.85

1.9

1.95

x 10
−6

16

β
0
 = 1: Std = 1.3% (β

0
 = 8: Std = 0.22%)

6.4 6.6 6.8 7 7.2 7.4
2

2.2

2.4

2.6
x 10

−6

29

β
0
 = 1: Std = 1.9% (β

0
 = 8: Std = 0.33%)

6.4 6.6 6.8 7 7.2 7.4
1.6

1.7

1.8

1.9

2
x 10

−6

28

β
0
 = 1: Std = 1.7% (β

0
 = 8: Std = 0.29%)

t [s]

A
(t

)
[m

2]

6.4 6.6 6.8 7 7.2 7.4

3.1

3.2

3.3

3.4

3.5
x 10

−6

31

β
0
 = 1: Std = 1.7% (β

0
 = 8: Std = 0.29%)

t [s]
6.4 6.6 6.8 7 7.2 7.4

3.2

3.4

3.6

3.8

x 10
−6

30

β
0
 = 1: Std = 1.8% (β

0
 = 8: Std = 0.3%)

t [s]

Figure 4.63: Brain blood flow simulation in complete CoW with one- and three-dimensional
models: cross sectional area fluctuations. Dash line - corresponds to 1D simulation with
elastic walls (β0 = 1); dot-dash line - corresponds to 1D simulation with stiffer walls (β0 =
8). “Std.” denotes standard deviation. Input data corresponds to patient No. 2.

234

4.5.2 3D arterial flow simulations

We performed three 3D simulations of cranial blood flow using arterial geometry and inlet

flow waves corresponding to the following cases: (1) a healthy subject with complete CoW,

(2) a patient with hydrocephalus and incomplete CoW (Patient No. 1), and (3) a patient

with hydrocephalus and incomplete CoW (Patient No. 2). The objectives here are to get

a first insight into the flow patterns in the CoW of a healthy subject and of a patient with

hydrocephalus and to define goals for the future investigations.

Flow simulation in CoW of healthy subject.

Figure 4.64: (in color) Brain blood flow simulation in complete Circle of Willis: development
of secondary flows in the communicating arteries. a) swirling and backflow in the left
Anterior Cerebral artery; colors represent streamwise velocity component; b), c) and d)
swirling flow in the right Anterior Cerebral artery, left and right Posterior Communicating
arteries, colors (in c) and d)) represent w-velocity (in-plane) component. Arrows represent
direction of a flow.

Results of the flow simulation in the complete CoW are presented in figures 4.58 and 4.64.

In figure 4.58 we plot flowrates and pressure drop at selected arteries p(t) − pref (t), where

pref (t) is the pressure computed at inlet of the left ICA. In figure 4.64 the swirling flow is

illustrated by instantaneous streamlines and vectors of the velocity field. The unsteadiness

235

and phase shift in the flow waves imposed at inlets result in alternating flow direction

in the communicating arteries. Alternating mean flow direction was also observed in 1D

simulations.

Flow simulation in incomplete CoW of a patient with hydrocephalus.

Figure 4.65: (in color) Brain blood flow simulation in incomplete Circle of Willis of a patient
with hydrocephalus: Geometrical model of 23 cranial arteries; branches of the left ICA are
not shown. XY plots depict the flowrate in ml/s and pressure drop, colors represent pressure
difference at t = 0.6s ∆p = p − pref in mmHg, where pref is the average pressure at ICA
inlet. The constant flowrate observed at the ICA at time interval of 0.2s to 0.35s is not
typical for a healthy subject.

In simulation of the flow in the incomplete CoW (patient No. 1) a relatively high

pressure drop was observed through segment PCA-P1 (see figure 4.65). The PCA-P1 is

very narrow artery, it connects the arterial branches of the internal carotid artery to those

of the basilr artery. The internal carotid and basilar arteries are the main source of the

blood supplied to the CoW. Due to the incompleteness of CoW, the PCA-P1 is the only

236

arterial segment communicating blood between the two sources, hence the flow dynamics

in this artery is affected primarily by the blood demand from different parts of the brain.

This points to the need to perform a detailed study to understand its nature, and to answer

the question if the high ∆p is a consequence of the pathological processes and what is the

role of the boundary condition modeling. High ∆p was also observed in other simulations

performed using various settings for the outflow pressure boundary conditions. The accuracy

provided by the RC model depends on the resistance values [43]. These values are certainly

patient-specific, and additional care should be taken when we consider a pathological case.

In our simulations the resistance was of order 1010 Pa s m−3, which is comparable to

the data reported by Stergiopulos [87]. In the simulations of flow circulation in a patient

with hydrocephalus, relatively high discrepancy between the prescribed flowrate ratios at

posterior cerebral arteries and numerically computed ones (about 38%) was observed. To

enhance the accuracy of the method the resistance parameters must be increasing, which is

consistent with the fact that patients with hydrocephalus have higher peripheral resistance

than healthy subjects due to high intracranial pressure. Doubling the resistance values

resulted in lower differences (17%) between the prescribed by the RC method flowrates

and the computed ones, however, the high pressure gradient at PCA-P1 artery was still

present. We concluded that the high ∆p is due to the phase shift in the flowrate waveforms

imposed at the two inlets. This finding may affect diagnosis of a vascular disorder in the

cranial system. One way to validate our results is to perform dye angiogram to compare the

flow distribution in the cranial arteries with results of the simulation. The dye angiogram

requires X-ray scanning and is performed only when specifically clinically indicated due

to two reasons: a) a considerable amount of radiation, and b) the invasiveness of putting

catheters into the vessels of the leg and brain; this is painful procedure and usually requires

sedation and sometimes general anesthesia, and carries a risk of stroke. A non-invasive and

harmless technique to measure intracranial flow is the Doppler Ultrasound, however, in the

case of our patient, this method is not applicable due to high skull-bone thickness. Currently,

we are working on implementing high-resolution PC-MRI to obtain the 3D velocity field in

the major cranial arteries. This technique has the potential of replacing dye angiograms,

but it requires variable velocity encoding to extract data from different vessels and different

slices. Development of secondary flows in the inclomplete CoW model was also observed.

In figure 4.66 we plot the flow patterns close to the junction where the ICA bifurcates to

237

the Middle Cerebral and Anterior Cerebral arteries, which is a typical region for developing

aneurysms [103].

Figure 4.66: (in color) Brain blood flow simulation in incomplete Circle of Willis: devel-
opment of secondary flows in the Middle Cerebral (A), Anterior Cerabral arteries (B) and
Internal Carotid (C) arteries; colors represent v-velocity component in (A) and w-velocity
component in (B,C). Arrows represent direction of a flow.

Flow simulation in complete CoW of a patient with hydrocephalus.

Unsteady flow simulations in complete CoW of patient No. 2 have revealed similar flow

patterns: swirling flow, alternating flow directions in communicating arteries. In figure 4.67

the flow patterns at the junctions of the posterior communicating artery are presented. We

recall that role of communicating arteries is to redistribute the blood supplied through the

internal carotid and basilar arteries. It was observed that the changes in the flow direction

occur at the end diastolic phase, when the flow rates at inlets of CoW are low. The flow

238

direction changes and presence of secondary flows are associated with high temporal and

spatial gradients in the wall shear stress. The flow patterns depicted here do not necessarily

point to a certain pathology, but rather provide an insight into the complexity of a blood

flow in CoW. Further research is required in order to correlate particular flow patterns with

pathologies such as aneurysm developing and/or rapture.

239

Figure 4.67: (in color) Brain blood flow simulation in complete Circle of Willis of a pa-
tient with hydrocephalus: development of secondary flows at the junctions of the posterior
communicating artery (highlighted in the top left plot). Lines and arrows represent instan-
taneous stream lines and flow direction. Time interval of one cardiac cycle is T = 1.1s.

240

4.6 Discussion and outlook

Chapter 4 has been devoted to fundamental challenges in flow simulation in complex arterial

networks: arterial geometry reconstruction, integration of clinically measured inlet/outlet

flowrates as boundary conditions in numerical simulations, and fast scalable parallel numer-

ical solvers for very large (in terms of number of unknowns) 3D unsteady flow problems.

Outflow boundary condition.

Patient-specific simulations require information about the geometric model as well as the

flow rates at the terminal vessels. Several models for imposing pressure boundary condition

exist, however, the implementation of these models is not simple and typically requires very

expensive tuning of several parameters to obtain the correct flow rate distribution at all

outlets. Here, we present a simple method on how to impose the measured flow rates at tens

of outlets, which is accurate, stable and scalable, i.e., it can be used in simulations of full-

scale arterial trees. The procedure is very simple as the flow rate ratios determine resistance

ratios, and appropriately large values of resistances can then be selected arbitrarily to

guarantee the accuracy of the method. The flow rates can be obtained using simple non-

invasive Ultrasound based measurements. It is important to note here that monitoring flow

rates at different vessels must be correlated in time in order to retain the correct phase shift

in numerical simulations.

An alternative method to impose patient-specific flow rates at multiple outlets relies on

implementation of the impedance boundary condition. This method requires measurements

of both the flow rate and the pressure at each of the terminal vessel in order to compute

patient specific impedance. These measurements also must be correlated in time to ensure

a proper phase shift. Accurate pressure measurements in multiple arteries are rare since

they require invasive procedures. In addition, implementation of the impedance boundary

condition in numerical simulations of a 3D flow in large computational domains is compu-

tationally inefficient.

Two-level domain decomposition and Multilevel Communicating Interface.

Currently none of the existing domain decomposition methods for the Navier-Stokes equa-

tions scales well beyond a few thousand processors, and hence their anticipated performance

on petaflop-size systems will be very poor. In Chapter 4 a two-level decomposition method

that can potentially scale well to hundreds of thousands of processors has been presented.

241

The main advantage of the suggested method is in splitting a large domain, where the so-

lution is approximated with C0 polynomial expansion, into a set of patches of manageable

size. Continuity of the solution at patch interfaces is obtained by implementing a DG-like

approach both for the advection and diffusion contributions. There is a potential loss of ac-

curacy due to the patch interfaces but more elaborate conditions can be applied to enhance

the accuracy as we have demonstrated here for a benchmark problem. Use of overlapping

domains, improves the accuracy of the solution in the neighborhood of interfaces, and also

enhances stability.

From the computational standpoint, solution of a set of small tightly coupled problems

is more efficient than solution of a single much larger problem. In particular, the new two-

level method we presented matches well with the new petaflop hybrid-type architectures,

consisting of a few hundreds of “fat nodes”, with each node containing several thousand

processors. We can envision, therefore, a natural mapping of patches and nodes, with all

intensive data transfers taking place efficiently within each node. The overall scalability of

the method depends on the strong scaling within a patch and the weak scaling in terms of

the number of patches. This dual path to scalability provides great flexibility in balancing

accuracy and parallel efficiency.

The Multilevel Communicating Interface allows efficient (from the standpoint of parallel

computing) coupling between different simulations. Here we considered coupling between

several 3D fluid domains, however, the method is general and can be applied for multi-

physics and multiscale simulations. The MCI also allows efficient parallel strategy for

simulations on distributed computers.

Intracranial flow simulations.

Simulations of flow in the complete Circle of Willis (CoW) of a healthy subject and in the

complete and incomplete Circle of patients with hydrocephalus show development of strong

secondary flows in the communicating arteries and internal carotid artery. The simulation

in the incomplete CoW predicts high pressure drop along the PCA-P1 artery, connecting

the basilar with the internal carotid. Simulation of flow in the incomplete CoW requires

setting the peripheral resistance to high values in order to ensure proper net blood flow to

different arteries. The high pressure variation correlated with the phase shift at the inlet

flowrates in the patient with hydrocephalus points to a new direction in diagnosing cranial

vasculature disorders.

242

The discrepancies and similarities between results obtained with 1D and 3D models

point to the need of fundamental verification and validation of the numerical models. The

relatively small cross-sectional area fluctuations predicted by the 1D models can not be

considered as an automatic “excuse” to use rigid arterial wall modeling, particularly in flow

simulations in very large arterial networks.

We envision that the 1D models will be the default computational models to provide

the first estimate of blood circulation and also in surgical planning. The role of the 3D

simulations is to complement the 1D models and provide accurate information regarding 3D

flow patterns, Wall Shear Stress, oscillatory shear index, low residence time zones, etc. The

ability to follow vascular lesions over time with less invasive means could be of clinical utility

immediately. More sophisticated quantitative blood flow techniques may find near-term

value in clinical medicine. We envision that CFD modeling of blood flow will replace many

invasive and dangerous clinical tests. While the present results are encouraging, more work

is required to develop a truly multiscale framework by coupling the three-level networks,

namely MaN -MeN -MiN in a seamless integration. In summary, the numerical methods

and simulation results presented in this Chapter can be considered as a first building blocks

in developing an efficient and scalable biomechanics gateway for analyzing the biophysics

of brain pathologies, such as hydrocephalus, in a systematic way on the emerging petaflops

computer platforms of the next decade.

Chapter 5

A study of transient flow in

stenosed carotid artery

5.1 Introduction

We employ Computational Fluid Dynamics (CFD) to investigate blood flow in a carotid

artery, which has an occlusion in the cross-section area of its internal branch. The common

carotid artery (CCA) transports blood from the arch of aorta (left CCA) or from the

brachycephalic artery (right CCA) to the internal carotid artery (ICA) and external carotid

artery (ECA); the latter carries blood primarily to the facial tissues while ICA supplies

blood to the brain. Interruption in the blood flow to the brain may lead to a stroke.

There are two major kinds of strokes: (1) an ischemic stroke, caused by a blood clot that

blocks or plugs a blood vessel or artery in the brain; and (2) a hemorrhagic stroke, caused

by a bleeding vessel. According to the American Heart Association, the carotid disease

is the major risk factor for ischemic stroke, caused by detachment of the plaque, which

may clot vital brain vessels. Atherosclerotic plaques inside an arterial wall result in a local

occlusion of the artery lumen - a stenosis. The stenosis may trigger transition to turbulence,

and onset of turbulence downstream of severe occlusions has been observed in laboratory

experiments [31]. Turbulence may damage the vessel wall, causing plaque to build up at

the site of damage. Consequently, this build-up further increases turbulence and hence the

level of turbulence intensity correlates with the degree of stenosis. It is now well established

that the transition to turbulence is expected to be dependent on flow pulsatility and on

243

244

the geometry of the arterial wall. In particular, the effect of pulsatility on transition to

turbulence is common in different arterial flows and many studies support this view [53].

Detection of arterial narrowing can be performed using catheter arteriography; its patho-

physiological relevance has been demonstrated empirically by close correlation between the

degree of stenosis and the subsequent risk of stroke. However, arteriography is an invasive

procedure, and hence there is a need in developing non-invasive methods. Presently, diag-

nosis of an arterial occlusion is routinely performed by non-invasive techniques: computer

tomography (CT), magnetic resonance (MR) or color Doppler ultrasound (CDUS) scan-

ning. Audible sounds (carotid bruit), detected in the proximity of the carotid artery during

auscultation may also indicate presence of stenosis [30, 12]. Weak correlation between the

carotid bruit and stenosis was reported in [73] but it was emphasized that the detection and

diagnosis of the degree of occlusion cannot rely on auscultation only. In particular, high-

frequency components of pressure oscillations may be attributed to wall movement and/or

to turbulence. In our studies we considered a rigid arterial wall model and hence the high-

frequency oscillations predicted by our high-accuracy CFD simulations are of hydrodynamic

origin, i.e., due to the turbulence solely, which is triggered by the stenosis.

Flow in a stenosed carotid artery has been studied experimentally [17, 50, 14] and

numerically [36, 89, 86]. Here, we apply the Proper Orthogonal Decomposition (POD)

to analyze pulsatile transitional laminar-turbulent flows in a carotid arterial bifurcation.

POD was introduced in fluid mechanics in [58] for analyzing complex flow regimes, and a

comprehensive review on application of the POD method in turbulent flow analysis can be

found in [19]. Our focus is on the onset of turbulence and subsequent re-laminarization.

Using high-accuracy CFD results, we demonstrate the capability of an extension of POD

to identify the transitional and intermittent regimes in a stenosed carotid artery. We show

that the behavior of the POD eigenvalue spectrum are directly related to the presence of

turbulence and hence it can be used for its detection during the cardiac cycle. We also

propose a method on how to extend the POD analysis to clinical measurements, e.g., by

phase-contrast magnetic resonance imaging (PC-MRI) or CDUS.

The Chapter is organized as follows. In section 5.1.1 we briefly discuss turbulence

modeling and the computational set-up in our CFD simulations. In section 5.2 we discuss

the patterns of transitional flow, and in section 5.3 we present the time- and space-window

POD for detecting turbulence. In section 5.4 we discuss the applicability of the window-POD

245

in the clinical setting by comparing high-resolution results with those mimicking medical

images obtained with moderate resolution. In section 5.5 we conclude with a discussion

and a brief outlook on the application of our method in the analysis of clinically measured

data. In the Appendix we provide details on the resolution studies, the arterial geometry

reconstruction, and the inlet/outlet boundary conditions.

5.1.1 Modeling transitional flow in carotid artery

Numerical simulations of blood flows in complex geometries are carried out mostly by em-

ploying the Reynolds-averaged NavierStokes (RANS) approach. Stroud et. al. [89] em-

ployed a low-Reynolds number two-equation turbulence model for a realistic carotid bifur-

cation but using its two-dimensional projection. In three-dimensional geometry of arteries,

the presence of high-degree stenosis and flow pulsatility greatly increase the probability

that turbulence may be sustained even at relatively low Reynolds numbers [53]. Since the

standard RANS models are derived for fully developed high Reynolds number turbulence,

they are not appropriate for modeling transitional flow. Low Reynolds number RANS ap-

proaches have been validated using mostly simple geometry benchmarks and cannot give

reliable results for cardiovascular flows. In general, RANS models cannot predict complex

features of such flows because they may (a) erroneously generate turbulence, and (b) un-

derestimate back-flow regions due to artificially increased dissipation by overestimating the

turbulent viscosity. A need, therefore, exists to extend computational studies of transitional

flows through stenosed arteries by direct numerical simulation (DNS, simulation without

applying ad hoc models) in three-dimensional (3D) realistic geometries.

To perform three-dimensional DNS of flow through carotid artery we employed the

high-order spectral/hp element code NεκT αr . Spectral/hp element spatial discretization

provides high accuracy and is suitable for complex geometries; it is particularly effective

in capturing intermittent laminar-turbulent regimes since it does not suffer from artificial

dissipation. Other details can be found in the Appendix. In the following, we present the

computational setup.

5.1.2 Geometry, computational domain and grid generation

A geometric model of the carotid artery was obtained from in-vivo MRI images shown in

Fig. 5.1(a) processed by an in-house software package to generate a model of the arterial

246

Figure 5.1: (in color) Reconstruction of arterial geometry from MRI images: (a) - MRI
of carotid artery (courtesy of Prof. M. Gomori, Hadassah, Jerusalem); (b) - Geometrical
model of a carotid artery; colors represent different arterial segments. (c) - Patches of
parametric surface representation, colors represent different patches. (d) - computational
mesh, consistent with third-order polynomial approximation.

wall. Editing of the arterial geometry and subsequent mesh generation was performed using

Gridgen - a commercial mesh generator developed by Pointwise [6]. In Fig. 5.1(b) we show

the geometric model reconstructed from MRI images. In the current study we use a mesh

with 22,441 tetrahedral spectral elements of variable size, and eighth-order polynomial ap-

proximation (P = 8) within each element, corresponding to 24, 685, 100 degrees of freedom

(DOF) per variable. For consistent integration and for preventing aliasing – an important

issue in resolving accurately the onset of turbulence – the 3/2-rule was applied in the cal-

culation of the nonlinear terms in the Navier-Stokes equations [51]. Thus, the total number

of quadrature points in the computational domain was above 37 millions. A systematic

resolution study was performed using h− and p− refinement techniques. Specifically, the

spectral/hp element method provides a dual path to convergence (i.e., decay of numerical

error) as follows: (a) h-convergence, with the accuracy of the solution depending on the

size of elements; and (b) p-convergence with the accuracy depending on the order of poly-

nomial approximation. To enhance the accuracy, a local mesh refinement (h-refinement)

was applied downstream of the ICA narrowing. Also, the flat faces of the surface elements

were projected on smooth curved boundaries. In Fig. 5.1(c) we plot the parametric surface

247

mesh (2D structured grid) at the carotid bifurcation and in Fig. 5.1(d) we show the compu-

tational grid projected on the curved surface. For temporal discretization, a second-order

semi-implicit time splitting scheme was implemented.

5.1.3 Problem formulation

The computational domain consists of the common, internal and external carotid arteries

(CCA, ICA and ECA, respectively). A fully developed velocity profile was prescribed at the

proximal end of the CCA using superposition with the well-known Womersley analytical

profile for each Fourier mode of the flow rate curve. To this end, the flow rate Q(t) shown in

Fig. 5.2 was approximated by N = 20 Fourier modes as Q(t) = A0 +
∑N

k=1[Ak sin (kωt) +

Bk cos (kωt)]; here ω is the main frequency and A0, Ak, Bk are the coefficients of the

Fourier expansion. At the distal end of the ICA and ECA, we used time-dependent RC-

type boundary condition for the pressure, supplemented with the zero Neumann boundary

condition for velocity. The degree of stenosis, S, in the ICA is defined as the ratio of the

reduction in cross-sectional area due to stenosis, i.e., S = 1 − (Dmin/DICA)2, where DICA

is the ICA effective diameter measured downstream the stenosis, and the effective diameter

Dmin is computed from the area at the stenosis throat: Amin = πD2
min/4. The Reynolds

(Re = UmD/ν) and Womersley (Ws = 0.5D
√

ω/ν) numbers are based on the parameters

at the CCA inlet. Here, Um is the average (in space and time) velocity, ω = 2π/T where T

is the one cardiac cycle time interval, and ν is the kinematic viscosity. In our simulations:

S ≈ 77%, D = 6 mm, ν = 3.283 mm2/s and T = 0.9 s. Consequently, Re = 350 and

Ws = 4.375. The time step was chosen to satisfy the CFL stability constraint and is very

small due to high spectral resolution, in the range of ∆t ∈ [5.2 × 10−8, 10−6] s. This

small time step allows accurate resolution of the high frequency flow oscillations. To ensure

sufficient temporal resolution for the POD study, we save the velocity field with intervals of

about 8.0 × 10−4 seconds. Starting with low-order spatial approximation and zero velocity

initial field, we performed numerical simulation over one cardiac cycle. Then, the spatial

and temporal resolution were increased and the flow was simulated during two additional

cardiac cycles; for analysis we used the results collected over the last cardiac cycle.

248

a b c d e f g h

0

5

10

15

20

25

Q
(t

)
[m

l /
 s

ec
]

TW:

TWa=[0.0 0.08]

TWb=[0.08 0.11]

TWc=[0.11 0.17]

TWd=[0.17 0.25]

TWe=[0.25 0.36]

TWf =[0.36 0.45]

TWg=[0.45 0.65]

TWh=[0.65 0.9]

Figure 5.2: Waveform flow rates imposed in the CCA (solid), ICA (dash) and ECA (dash
- dot) arteries and Time-Windows selected for POD data analysis.

249

5.2 Flow patterns

Back-flow: Atherosclerotic plaques usually occur in regions of branching and marked cur-

vature, at areas of geometric irregularity, and also in regions where blood flow undergoes

sudden changes in magnitude and direction resulting in back-flow regions. Specifically,

back-flow regions occur in the vicinity of carotid bulb or stenosis. These regions are charac-

terized by very low wall shear stress (WSS) and high pressure. The oscillating shear index

(OSI), as defined by [54], is a dimensionless local measure that quantifies the time a articu-

lar wall region experiences back-flow during the cardiac cycle. More specifically, high values

of OSI can reveal the location of the back-flow boundary where WSS is zero. Regions of

both low WSS and high OSI are thought to be susceptible to intimal thickening and plaque

formation that promotes atherogenesis at these important sites within the carotid arteries.

In figure 5.3(left), we show back-flow regions detected in the carotid bulb and the imme-

diate proximal vicinity of stenosis; these back-flow regions are quite stable throughout the

systole phase. Figure 5.3(right) shows typical instantaneous pathlines; while in CCA and

ECA pathlines are quite organized, those in ICA exhibit disorder in the poststenotic region

featuring a swirling pattern. In figure 5.3 we also show complex cross-stream secondary

flows.

Jet flow and onset of turbulence: Sherwin & Blackburn [77] performed 3D DNS to study

instabilities and transition to turbulence in a straight tube with a smooth axisymmetric

constriction, which is an idealized representation of a stenosed artery. They reported that

steady flow undergoes a Coanda-type jet formation and turbulent transition exhibiting

hysteretic behavior with respect to changes in Reynolds number. (The Coanda effect is

understood as the tendency of a jet stream to adhere to a curved boundary wall.) The

blood flow along the curved wall is accompanied with decrease of the pressure on the wall,

dropping below the surrounding pressure and resulting in the attachment of the fluid flow

to the wall. The wall jet consists of an inner region, which is similar to a boundary layer,

and an outer region wherein the flow resembles a free shear layer. These layers interact

strongly and form a complex flow pattern. The laminar Coanda jet has the tendency to

follow the circumferential wall only for small angles. The rapid increase of pressure along

the wall occurs due to the influence of the curvature of the wall and the adverse pressure

gradient in the direction of flow leading to flow separation. In general, the wall jet flows

250

Figure 5.3: (in color) Flow patterns; left: iso-surfaces in a high-speed region (jet, red),
blue iso-surfaces - back-flow regions; right: instantaneous path-lines of swirling flow and
cross-stream secondary flows.

are turbulent owing to the low critical Reynolds number. Experimental and theoretical

results have demonstrated that the instability of the entire wall jet is controlled by the

outer region. Bajura & Catalano [16] investigated experimentally transition to turbulence

in planar wall jets, using flow visualization in a water tunnel. They observed the following

stages in natural transition: (i) formation of discrete vortices in the outer shear layer; (ii)

coalescence of adjacent vortices in the outer region, coupled with the rolling up of the inner

shear layer; (iii) eruption of the wall jet off the surface of the flat plate into the ambient fluid

(the “lift-of” stage); and (iv) dispersion of the organized flow pattern by three-dimensional

turbulent motions.

Figures 5.4 and 5.5 demonstrate the jet-like effect created by the stenosis as predicted

in our calculations. In Fig. 5.4 we show the contours of the Ωy-vorticity (transverse)

that can be linked to the rolling up along the wall (see coordinate axes in Fig. 5.4f), for

251

Figure 5.4: (in color) Unsteady flow in carotid artery: transition to turbulence. (a-e) cross-
flow vorticity contours Ωy extracted along y = −1.2 in ICA. (f) region of ICA where flow
becomes unstable, colors represent iso-surfaces of w-velocity (streamwise, along z-direction),
Re = 350, Ws = 4.375.

different stages of transition that show the wall jet breakdown. These results illustrate

the onset of turbulence due to shear layer type instabilities of the Coanda wall jet in the

post-stenotic region. Specifically, in Fig. 5.4a, the laminar state of the incoming flow

is confirmed by the straight path traces. The jet outer region (marked by a blue trace)

and the adjacent recirculation back-flow region (marked by a light-blue trace) form a free

shear layer. In Fig. 5.4b, the jet moved downstream along the wall showing the early

stage of interaction with the adjacent recirculation region. Figure 5.4c shows the perturbed

shear layer at the leading edge of the jet. The tilted vorticity trace in Fig. 5.4d provides

evidence of the stage of vortices coalescence in the outer region and the rolling up of the

inner shear layer. The tilted wall jet rapidly breaks down leading to dispersion of the

organized flow pattern (Figs. 5.4d and e). It should be noted that the breakdown gradually

propagates upstream, a phenomenon that was predicted by Sherwin & Blackburn [77] using

DNS in a simplified geometry. Figure 5.5 shows iso-surfaces of the longitudinal w-velocity

(streamwise) component, depicting the stages when the coherent wall jet structure (Fig.

5.5a, green) collapses in the post-stenotic region (Fig. 5.5e). We note that the recirculation

region marked by the blue iso-surfaces, does not collapse, which implies that this region is

quite stable.

252

Figure 5.5: (in color) Wall jet formation and breakdown. Streamwise w-velocity iso-surfaces,
blue indicates a back-flow recirculation region. Re = 350, Ws = 4.375.

Transient turbulence followed by re-laminarization: The transient turbulence regime changes

the hemodynamic factors (e.g., wall shear stress, WSS). Specifically, it causes the WSS

vary significantly through the cardiac cycle; i.e., to become very high proximally to the

stenosis throat in the ICA where the vulnerable plaque is usually built-up. For detection

of turbulence in time and space, time traces of instantaneous axial velocity have been

monitored along the ICA at several axial stations indicated in Fig. 5.6(left). From Fig. 5.6c,

the flow disturbances, as they appear during the cardiac cycle, reveal that the turbulent

state appears during the systolic phase and is localized in the post-stenotic region, with

re-laminarization occurring farther downstream. To link the transition process to the time

frame of the cardiac circle, in Fig. 5.6(right bottom plot) we also show the physiological

flow rate waveforms in the CCA and ICA imposed in our calculations. The waveform curves

consist of a brief systolic phase (acceleration and deceleration) and a longer diastolic phase

with some increase in flow rate around t ≈ 0.55. As follows from the time traces in Fig. 5.6c,

the early turbulent activity in the post-stenotic region begins at the mid-acceleration phase

of the cardiac cycle. In the early part of deceleration there is intense turbulent activity;

past the mid-deceleration phase, the intensities die out and the flow begins to re-laminarize;

253

an exception is a short-term oscillation at t ≈ 0.55. The transient turbulent regime lasts

about 90% of a systole time, i.e., about 0.15 seconds or nearly 17% of the cardiac circle.

0 0.2 0.4 0.6 0.8

0

2

4

w
 [m

/s
] (a)

0 0.2 0.4 0.6 0.8

0

2

4

w
 [m

/s
] (b)

0 0.2 0.4 0.6 0.8

0

2

4
w

 [m
/s

] (c)

0 0.2 0.4 0.6 0.8

0

2

4

w
 [m

/s
] (d)

0 0.2 0.4 0.6 0.8

0

2

4

w
 [m

/s
] (e)

0 0.2 0.4 0.6 0.8

0

2

4

w
 [m

/s
] (f)

0 0.105 0.275 0.4 0.6 0.8
0

10

20

t [sec]

Q
(t

)
[m

l/s
ec

]

Q
CCA

Q
ICA

Figure 5.6: (in color) Wall jet formation and breakdown. Streamwise w-velocity iso-surfaces,
blue indicates a back-flow recirculation region. Re = 350, Ws = 4.375.

254

5.3 Application of Proper Orthogonal Decomposition

In this section we apply Proper Orthogonal Decomposition to detect turbulence in the

stenosed carotid artery. The analysis is performed using two approaches: (a) POD based

on the data collected over a complete cardiac cycle, and (b) windowed POD, that is the

decomposition is performed over specific intervals of the cardiac cycle and also in different

spatial 3D and 2D sub-domains. POD analysis performed over different time intervals shows

clear correlation between transition to turbulence and the POD eigenspectrum. Analysis

of the temporal and spatial modes of POD provides additional information regarding the

onset of turbulence.

5.3.1 Eigenvalue spectrum of POD

POD is a very effective method for identifying an energetically dominant set of eigenmodes

in an evolving system. It was originally introduced in fluid dynamics for identification

of coherent structures in a turbulent velocity field. Sirovich [82] introduced the snapshot

method to analyze large data sets.

For a set of data u(x, t), represented as a function of physical space x and time t, POD

determines a set of orthogonal basis functions of space φk
i (x) and temporal modes ak(t); here

i = 1, 2, 3 is the coordinate index and k = 1, 2, ..., M is the mode index. The basis is sought

so that the approximation onto the first K functions: ûi(x, t) =
∑K

k=1 ak(t)φk
i (x), K ≤ M

has the largest mean square projection. We shall use the method of snapshots to compute

the POD modes in a time interval T . Here the inner product between every pair of ve-

locity fields (snapshots) C(t, t′) = T−1
∫
Ω u(x, t)u(x, t′)dx is the temporal auto-correlation

covariance matrix C(t, t′) used as the kernel. The temporal modes ak(t) are the eigen-

vectors of the C(t, t′) matrix and are calculated by solving an eigenvalue problem of the

form:
∫
T C(t, t′)am(t′)dt′ = λmam(t). Using orthogonality, the POD spatial modes φk

i (x)

are calculated by φk
i (x) = T−1(λm)−1

∫
ak(t)ui(x, t)dt.

A spatio-temporal mode ak(t)φk
i (x) represents a basic flow structure which has its own

contribution to the total flow field. The eigenvalue of a single mode represents its contribu-

tion to the total kinetic energy of the flow field
∫
Ω〈ui(x)ui(x)〉dx which is equal to the sum

over all eigenvalues. Therefore, the eigenspectrum of the decomposition can be regarded

as the primary information indicating the importance of each individual mode from the

255

energetic point of view. The modes with the lowest numbers are the most energetic modes

and correspond to coherent flow structures. Specifically, we define

EM =
M∑

k=1

λk, En,m =
m∑

k=n

λk, (5.1)

where λk are the eigenvalues, EM is the total kinetic energy and En,m is the kinetic energy

associated with modes from mode n to mode m.

For stationary turbulent flows, the time-averaged field can be calculated and we can

compute how many modes contribute to the time-averaged energy. The remaining modes

can be attributed to the turbulent field. In the POD analysis of the velocity field at high-

Reynolds number obtained in [60], the time-averaged flow field contained about 96% of

the total kinetic energy which was primarily caried by mode k = 1. Thus, the remaining

fluctuating modes (k≥2) were considered as “turbulent”. To extract the “turbulent” con-

tribution of the flow field in our simulations, we take advantage of the hierarchical feature

of the POD decomposition. Specifically, in our calculations the energy associated with the

first two POD modes, computed over a cardiac cycle, is about 96%, which we consider as

the ensemble- (or phase) averaged field, and tale the rest POD modes (k≥3) to represent

the “turbulent” velocity field.

The presence of fluctuations is not sufficient evidence for the presence of turbulence,

which is characterized by specific statistical properties, and hence the distribution of energy

between different scales is a commonly used criterion. In figure 5.7 we show the normalized

eigenspectrum obtained at two different Reynolds numbers: Re = 350 and Re = 70. We

observe a big difference between the spectra: the eigenspectrum at Re = 350 decays slowly,

while that for a laminar flow (Re = 70) decays rapidly. It is noteworthy that at Re = 350,

the energy of the higher modes (k = 5 to 200) decays with a power law (slope s ≈ −1.1).

POD analysis of high-Reynolds number turbulent flows was applied in [60] to flow around

a wall-mounted hemisphere and by Yakhot and Liu (unpublished) to a wall-mounted cube.

Both studies clearly showed the power law decay rate s = −3/4 of the POD high eigenvalues.

The fact that the same power law was obtained in two different POD studies is intriguing,

however, the precise value of the exponent is probably not universal. Fourier analysis

applied to turbulent fields shows that the energy spectrum follows a power law k−s with

1 < s < 3 depending on the turbulence nature. For homogeneous isotropic turbulence, the

256

POD eigenmodes are simply Fourier modes. The flow in the carotid is neither homogeneous

nor isotropic but a power law energy decay provides additional evidence for the presence of

turbulence.

100 200 300 400 500 600 700
10

−8

10
−6

10
−4

10
−2

10
0

k

λ k /
E

n,
M

 (a)

Re = 350
Re = 70

0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

log
10

 k

lo
g 10

 λ
k slope s = −1.1

 (b)

Re = 350

Figure 5.7: POD eigenspectra. Re = 70 and Re = 350; Ws = 4.375. The values of n and
m are: Re = 70 - n = 2 and M = 64, Re = 350 - n = 3 and M = 1125.

5.3.2 Detection of turbulence by POD analysis

As we already mentioned, the POD modes are hierarchical, with the first mode representing

the main flow pattern while the higher modes add finer features. In figure 5.8(left) we

plot selected temporal POD modes computed over one cardiac cycle at Re = 350. The

first mode, a1(t), essentially follows the flow rate waveform imposed at the CCA inlet

(figure 5.2). As in the time traces of the instantaneous axial velocity shown in figure 5.6(b-

f), fluctuations of the higher modes indicate a transient turbulent regime throughout the

systole phase. A short-duration weak oscillation around t ≈ 0.55 that were recorded in

time-traces in figure 5.6d are captured here by the high temporal modes. It is caused by

a brief transition to turbulence due to a secondary acceleration-deceleration hump in the

flow rate. In figure 5.8(right), we show iso-surfaces of the velocity magnitude in the post-

stenotic region reconstructed from the turbulent modes (k = 3, 4, ..., M) at two different

257

phases, peak-systole (t = 0.12) and end-diastole (t = 0.0). The imprints of turbulence are

clearly seen in the plot corresponding to t = 0.12, consistent with the turbulence activity

detected by the high temporal modes.

0 0.3 0.6 0.9
0

0.05

0.1

a 1(t
)

0 0.3 0.6 0.9
−0.2

0

0.2

a 2(t
)

0 0.3 0.6 0.9
−0.2

0

0.2

a 3(t
)

0 0.3 0.6 0.9
−0.2

0

0.2

a 5(t
)

0 0.3 0.6 0.9
−0.2

0

0.2

a 15
(t

)

t
0 0.3 0.6 0.9

−0.2

0

0.2

a 50
(t

)

t

Figure 5.8: Left: temporal POD modes of velocity obtained over one cardiac cycle. Right:
velocity field reconstructed from high-order POD modes ŭi(t,x) =

∑M
k=3[ak(t)φk

i (x)] at
time instances t = 0.0s and t = 0.12s (systolic peak). Colors represent the corresponding
iso-surfaces of v=|ŭ|. Only the ICA branch is shown. M = 1125, Re = 350, Ws = 4.375.

Based on the aforementioned observations we draw the following conclusions:

• The energy spectra of the velocity fields computed over the entire cycle do not reveal

an intermittent laminar-turbulent regime.

• The transition to turbulence may be detected by analyzing the high-order temporal

POD modes.

• The contribution of higher POD modes to the velocity field is not uniform in space,

indicating coexistence of laminar and turbulent states.

5.3.3 Time- and space-window POD

The overall conclusion of the previous section is that POD analysis performed over a com-

plete cardiac cycle and over the entire computational domain is inadequate to characterize

258

space-intermittent turbulence in the transient flow regime. To this end, we suggest an alter-

native approach to analyze the intermittent and mixed flow regimes. Our goal is to measure

the turbulent energy of flow in different regions of the domain and over different time in-

tervals. In order to quantify the intensity of the turbulent flow we perform windowed-POD

analysis in time and space. By analyzing the behavior of the temporal modes we may deter-

mine time intervals within which the flow is turbulent. Then, by performing POD analysis

at different sub-domains, we can focus on regions where the energy associated with higher

POD modes is significant. To characterize transitional flow we divide the cardiac cycle into

eight time-window intervals denoted by a ÷ h as illustrated in figure 5.2; the time-windows

have been chosen to represent different stages of the transient regime. We will refer to the

time-windows as TWa÷TWh.

20 40 60 80 100 120 140 160 180 200
10

−8

10
−6

10
−4

10
−2

10
0

λ k /
E

1,
M

 (a)

TWa
TWb
TWc

20 40 60 80 100 120 140 160 180 200
10

−8

10
−6

10
−4

10
−2

10
0

k

λ k /
E

1,
M

 (b)

TWd
TWe
TWf

Figure 5.9: POD: Eigenspectra obtained over different time-windows (see figure 5.2).

In figure 5.9 we plot the POD eigenspectra computed over six consecutive time-windows;

the spectrum slope provides an indication of a turbulent or laminar regime. The spectra

distinguish clearly the presence of transition from laminar to turbulent regime shown in

figure 5.9a and followed by re-laminarization in figure 5.9b. The arrows in figure 5.9 denote

the spectrum evolution in time: transition to turbulence is denoted by an upward-directed

arrow, the downward-directed arrow refers to re-laminarization. The spectra obtained over

259

−0.5

0

0.5

a 1(t
)

−0.5

0

0.5

a 2(t
)

−0.5

0

0.5

a 3(t
)

−0.5

0

0.5

a 4(t
)

−0.5

0

0.5
a 5(t

)

−0.5

0

0.5

a 6(t
)

−0.5

0

0.5

a 7(t
)

−0.5

0

0.5

a 8(t
)

0.08 0.095 0.11
−0.5

0

0.5

a 9(t
)

t
0.08 0.095 0.11

−0.5

0

0.5

a 10
(t

)
t

Figure 5.10: POD temporal modes ai(t), i = 1, ..., 10 corresponding to the time window
TWb (see figure 5.2).

the TWc and TWd time-windows, covering the transitional regime, display a slow decay.

The TWf and TWa time-windows belong to an end-diastole phase of the cardiac cycle; they

are very similar and show a fast decay featuring the laminar regime. The results in figure 5.9

present a sequence of transient events in the post-stenotic flow, from laminar to turbulent,

reverting towards laminar, back again towards turbulent, and so on. To refine the POD

analysis, in order to capture the transition to turbulence, we analyze individual temporal

POD modes within a certain time-window. The first ten temporal modes corresponding to

TWb are plotted in figure 5.10. The appearance of high frequency components at certain

time intervals signifies the onset of turbulence.

Time-window POD analysis applied to transient flows reveals significantly more infor-

mation than the full-cycle analysis. Moreover, unlike the complete cycle POD analysis, it

is less expensive from the computational point of view. However, time-window POD is not

sufficient to detect and characterize the spatially intermittent distribution of kinetic (tur-

bulent) energy. As we have already observed, turbulent flow is not present over the entire

domain of the stenosed carotid artery (see figure 5.8(right)). Although visualization of cer-

tain POD modes helps to capture regions with high turbulent energy, it is not sufficient to

260

quantify turbulence in each region, and alternative approaches should be applied. To this

end, we employ space-window POD to detect regions with high kinetic energy. We analyze

the eigenspectrum in three sub-domains of the ICA shown in figure 5.11: 1) the stenosis

throat (sub-domain AB); 2) the post-stenotic region, from 12 to 22 mm downstream of

the stenosis throat (sub domain CD); and 3) the post-stenotic region, from 32 to 42 mm

downstream of the stenosis throat (sub domain EF).

Figure 5.11(a,b) shows fast decay of the POD eigenspectra computed in sub-domain

AB where no turbulence was detected. In figure 5.11(c,d) we plot the spectra computed

in sub-domain CD. The energy spectra in figure 5.11c reveal onset of turbulence and

subsequent flow re-laminarization. The spectra obtained over TWc and TWd depict slow

decay, typical for turbulent flow. The POD spectra in figure 5.11(e,f) show the same

scenario of transition/re-laminrization although the turbulence here is very weak because it

experiences a decay and eventually re-laminarization downstream of the stenosis (compare

TWc and TWd curves in plots (e,f) with those in plots (c,d)).

261

10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

λ k /
E

1,
M

(a)

TWa
TWb
TWc

10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

λ k /
E

1,
M

(b)

TWd
TWe
TWf

10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

λ k /
E

1,
M

(c)

TWa
TWb
TWc

10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

λ k /
E

1,
M

(d)

TWd
TWe
TWf

10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

λ k /
E

1,
M

(e)

TWa
TWb
TWc

10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

k

λ k /
E

1,
M

(f)

TWd
TWe
TWf

Figure 5.11: POD eigenspectra obtained over different time-windows in sub-domains AB,
CD and EF (right): (a,c,e) - time-windows TWa, TWb and TWc (flow acceleration and
transition to turbulence); (b,d,f) - time-windows TWd, TWe and TWf (flow deceleration
and laminarization); (arrows show the time growth, color represents the w-iso-surface re-
constructed from POD modes 20 to 50 at t = 0.13).

262

5.4 Utility of POD in clinical setting

Conventional MRI, PC-MRI and CDUS measurements provide two-dimensional images. In

this section we synthesize a collection of medical images by extracting them from CFD

simulation data. Specifically, the velocity field computed in ICA is extracted from 2D slices

(space-windows), and then time-window POD analysis is performed. First we examine data

sampled with high temporal resolution and subsequently we compare the results with those

obtained with reduced sampling rates.

The velocity field computed in ICA is extracted along 2D slices (space-windows), and

then time-window POD analysis is performed. In figure 5.12 we show spectra computed over

different time-windows using velocity fields obtained from a transverse to the main flow 2D

slice at z = 60. Similarly to 3D POD analysis (see figures 5.11c and d)), these POD spectra

reveal transient flow regimes shown by arrows. POD spectra were also computed along

longitudinal cross-sections mimicking an ultrasound image. In figure 5.12(iv-vi) we plot

spectra obtained over different time-windows with a longitudinal slice located in the sub-

domain CD. Comparison with the spectra obtained by high-resolution 3D POD analysis

shows remarkable similarity (see figures 5.11c and 5.11d.)

To quantify the quasi-instantaneous decay of the POD eigenvalues we propose the fol-

lowing procedure. We recall that turbulence is associated with existence of the high POD

modes that exhibit a power law energy decay, namely

λk ∼ k−s(t). (5.2)

We extract flow field data from different planes, as shown in figure 5.12. For each time

instant t over the cardiac cycle, the POD analysis is performed over a relatively short time-

window t−∆t′/2 < t < t + ∆t′/2, where ∆t′ was approximately 0.01 second at the systolic

peak and approximately 0.1 second during the diastolic phase. Taking advantage of the

high time resolution of our simulations, each time interval ∆t′ was covered by 80 snapshots.

The exponent s(t) has been computed by employing the POD procedure used to obtain

the eigenspectrum shown in figure 5.7. In figure 5.13(top) we plot the exponent s(t) of the

POD eigenvalues. The double hump curves clearly indicate the transient nature of the flow.

The low values of the slope (0.8 < s < 1.1) correspond to the turbulent regime that occurs

during the systolic phase. The secondary turbulence regime at t ≈ 0.55 mentioned above is

263

also captured by the low slope values in figure 5.13(top).

Our CFD simulations were carried out with very high time resolution, allowing accurate

estimation of the POD eigenspectrum. At the present time, there are serious limitations in

the spatial and temporal resolution of MRI and CDUS imaging. MRI is a 3D technique for

velocity imaging with high spatial resolution but low temporal resolution. CDUS images of

a carotid artery are two-dimensional with time resolution of about 20-50 Hz. However, the

sampling rate of the US devices is expected to grow significantly due to the introduction

of parallel data processing. For example, owing to massive parallel beam formation, much

higher frame rates can be achieved with a new cardiovascular platform SC2000 system

launched recently by Siemens [8]. High temporal resolution of 481Hz in US imaging (sample

rate) is reported in [102]. We note that several artifacts and noise contamination also occur

during medical scanning, which may increase uncertainty in the data processing and lead

to erroneous interpretations. As a first step, the artifacts and noise should be, if possible,

identified and treated prior to using medical images for acquisition of clinical data.

To estimate if the suggested procedure can be used with relatively low time resolution

imaging equipment we performed the following computations. We selected 800 time instants

throughout the cycle and assumed that each time instant τ corresponds to the middle of

a time-window ∆τ = [τ1, τM], namely τ = (τM + τ1)/2. Here M is the number of snap-

shots within the time-window ∆τ that depends on the imaging equipment time resolution.

Specifically, we used ∆τ ≈ 0.12 sec, and, consequently, M=100 and 13 corresponding to

825 Hz and 107 Hz samplings, respectively. For each time-window, we computed the POD

eigenspectra with different number of snapshots corresponding to different time resolutions.

The decay rate s(τ) is shown in figure 5.13(bottom). We recall, that the double hump shape

of the s(τ) curve points to the transient turbulent regime. From figure 5.13(bottom), all

spectra, even that obtained with 107 Hz, are representative of transitional regime. A cer-

tain drawback of the low resolution data is that s(τ) curve shows late transition and early

re-laminarization. For example, the regime at τ = 0.11 is turbulent, as we have seen in the

previous sections, however, the corresponding time-window, ∆τ = [0.05, 0.17], covers the

laminar part of the cycle 0.05 < t < 0.09. For the 107 Hz sampling, the number of snapshots

within an interval ∆τ is only 13 which means that the sampling includes only few snap-

shots of the turbulent state. The same considerations explain the early re-laminarization

at τ = 0.6. On the other hand, the decay rate computed at τ = 0.11 with 206 Hz data

264

shows good agreement with that computed with 825 Hz data although it also predicts a

slight delay of transition. Analyzing the s(τ) curves in figure 5.13(bottom) and taking into

account the rapid growth of the medical imaging equipment time resolution, we can be op-

timistic that the windowed-POD technique can be applied to analyze transient turbulence

in stenosed vessels in the not-distant future.

265

20 40 60 80 100 120 140 160 180 200
10

−8

10
−6

10
−4

10
−2

10
0

λ k /
λ E

1,
M

 (i)

TWa
TWb
TWc

20 40 60 80 100 120 140 160 180 200
10

−8

10
−6

10
−4

10
−2

10
0

λ k /
λ E

1,
M

 (ii)

TWd
TWe
TWf

20 40 60 80 100 120 140 160 180 200
10

−8

10
−6

10
−4

10
−2

10
0

k

λ k /
λ E

1,
M

 (iii)

TWg
TWh

20 40 60 80 100 120 140 160 180 200
10

−8

10
−6

10
−4

10
−2

10
0

λ k /
λ E

1,
M

 (iv)

TWa
TWb
TWc

20 40 60 80 100 120 140 160 180 200
10

−8

10
−6

10
−4

10
−2

10
0

λ k /
λ E

1,
M

 (v)

TWd
TWe
TWf

20 40 60 80 100 120 140 160 180 200
10

−8

10
−6

10
−4

10
−2

10
0

k

λ k /
λ E

1,
M

 (vi)

TWg
TWh

Figure 5.12: 2D POD: eigenspectra obtained over different time intervals (see figure 5.2).
(i-iii): velocity field is extracted at z = 60; (iv - vi) Velocity field is extracted on a slice with
x = const, between z = 50 and z = 60; (i,iv) - time-windows TWa, TWb and TWc (flow
acceleration, and transition to turbulence); (ii,v) - time-windows TWd, TWe and TWf (flow
deceleration, and laminarization); (iii,vi) - time-windows TWg and TWh (diastole phase);
arrows show the time growth.

266

0 0.2 0.4 0.6 0.8
−8

−6

−4

−3

−2

−1

0

t [sec]

−
s

(t
)

2D slice A
2D slice B
2D slice C

0 0.2 0.4 0.6 0.8
−8

−6

−4

−3

−2

−1

0

τ [sec]

−
s

(τ
)

825Hz
412Hz
206Hz
107Hz

Figure 5.13: 2D POD. Top: decay rate of POD eigenspectra. Data are extracted along:
slice z = 50 (2D slice A), slice z = 60 (2D slice B) and slice with x = const and located
between z = 50 and z = 60 (2D slice C) shown illustrated in figure 5.12. s(t) is computed
for the modes k = 2÷10. Bottom: decay rate of POD eigenspectra, computed with variable
temporal resolution. Data are extracted along the slice z = 60; s(τ) is computed for the
modes k = 2 ÷ 10.

267

5.5 Discussion and outlook

High-resolution simulations to study transitional flow in a stenosed carotid artery alternat-

ing between laminar and turbulent states has been performed. The high degree of narrowing

in the ICA (about 77%) creates a jet flow, which attaches to the wall of the artery and at

certain (instantaneous) value of the Reynolds number becomes unstable leading to the onset

of turbulence. In particular, a mixed flow state is characterized by regions of unsteady lam-

inar flow and a sub region of turbulence, starting downstream of the stenosis and extending

about five to six centimeters farther downstream. As the Reynolds number decreases, flow

re-laminarization in this sub-region takes place.

Studies of transitional flow in stenosed vessels with axi-symmetric and eccentric narrow-

ing presented in [77, 9, 95] suggest that the transition to turbulent flow appears at Reynolds

number Re > 500 and Womersley number Ws > 7.5, i.e., at values higher than the ones in

our simulations; however, this is due to the geometric complexity. For example, Varghese

et. al. [95] observed that introducing slight eccentricity to the stenosis led to intermittent

laminar-turbulent flow, which was not the case for flow in a pipe with an axi-symmetric

constriction. This finding implies that due to arterial geometric variability among different

patients with a stenosed ICA, transition to a turbulent state may or may not take place

even if these patients have the same degree of stenosis or similar heart rate. Moreover,

geometrical modifications, e.g., arterial deformations due to neck bending or twisting may

trigger the onset of turbulence.

The specific focus of our work is the quantification of transitional blood flow. To this

end, we applied Proper Orthogonal Decomposition to cross-correlate flow fields at different

times; laminar flows exhibit high degree of correlation while turbulent flows show lower

correlation. The degree of correlation between velocity fields from different times can be

measured by the rate of decay of the eigenvalues of the correlation matrix. The value of

POD analysis of blood flow is in identification and characterization of arterial segments with

high turbulent energy and hence of associated pathologies. If the region of turbulent flow is

very small compared to the size of the full domain considered, analysis of POD spectra or

inspection of temporal modes performed on the entire domain is insufficient. To this end,

we developed a time- and space-window POD version that can quantify precisely the kinetic

energy associated with different POD modes. In CFD simulations this can be done with

268

either 3D or 2D sub domains while in the clinical setting 2D images obtained via PC-MRI

or CDUS can be used. This approach can be compared to the window-FFT method or the

wavelet decomposition, where a frequency spectrum is analyzed over a certain time interval.

The window-POD procedure is computationally favorable and can be carried out very

fast using a standard laptop. Indeed, the three-dimensional POD analysis of turbulent flow

in a relatively large computational domain is computationally expensive. For example, in

our study the data was computed at 24 million quadrature points. The computational

work associated with POD (numerical integration) is not very high, however, the memory

requirements are quite substantial. In our simulation the estimated memory requirement for

POD analysis in the entire domain and over a one cardiac cycle was 400GB. POD analysis

of 1125 snapshots required about 60 minutes on 128 AMD Opteron 2.6MHz CPUs of the

CRAY XT3 computer with 4GB memory per processor; this time also includes the input

of velocity and pressure fields and output of data for subsequent visualization. However,

window-POD analysis is computationally much more favorable and can be performed on a

standard desktop computer in about five minutes.

The POD method for analysis of transitional flow in arteries has some limitations.

The accuracy of POD analysis as clinical diagnostic tool depends on the spatio-temporal

resolution of PC-MRI or CDUS, which at the present time may be sufficient to adequately

capture laminar flows but it is not clear that it can capture mixed or fully turbulent regimes.

In future work, we are planning to investigate this important issue using clinical data. Also,

in the present work we have applied the utility of the time-space window POD method to

analyze flow in rigid arteries. Although, arterial walls affected by atherosclerosis are less

elastic than the healthy ones, POD should be extended to analyze flow in flexible vessels.

Of interest would be how the transition scenario described in the present work is modified

by the arterial wall movement.

Chapter 6

Concluding Remarks

The work described in this Thesis have been inspired by the Physiological Virtual Human

initiative and by recent advances in High Performance Computing (HPC) infrastructure,

specifically the transition into the new era of Petaflop computing and the development of

the Grid technology. Specifically, we attempted to bridge between the worlds of HPC and

medicine, by developing new robust numerical methods and efficient parallel algorithms to

simulate blood flow in the human arterial tree. In particular we have achieved the following

results:

• We have investigated performance of two tensor-product spectral bases defined on a

triangular element. We concluded that the cartesian tensor-product bases are more

robust than the barycentric bases, in part due to better sparsity patterns of the corre-

sponding linear operators. However, use of barycentric tensor bases was advantageous

in solving diffusion problem, defined on a computational domain discretized with dis-

torted elements (with extremely high aspect ration).

• We have compared performance of three sets of quadrature grids for triangular ele-

ment, and we have arrived to the following conclusions: The collapsed-cartesian grid

is overall the most efficient, particularly for high order polynomial expansions. The

stability properties are nearly independent of the grid types; however, the performance

of barycentric grids is slightly better when the size of a timestep approaches its critical

value. In solution of nonlinear problems with Galerkin projection the loss of accuracy

can be a result of underresolution in both numerical integration and differentiation.

• We focused on the numerical accuracy and filtering of high-frequency pressure os-

269

270

cillations arising due to singularities and explicit treatment of pressure boundary

condition. Robustness of a semi-implicit and implicit numerical schemes have been

compared. We have observed that implicit numerical scheme for solution of Navier-

Stokes equations does not posses time-splitting error, and effectively removes erro-

neous pressure oscillations. The use of semi-implicit scheme requires filtering the

pressure oscillations by lower-order polynomial approximation for the pressure, that

is employing P/P − 1 or P/P − 2 - approach. The later approach results in loss of

numerical accuracy in the problems where solution is smooth.

• We have developed and implemented new computational and numerical approaches

for solving Navier-Stokes equations to simulate a blood flow in very complex (patient-

specific) geometry. The new methods developed in the course of this Thesis are:

a) the two-level domain decomposition, featuring the continuous and discontinuous-

like Galerkin projection. The computational domain is first sub-divided into several

large patches, and then the standard SEM discretization and domain partitioning is

performed withing each patch. We considered the non-overlapping and overlapping

patches. The use of overlapping sub-domains enhances numerical accuracy and sta-

bility.

b) time-dependent resistance-capacitance outflow boundary condition (R(t)C) allow-

ing to control effectively the flow distribution in arterial networks with multiple out-

lets, and also to integrate in a straightforward way clinically measured flowrates in

numerical simulations.

c) multi-level communicating interface (MCI). The MCI has been tested in simula-

tions on distributed computers and optimized for high latency networks. Later MCI

was successfully implemented for simulations on a single cluster.

• We have increased the scalability of high-order spectral/hp-element Navier-Stokes

solver NεκT αr by redesigning parallel algorithms for coarse space linear vertex

solver. The code scales now on several thousands of processors.

• We have developed a simple but extremely efficient and embarrassingly parallel ac-

celerator for iterative solution of a system of linear equations for dynamical systems.

The effectiveness of the method does not depend on spatial discretization (grid in-

dependent), and our numerical experiments indicate that the method becomes even

271

more efficient for more refined spatial discretization.

• We have performed the first high-resolution numerical simulations of unsteady flow

in tens of brain arteries, including the Circle of Willis. The simulations revealed

high-degree of flow three-dimensionality even in the narrow vessels.

• We have performed comparative study of the 1D and 3D models for simulation of a

blood flow dynamics in complex arterial networks.

• We have suggested a new methodology (time- space-window POD analysis) for anal-

ysis of intermittent in time and space laminar-turbulent flow. The new method has

been applied for analysis of intermittent flow in stenosed carotid artery.

There is a lot more to be done to take the numerical simulations to the state where

they can be of truly predictive value in the framework of healthcare. Achieving high-order

numerical accuracy and reasonable solution time allows to isolate the discretization errors

and concentrate on the modeling. There are various models employed for flow simulations,

e.g., 1D models, 3D models with rigid and elastic walls, etc, and it is crucial to understand

under what circumstances each model can (or can not) be applied. The multiscale nature

of the human organism also suggests multiscale approach for numerical simulations. The

model validation and uncertainty quantification have the utmost importance in modeling

physiological processes.

There are also specific tasks that should be performed to leverage the new numerical and

computational approaches described in this Thesis. For example, developing fully implicit

solver for Navier-Stokes equations which will integrate the two-level domain decomposition

and the convergence accelerations strategies. Solving Navier-Stokes equations implicitly will

relax the restrictions on the size of the time step, and application of POD-based acceleration

technique might be advantageous over the simple extrapolation method. Low iteration count

required for solution of linear systems enhances scalability of a solver, and at the same time

high-light the importance of better load-balancing in tasks such as computing boundary

conditions. Another very important issue that has no satisfactory solution so far is how to

take advantage of the multi-core architecture. This can be adequately addressed by using

new dynamic programming languages, e.g. Unified Parallel C (UPC), or by extensive use

of shared memory optimizations.

Appendix A

Construction of the elemental

Transformation Matrix R

We recall that

S2 = RS1R
T

and consider a single elemental matrix and the transformation of basis which arises from a

matrix R of the form:

R =

I Rve Rvf

0 I Ref

0 0 I

,

where the the vertex modes are listed first followed by the edge and the face modes. The

matrices Rve,Rvf represent the modification of the vertex modes by the edges and face

modes. Similarly the matrix Ref represents the modification of the edge modes by the face

modes. The transformation matrix has upper triangular structure and hence it is easily

invertible.

Let us define R as

R =

 I Rv

0 A

 where Rv =
[

Rve Rvf

]
, A =

 I Ref

0 I

272

273

and write the original Schur complement of the Helmholtz matrix as

S1 =

 Svv Sv,ef

ST

v,ef Sef ,ef

 =

Svv Sve Svf

ST
ve See Sef

ST

vf
ST

ef
Sff

then applying the transformation matrix, namely S2 = RS1R
T we obtain

S2 =

 Svv + RvSv,ef + Sv,efR
T
v + RvSef ,efR

T
v [Sv,ef + RT

v Sef ,ef]A
T

A[Sv,ef + Sef ,efR
T
v] ASef ,efA

T

 (A.1)

where

ASef ,efA
T =

 See + RvfSef + SefR
T

vf
+ RvfSffRT

vf
Sef + RT

vf
Sff

Sef + SffRT

vf
Sff

 . (A.2)

In order to completely orthogonalise the vertex modes with the edge and face modes we

require that

RT

v = −S−1

ef ,efS
T

v,ef . (A.3)

To decouple the edge modes from the face modes we see from inspecting (A.2) that

RT

ef = −S−1

ff
ST

ef . (A.4)

Appendix B

Parallel matrix vector

multiplication in NεκT αr

// z - vector of length Rank(V_SC) to store the forcing term and then

// the solution vector.

// Js - global index of first column of V_SC stored on this partition.

// Je - global index of last column of V_SC stored on this partition.

// tmp_buf - temporary buffer

/* compute x = [A]y */

gather_y_local(z,y_local,VERSION);

do_local_matrix_vector_mult(A_local,y_local,x_local);

scatter_x_local(x_local,z);

void gather_y_local(double *z, double *y_local, int VERSION){

switch(VERSION){

case V1:

MPI_Allreduce(z,tmp_buf,length(z),MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);

memcpy(y_local,tmp_buf+Js,(Je-Js+1)*sizeof(double));

274

275

break;

case V2:

MPI_Allreduce(z+Js,tmp_buf,Je-Js+1,

MPI_DOUBLE,MPI_SUM,MPI_COMM_ROW);

MPI_Allreduce(tmp_buf,y_local,Je-Js+1,

MPI_DOUBLE,MPI_SUM,MPI_COMM_COLUMN);

break;

case V3:

for (np = 0; np < size(MPI_COMM_ROW); ++np){

for (i = 0, k = 0; i < length(z); ++i){

if (Js <= global_index_z[i] <= Je){

if (z[i] != 0)

sendbuf[np][k++] = z[i];

}

}

}

MPI_Alltoallv(sendbuf,length_of_sendbufs,sdispls,MPI_DOUBLE,

recvbuf,length_of_recvbufs,rdispls,MPI_DOUBLE,

MPI_COMM_ROW);

for (np = 0; np < size(MPI_COMM_ROW); ++np)

map_recvbuf_to_y_local(recvbuf[np],tmp_buf);

MPI_Allreduce(tmp_buf,y_local,(Je-Js+1),

MPI_DOUBLE,MPI_SUM,MPI_COMM_COLUMN);

break;

case V4:

for (np = 0; np < size(MPI_COMM_ROW); ++np)

MPI_Irecv(recvbuf[np],count[np],MPI_DOUBLE,

np,tag,MPI_COMM_ROW,rqst_rcv[np]);

for (np = 0; np < size(MPI_COMM_ROW); ++np){

276

for (i = 0, k = 0; i < length(z); ++i){

if (Js <= global_index_z[i] <= Je){

if (z[i] != 0)

sendbuf[np][k++] = z[i];

}

}

MPI_Isend(sendbuf[np],length(sendbuf[np]),MPI_DOUBLE,

np,tag,MPI_COMM_ROW,rqst_snd[np]);

}

for (np = 0; np < size(MPI_COMM_ROW); ++np){

MPI_Waitany(np,rqst_rcv,&index,status);

map_recvbuf_to_y_local(recvbuf[index],tmp_buf);

}

MPI_Allreduce(tmp_buf,y_local,(Je-Js+1),

MPI_DOUBLE,MPI_SUM,MPI_COMM_COLUMN);

break;

}//end of switch

}

Appendix C

resistance - flow rate relationship

in a network of five vessels

In the following we derive the resistance - flow rate relationship in a network of five

vessels, shown in figure C.1.

P
in

P
1

P
2

P
3

P
4

P
5

Q
in

Q
1,2

Q
1,3

Q
3,4

Q
3,5

Figure C.1: Sketch of 1D model of five arteries: one inlet and five outlets.

The Q1,2/Q1,3 ratio is given by

Q1,2

Q1,3
=

R3 − L1,3K1,3

R2 − L1,2K1,2
. (C.1)

Thus,

R3 = L1,3K1,3 +
Q1,2

Q1,3
(R2 − L1,2K1,2). (C.2)

277

278

Now we apply (4.6) to segments 3, 5 to obtain

P5 − P3 = L3,5K3,5Q3,5 (C.3)

and using the resistance boundary condition Pj = RjQj , we get

R5Q3,5 − R3Q1,3 = L3,5K3,5Q3,5. (C.4)

Next, we substitute R3 in (C.4) by formula (C.2)

R5Q3,5 − Q1,3(L1,3K1,3 +
Q1,2

Q1,3
(R2 − L1,2K1,2)) = L3,5K3,5Q3,5 (C.5)

and, assuming that |LjKj | ≪ 1 and |LjKj | ≪ Rj , we obtain

R5Q3,5 − R2Q1,2 = L3,5K3,5Q3,5 ≈ 0. (C.6)

From equation (C.6) we obtain
Q3,5

Q1,2
≈ R2

R5
.

Similarly, we can obtain
Q3,4

Q1,2
≈ R2

R4
.

So far we derived the Qi/Qj relations for a steady flow but similarly to the previous

case, we can derive the Q̂i,k/Q̂j,k relations for unsteady flow and show that

Q̂i,k

Q̂j,k

≈ Rj

Ri

and therefore
Qi(t)

Qj(t)
≈ Rj

Ri
.

By neglecting friction we can extend the R−Q relation to the network with an arbitrary

number of segments. For example, using the model provided in figure C.1 we obtain:

R1Qin ≈ R2Q1,2 ≈ R3Q1,3 ≈ R5Q3,5 ≈ R4Q3,4...

Appendix D

class TerminalBoundary

class TerminalBoundary{

private:

public:

char type; //outlet: type = ’O’, inlet: type = ’I’

int NBoundaryFaces; //number of elements facing inlet/outlet

//in this partition

int *BoundaryFaceList; //index of matching element,

//face and index of matching

//face from partner’s boundary

// dimension [NBoundaryElements*3]

int *BoundaryElementList_local_uvw,

*BoundaryElementList_local_p;

double Area; // area of the boundary

int ID_local; // local to patch index of artery

int ID_global; // global (unique) index of artery

MPI_Comm TerminalBndr_communicator; //L4 communicator

int TerminalBndr_communicator_size; //size of L4

279

280

int TerminalBndr_communicator_rank; //rank in L4

//functions

int set_up_TerminalBndr(Domain *Omega, char **standard_labels);

double compute_flow_rate(Domain *Omega);

double compute_mean_pressure(Domain *Omega);

};

Appendix E

class OvrLapBoundary

class OvrLapBoundary{

private:

public:

char type; // outlet: type = ’O’, inlet: type = ’I’

int NBoundaryElements; //number of elements facing overlapping

//outlet in this partition

int *BoundaryElementList; //index of matching element,

//face and index of matching

//face from partner’s boundary

// dimension [NBoundaryElements*3]

int NBoundaryElements_global; //total number of elements

//facing overlapping outlet.

int *NBoundaryElements_per_rank;

int Nqp_total_FrPr; // total number of quadrature points

// required by partner

int *Nqp_per_face_global_FrPr; // number of quadrature points per face

// required by partner

double **BoundaryFace_normal; // normal to face pointing outward

281

282

int ID_local; // local to patch index of artery

int ID_global; // global (unique) index of artery

MPI_Comm OvrLapBndr_communicator; //L4 communicator

int OvrLapBndr_communicator_size; //size of L4

int OvrLapBndr_communicator_rank; //rank in L4

int Partner_rank_in_comm_world; //rank in L1

MPI_Request request_send, request_send_dUVWdn;

int N_Vert_modes2transfer, /* Number of vertex modes to transfer =1 */

N_Edge_modes2transfer, /* Number of edge modes to transfer */

N_Face_modes2transfer, /* Number of face modes to transfer */

N_modes2transfer_total; /* Total number of modes to transfer */

//storage for velocity, pressure and flux values:

double **UVW_OLbndry,**UVW_OLbndry_global;

double **P_OLbndry, **P_OLbndry_global;

double **dUVWdn_global_FrPr;

double ***HA, ***HB; // interpolation operator

void allocate_UVWP();

void constract_interp_oper_for_dUVWdn(Domain *Omega);

void prepare_BC_uvw2transferALLmodes(Domain *Omega);

void transfer_uvw_3D_ALL_send();

void prepare_BC_p2transferALLmodes(Domain *Omega);

void transfer_p_3D_ALL_send();

void prepare_dUVWdn(Domain *Omega);

void transfer_dUVWdn_3D_ALL_send();

};

Appendix F

class MergingBoundary

class MergingBoundary{

private:

public:

char type; //outlet: type = ’O’, inlet: type = ’I’

int NBoundaryFaces; //number of elements facing inlet/outlet

//in this partition

int *BoundaryFaceList; //index of matching element,

//face and index of matching

//face from partner’s boundary

// dimension [NBoundaryElements*3]

int *BoundaryElementList_local_uvw, //list of IDs of elements

*BoundaryElementList_local_p; //inlet or outlet for

//velocity and pressure systems

double Area; // area of the boundary

int Nqp; // Total number of quadrature points

// at merging faces in this partition

int *Nqp_per_face; //Number of quadrature points per face

283

284

/* root of L4 needs global info */

int NBoundaryFaces_global; //total number of elements facing inlet/outlet.

int *NBoundaryFaces_per_rank;

int Nqp_global; // Total number of quadrature points at

// merging faces in all partition

int *Nqp_per_rank; // number of quadrature points per partition

int *Nqp_per_face_global;

int ID_local; // local to patch index of artery

int ID_global; // global (unique) index of artery

MPI_Comm MergingBndr_communicator; //L4 communicator

MPI_Request request_recv, request_recv_dUVWdn;

int MergingBndr_communicator_size; //size of L4

int MergingBndr_communicator_rank; //rank in L4

int Partner_rank_in_comm_world; //rank in L1

int N_Vert_modes2transfer, /* Number of vertex modes to transfer =1 */

N_Edge_modes2transfer, /* Number of edge modes to transfer */

N_Face_modes2transfer, /* Number of face modes to transfer */

N_modes2transfer_total; /* Total number of modes to transfer */

//storage for velocity, pressure and flux values:

double **UVW_MRbndry,**UVW_MRbndry_global;

double **P_MRbndry, **P_MRbndry_restart,

**P_MRbndry_global, **P_MRbndry_global_n1;

double **dUVWdn,**dUVWdn_n1;

double *dUVWdn_global;

//storage for mapping vertex and edge DOF with respect

//to adjacent patch

int **mapping_vert, **mapping_edge, **signchange_edge;

//functions:

int set_up_MergingBndr(Domain *Omega, char **standard_labels);

285

void map_vertices(double *XYZ_FrPr, double *my_XYZ);

void collect_XYZ_face1(Domain *Omega);

void set_P_restart(Domain *Omega);

void transfer_uvw_3D_ALL_recv(int ACTION);

void update_bndry_uvw(Domain *Omega);

void transfer_p_3D_ALL_recv(int ACTION);

void update_bndry_p(Domain *Omega);

void transfer_dUVWdn_3D_ALL_recv(int ACTION);

void update_FLUX(Domain *Omega);

double compute_flow_rate(Domain *Omega);

double compute_mean_pressure(Domain *Omega);

};

Appendix G

Input files for NεκT αrG

The first step in preparing input data for NεκT αrG is to create a mesh and subdivide it

into overlapping or non-overlapping regions. The inter-patch interface must be a flat surface.

The 2D mesh at the inter-patch interface must be confirming. Once a volume mesh for each

3D patch is created, the boundaries corresponding to different inlets and outlets must be

labeled. It is important to create unique labels for different inlets and outlets. The second

step in preparing the input file is very similar to preparing the file for NεκT αr . Here we

follow the methodology corresponding to converting an output file from Gridgen (volume

mesh, with unique labeling for boundaries of the domain), and as an example we use mesh

corresponding to CoW (the four patches of the domain as presented in figure 4.59(a). We

start from the domain colored in orange, the patch has 3 inlets and 11 outlets and perform

the following steps:

1. verify that the Gridgen (Version 15) output file (part1.inp) contains correct labeling

for all inlets, outlets and walls. The header of the file looks like:

FIELDVIEW_Grids 3 0

!FVUNS V3.0 File exported by Gridgen 15.10R1 Fri Oct 19 19:42:09 2007

!FVREG file: E:\PROJECTS_ATREE\NECK_CRANIAL_ARTERY\PART_1j.inp.fvreg

Grids 1

Boundary Table 31

1 0 1 ICA_right

1 0 1 ICA_left

1 0 1 M1_L

286

287

1 0 1 out_M1_L

1 0 1 inl_ICA_R

1 0 1 inl_ICA_L

1 0 1 cerebral_R

1 0 1 out_cerebral_R

1 0 1 out_cerebral_L

1 0 1 cerebral_L

1 0 1 anter_cerebral_L

1 0 1 out_anter_cerebral_left

1 0 1 anter_cerebral_R

1 0 1 out_anter_cerebral_R

1 0 1 poster_cerebral_L

1 0 1 out1_poster_cerevb_L

1 0 1 tip_poster_cerebral2_L

1 0 1 out2_poster_cereb_L

1 0 1 M1_R

1 0 1 out_M1_R

1 0 1 ophtalmic_right

1 0 1 R_opth_tip

1 0 1 out_opthalmic_R

1 0 1 post_crbr2_R

1 0 1 out2_post_cerebral_R

1 0 1 poster_cereb_R

1 0 1 out1_poster_cerebral_R

1 0 1 basil_CoW

1 0 1 basilar

1 0 1 inl_basilar

1 0 1 CoW

Nodes 37638

the first three integers and simply part of the string of characters labeling the bound-

aries, they do not posses any additional information.

288

2. run converter utility that reformat the part1.inp file into “part1.rea” and “part1.info”

files. Next we will work with the “part1.info” file. The default “part1.info” contains

information that helps to identify all the boundaries of the domain. For example the

part concerning with the outlet marked as “1 0 1 out M1 L” appears as

1 0 1 out_M1_L

0 CURVED

a CURVE_TYPE

W TYPE

0 LINES

and with inlet marked as “1 0 1 inl ICA R” appears as

1 0 1 inl_ICA_R

0 CURVED

a CURVE_TYPE

W TYPE

0 LINES

It is user responsibility now to modify the context of the “part1.info” to comply with

standards implemented in NεκT αrG . All inlets and outlets must be labeled with

standard labels bcA(x, y, z), bcB(x, y, z)...bcZ(x, y, z), currently NεκT αrG supports

up to 26 inlets and 26 outlets, the numbering bust be consecutive, i.g., user must not

skip bcB(x, y, z) and label the second outlet as bcC(x, y, z). The label bcA(x, y, z)

corresponds to inlet No. 1 and also for outlet No. 1, the label bcB(x, y, z) corresponds

to inlet No. 2 and also for outlet No. 2, and so on. In our example the modified part

of the “part1.info” file will be

1 0 1 out_M1_L

0 CURVED

a CURVE_TYPE

O TYPE

0 LINES

INLINE

0. 0. 0. bcA(x,y,z)

289

and

1 0 1 inl_ICA_R

0 CURVED

a CURVE_TYPE

v TYPE

3 LINES

u = 1.0

v = 2.0

w = 3.0

INLINE

0. 0. 0. bcA(x,y,z)

Here we used some default boundary conditions for the velocity at the inlet “1 0 1

inl ICA R”, user should set up boundary conditions according to rules of NεκT αr .

3. When modification of the “part1.info” file is completed (check it three times at

least !!!), the converter utility should be employed again, but this time using the

modified “part1.info” file. By completion a new “part1.rea” file is created.

4. Next step is to make sure that the number of inlets and outlets is specified in the

“part1.rea” file, which header is as follows:

****** PARAMETERS *****

GRIDGEN 3D -> NEKTAR

3 DIMENSIONAL RUN

15 PARAMETERS FOLLOW

0.01 KINVIS

4 MODES

0.001 DT

10000 NSTEPS

1 EQTYPE

2 INTYPE

1000 IOSTEP

290

10 HISSTEP

3 PRECON

11 NOUTLETS

3 NINLETS

1.0 DPSCAL

1.0 DVSCAL

4 NPODORDER

2 NPPODORDER

0 Lines of passive scalar data follows

0 LOGICAL SWITCHES FOLLOW

Here we focus only on some parameters: a) NINLETS and NOUTLETS - integers

specifying the number of inlets and outlets, respectively. Parameters NPODORDER

and NPPODORDER specify the number of snapshots (fields) that will be used to

compute initial state for the iterative solver, the first parameter corresponds to the

Helmhotz solver for the velocity while second to the Poisson solver for the pressure

(POD-based extrapolation is not implemented for the pressure), the default values for

the parameters are zero.

5. After setting up (correctly) the four “*.rea” files required for our simulation, we set the

so called configuration file. The configuration guides NεκT αrG on how to process

the computation, that is how to split the global communicator and how to connect

between patches. The configuration file in our case has the following context:

5 number of runs

-N16 IO1D/1Dart.in

-N1024 -i -n5 -chk -V -S -vtk 50 IO_1/part_1.rea

-N128 -i -n6 -chk -V -S -vtk 150 IO_2/part_2.rea

-N256 -i -n5 -chk -V -S -vtk 250 IO_3/part_3.rea

-N256 -i -n8 -chk -V -S -vtk 350 IO_4/part_4.rea

4 number of 1D/3D BCs

3 11 1 0 6 2 0 6 16 0 6 5 0 6 6 0 6 7 0 6 8 0 6 9 0 6 ...

10 0 6 11 0 6 12 0 6 13 0 6 14 0 6 15 0 6

2 3 3 0 6 4 0 6 17 0 6 18 0 6 16 0 6

291

1 10 5 0 6 21 0 6 22 0 6 23 0 6 24 0 6 25 0 6 26 0 6 ...

27 0 6 28 0 6 29 0 6 30 0 6

1 10 6 0 6 31 0 6 32 0 6 33 0 6 34 0 6 35 0 6 36 0 6 ...

37 0 6 38 0 6 39 0 6 40 0 6

1 number of TG sites

0 1 2 3 4

The “number of runs” indicates how many tasks NεκT αrG will execute (for each

task L3 sub-communicator is created). In our case five tasks are executed, the first

is 1D simulation with input file “ 1Dart.in” located in directory named “IO1D”.

Although, 1D simulation is executed on a single core only, it is recommended to

allocate a node to this task, in our example we provide 16 cores (-N16), assuming

that the simulation is performed on Ranger, which has 16 cores per node. Next

four tasks are solution of 3D Navier-Stokes equations, defined in four patches. For

each patch the user may request different number of cores. It is highly recommended

that no computational node is split between different tasks. As a rule of thumb

the number of cores for each task should be proportional to the number of spectral

elements in each patch, if the same order of polynomial expansion is employed in

each patch. Incrementing polynomial order by one typically slowes the computation

by a factor of ≈ 1.5 if the low-energy preconditioner is employed and by factor ≈ 2

in simulations with the diagonal preconditioner. Different preconditioners may be

specified for each patch, as well as different orders of polynomial expansion (also

keep P ≥ 4). At each of the four lines corresponding to 3D patches we also specify

patch-specific arguments (similar to simulations with NεκT αr). Argument −n5

sets polynomial expansion order to P = 4, argument −chk instructs to output field

files with a frequency specified by IOSTEP parameter in the “*.rea” file, Argument

−V is to indicate that we use time-dependent boundary conditions, argument −S

indicates that the field files created at each IOSTEP will not overwrite the previous

once, but instead will be saved in separate directories, for example for the first task

the directories will be named “IO 1/PART 1/CHK DATA x”, where x is an index.

Arguments −vtki, instruct NεκT αrG to output at every i steps visualization data

“*.vtu” file format - appropriate for visualization with ParaView, the data corresponds

292

to solution computed at vertices only. The last argument is the location of the “*.rea”

file. For example for the first path the input file “part 4.rea” is located in directory

“IO 1”; the output files corresponding to this patch will be saved in “IO 1”. Next

we specify the number of 3D patches and then information regarding the arterial

network described by each patch. First and the second integers specify the number of

inlets and outlets, correspondingly; then we provide global indices for arteries which

have inlets, outlets and also for overlapping segments. For each inlet/outlet the data

is specified by three integers, but currently only the first out of each triplet is an

important number, the rest are to comply with older versions of NεκT αrG . IDs

of inlets are provided first and followed by IDs for outlets. in our example the inlets

of the first patch have IDs 1 2 and 16, and their corresponding local numerators are

1 2 and 3, the corresponding labels for these inlets are “bcA(x,y,z)”, “bcB(x,y,z)”

and “bcC(x,y,z)”. The indices of outlets in the first patch are 5,6,7,...14,15, and the

corresponding local numerators are 1,2,3,....,10,11, the corresponding labels for the

outlets are “bcA(x,y,z)”, “bcB(x,y,z)”, ... “bcK(x,y,z)”. The mapping for patches

2,3 and 4 is defined analogously. The arterial segments having the same global ID

correspond to the same artery and will be merged by the inter-patch conditions. In

our example the inlet No. 3 (global ID=16) of the first patch is connected with the

outlet No. 3 of the second patch, which has also global ID=16. The last section of

configuration file is to specify the mapping between the L3 and L1 communicators. in

our example the first 16 ranks of MPI COMM WORLD will go to the forst task (1D

model) the next 1024 ranks of MPI COMM WORLD will form L3 sub-communicator

of assigned for the first 3D patch, and so on.

6. To run NεκT αrG we calculate the total number of cores and then submit the job

using mpirun − n1552 a.out conf.file.

Bibliography

[1] http://ipm-hpc.sourceforge.net.

[2] project descriptions have been published on-line (http://www.physiome.org and

http://www.europhysiome.org).

[3] http://glaros.dtc.umn.edu/gkhome/views/metis.

[4] http://www.netlib.org/scalapack.

[5] http://www.cs.berkeley.edu/ demmel/SuperLU.htm.

[6] www.pointwise.com.

[7] http://www.teragrid.org/userinfo/jobs/mpich g2.php.

[8] Private communication with Kutay Ustuner, Scientist, Principal Siemens, Health Care

Ultrasound Division.

[9] Disorder distal to modified stenoses in steady and pulsatile flow. Journal of Biome-

chanics, 11:441–453, 1978.

[10] An analysis of three different formulations of the discontinuous galerkin method for

diffusion equations. Mathematical Models and Methods in Applied Sciences, 13(3):395–

413, 2003.

[11] Selecting the numerical flux in discontinuous galerkin methods for diffusion problems.

Journal of Scientific Computing, 22-23(3):385–411, 2005.

[12] Y. M. Akay, M. Akay, W. Welkowitz, S. Lewkowicz, and Y. Palti. Dynamics of the

sounds caused by partially occluded femoral arteries in dogs. Annals of Biomedical

Engineering, 22:493–500, 1994.

293

294

[13] J. Alastruey, K.H. Parker, J. Peiro, S.M. Byrd, and S.J. Sherwin. Modelling of circle

of Willis to assess the effects of anatomical variations and inclusions on cerebral flows.

J. Biomechanics, 40:1794–1805, 2007.

[14] A. D. August, S. A. G. McG. Thom B. Ariff, X.Y. Xu, and A.D. Hughes. Analysis of

complex flow and relationship between blood pressure, wall shear stress, and intima-

media thickness in the human carotid artery. Am. J. Physiol. Heart. Circ. Physiol.

[15] H. Baek, M.V. Jayaraman, and G.E. Karniadakis. Distribution of WSS on the in-

ternal carotid artery with an aneurysm: A CFD sensitivity study. In Proceedings of

IMECE2007, November 11-15, Seattle, USA 2007.

[16] R. .A. Bajura and M.R. Catalano. Transition in a two-dimensional plane wall jet.

Journal of Fluid Mechanics, 70:773–799, 1975.

[17] J. Bale-Glickman, K. Selby, D. Saloner, and O. Savas. Experimental flow studies

in exact-replica phantoms of atherosclerotic carotid bifurcations under steady input

conditions. Journal of Biomechanical Engineering, 125(1):38–48, 2003.

[18] B. Bergen, F. Hulsemann, and U. Rude. Is 1.7 1010 unknowns the largest finite

element system that can be solved today? In SC05, 2005. No page numbers available.

[19] G. Berkooz, P. Holmes, and J.L. Lumley. The proper orthogonal decomposition in

the analysis of turbulent flows. Annual Review of Fluid Mechanics, 25:539–575, 1993.

[20] C. Bernardi and I. Maday. Spectrales de problèmes aux limites elliptiques. Springer,

Paris, 1992.

[21] I. Bica. Iterative substructiring algorithm for p-version finite element method for

elliptic problems, 1997. PhD thesis, Courant Institute, NYU.

[22] M. L. Bittencourt. Fully tensorial nodal and modal shape functions for trian-

gles and tetrahedra. International Journal for Numerical Methods in Engineering,

63(11):1530–1558, 2005.

[23] M. G. Blyth and C. Pozrikidis. A lobatto interpolation grid over the triangle. IMA

Journal of Applied Mathematics, 71(1):153–169, 2006.

295

[24] B. Boghosian, P. Coveney, S. Dong, L. Finn, S. Jha, G. Karniadakis, and N. Karo-

nis. NEKTAR, SPICE, and Vortonics: Using federated grids for large scale scientific

applications. pages 34–43, June 2006.

[25] I. Borazjani and F. Sotiropoulos L. Ge. Curvilinear immersed boundary method

for simulating fluid structure interaction with complex 3d rigid bodies. Journal of

Computational Physics, 16:7587–7620, 2008.

[26] F. Cassot, F. Lauwers, C. Fuard, S. Prohaska, and V. Lauwers-Cances. A novel

three-dimensional computer-assisted method for a quantitative study of microvascular

networks of the human cerebral cortex. Microcirculation, 13:1–18, 2006.

[27] M. A. Castro, C.M Putman, and J. R. Cebral. Patient-specific computational fluid

dynamics modeling of anterior communicating artery aneurysms: A study of the

sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries.

American Journal of Neuroradiolgy, 27:2061–2068, 2006.

[28] M. A. Castro, C.M Putman, and J. R. Cebral. Patient-specific computational model-

ing of cerebral aneurysms with multiple avenues of flow from 3d rotational angiography

images. Academic Radiology, 13(7):811–821, 2006.

[29] Q. Chen and I. Babuška. The optimal symmetrical points for polynomial interpolation

of real functions in the tetrahedron. Computational Methods in Applied Mechanics

and Engineering, 137(1):89–94, 1996.

[30] D. Chungcharoen. Genesis of korotkoff sounds. American Journal of Physiology,

207:190–194, 1964.

[31] C. Clark. The propagation of turbulence produced by a stenosis. Journal of Biome-

chanics, 13:591–604, 1980.

[32] B. Cockburn, G. E. Karniadakis, and C. W. Shu. Discontinuous Galerkin Methods:

Theory, Compuration and Applications. Springer, 2000.

[33] S. Dong, J. Insley, N.T. Karonis, M. Papka, J. Binns, and G.E.. Karniadakis. Simu-

lating and visualizing the human arterial system on the TeraGrid. 22(8):1011–1017,

2006.

296

[34] S. Dong and G. E. Karniadakis. Dual-level parallelism for high-order cfd methods”,

journal = Parallel Computing, volume = 30, pages = 1-20, year = 2004.

[35] S. Dong, G.E. Karniadakis, and N.T. Karonis. Cross-site computations on the Tera-

Grid. Computing in Science & Engineering, 7:14–23, 2005.

[36] P.F. Fischer, F. Loth, S.E. Lee, S.W. Lee, D. Smith, and H. Bassiouny. Simulation of

high reynolds number vascular flows. CMAME, 196:3049–3060, 2007.

[37] L. Formaggia, J. F. Gerbeau, F. Nobile, and A. Quarteroni. Numerical treatment

of defective boundary conditions for the navier-stokes equations. SIAM Journal on

Numerical Analysis, 40(1):376 – 401, 2002.

[38] L. Formaggia, J. F. Gerbeaum, F. Nobile, and A. Quarteroni. On the coupling of

3d and 1d navier-stokes equations for flow problems in compliant vessels. Computer

Methods in Applied Mechanics and Engineering, 191:561–582.

[39] L. Formaggia, D. Lamponi, M. Tuveri, and A. Veneziani. Numerical modeling of 1d

arterial networks coupled with a lumped parameters description of the heart. Com-

puter Methods in Biomechanics and Biomedical Engineering, 9(5):273–288, 2006.

[40] L. Formaggia, F. Nobile, A. Quarteroni, and A. Veneziani. Multiscale modelling of the

circulatory system: a preliminary analysis. Computing and Visualization in Science,

2(2-3):75–83, 2004.

[41] M. Gander, C. Japhet, Y. Maday, and F. Nataf. A new cement to glue nonconforming

grids with robin interface conditions: The finite element case. in Domain Decompo-

sition Methods in Science and Engineering Series: Lecture Notes in Computational

Science and Engineering, 40(4):259–266, 2006.

[42] C.A. Gibbons and R.E. Shadwick. Circulatory mechanics in the toad bufo marinus: Ii.

haemodynamics of the arterial windkessel. Journal of Experimental Biology, 158:291–

306, 1991.

[43] L. Grinberg and G. E. Karniadakis. Outflow boundary conditions for arterial networks

with multiple outlets. Annals of Biomedical Engineering, 36(9):1496–1514, 2008.

297

[44] L. Grinberg, B. Toonen, N. Karonis, and G.E. Karniadakis. A new domain decom-

position technique for TeraGrid simulations. In TG07, June 2007.

[45] J. Hesthaven. From electrostatics to almost optimal nodal sets for polynomial inter-

polation in a simplex. SIAM Journal on Numerical Analysis, 35(2):655–676, 1998.

[46] J. Heywood, R. Rannacher, , and S. Turek. Artificial boundaries and flux and pressure

conditions for the incompressible Navier-Stokes equations. Int. J. Num. Meth. Fluids,

22(5):325–352, 1996.

[47] T. J. R. Hughes, G. Scovazzi, P. B. Bochev, and A. Buffa. A multiscale discontinuous

galerkin method with the computational structure of a continuous galerkin method.

Computer Methods in Applied Mechanics and Engineering, 195.

[48] G. E. Karniadakis, M. Israeli, and S.A. Orszag. High-order splitting methods for the

incompressible navier-stokes equations. Journal of Computational Physics, 97(1):414–

443, 1991.

[49] G. E. Karniadakis and S. J. Sherwin. A triangular spectral element method; ap-

plications to the incompressible navier-stokes equations. Computational Methods in

Applied Mechanics and Engineering, 123:189–229, 1995.

[50] U. Köhler, I. Marshall, M. B. Robertson, Q. Long, and X.Y. Xu. Mri measurement of

wall shear stress vectors in bifurcation models and comparison with cfd predictions.

Journal of Magnetic Resonance Imaging, 14(5), pages = 563-73, year = 2001).

[51] R. M. Kirby and G.E. Karniadakis. De-aliasing on non-uniform grids: algorithms and

applications. Journal of Computational Physics, 191:249–264, 2003.

[52] R.M Kirby and G.E. Karniadakis. Spectral element and hp methods, Encyclopedia of

Computational Mechanics. John Wiley & Sons, 2004.

[53] D. N. Ku. Blood flow in arteries. Annual Review of Fluid Mechanics, 29:399–434,

1997.

[54] D. N. Ku, D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atheroscle-

rosis in the human carotid bifurcation. positive correlation between plaque location

and low oscillating shear stress. Arteriosclerosis, 5:293–302, 1985.

298

[55] M. Lell, K. Anders, E. Klotz, H. Ditt, W. Bautz, and B. F. Tomandl. Clinical

evaluation of bone-subtraction ct angiography (bscta) in head and neck imaging.

European Radiology, 16(4):889–897, 2006.

[56] D. Loeckx, W. Coudyzer, F. Maes, D. Vandermeulen, G. Wilms, G. Marchal, and

P. Suetens. Nonrigid registration for subtraction ct angiography applied to the carotids

and cranial arteries. Academic Radiology, 14(12):1562–1576, 2007.

[57] J.W. Lottes and P.F. Fischer. Hybrid multigrid/Schwarz algorithms for the spectral

element method. J. Sci. Comput., 24(1):613–646, 2005.

[58] J. L. Lumley. The structure of inhomogeneous turbulent flow. In atmospheric tur-

bulence and radio wave propagation, (ed. A.M. Yaglom and V.I. Tatarski), Nauka,

Moscow, pages 160–178, 1967.

[59] J. Mandel. Two-level domain decomposition preconditioning for the p-version finite

element method in three-dimensions. Int. J. Numer. Meth. Eng., 29:1095 – 1108,

1990.

[60] M. Manhart. Vortex shedding from a hemisphere in turbulent boundary layer. The-

orectical and Computational Fluid Dynamics, 12(1):1–28, 1998.

[61] C. J. Mills, I. T. Gabe, J. H. Gault, D. T. Mason, J. Ross Jr, E. Braunwald, and J. P.

Shillingford. Pressure-flow relations and vascular impedance in man. Cardiovascular

Research, 4:405417, 1970.

[62] J. A. Moore, D. A. Steinman, D. W. Holdsworth, and C. R. Ethier. Accuracy of com-

putational hemodynamics in complex arterial geometries reconstructed from magnetic

resonance imaging. Annals of Biomedical Engineering, 27(1):32–41, 2004.

[63] C.D. Murray. The physiological principle of minimum work. I The vascular system

and the cost of blood volume. Proc. Natl. Acad. Sci. USA, 12:207–214, 1926.

[64] W.N. Nichols, M.F. ORourke, and C. Hartle. McDonalds Blood Flow in Arteries;

Theoretical, Experimental and Clinical Principles. A Hodder Arnold Publication,

1998.

299

[65] M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, , and J. Larsen.

Numerical simulation and experimental validation of blood flow in arteries with

structured-tree outflow conditions. Annals of Biomedical Engineering, 28:1281–1299,

2000.

[66] M.S. Olufsen. Structured tree outflow condition for blood flow in larger systemic

arteries. American Journal of Physiology, 276:H257–H268, 1999.

[67] Y. Papaharilaou, D.J. Doorly, S.J. Sherwin, J. Peiro, C. Griffith, N. Cheshire, V. Zer-

vas, J. Anderson, B. Sanghera, N. Watkins, and C.G. Caro. Combined mr imaging

and numerical simulation of flow in realistic arterial bypass graft models. Biorheology,

39:525–531, 2002.

[68] L. F. Pavarino and O. B. Widlund. A polylogarithmic bound for an iterative substruc-

turing method for spectral elements in three dimensions. SIAM Journal on Numerical

Analysis, 33(4):1303–1335, 1996.

[69] L. F. Pavarino, E. Zampieri, R. Pasquetti, and F. Rapetti. Overlapping schwartz

method for fekete and gauss-lobatto spectral elements. SIAM Jornal of Scientific

Computing, 29(3):1073–1092, 2007.

[70] J. Peiró, S. Giordana, C. Griffith, and S. J. Sherwin. High-order algorithms for

vascular flow modelling. International Journal for Numerical Methods in Fluids, 40(1-

2):137–151, 2002.

[71] R. Ponzini, C. Vergara, A. Redaelli, and A. Veneziani. Reliable cfd-based estimation

of flow rate in haemodynamics measures. Ultrasound in Medicine and Biology, 32(10).

[72] Y. Saad. Iterative methods for Sparse Linear Systems, second edition. Society for

Industrial and Applied Mathematics, 2003.

[73] K.E. Thorpe D.L. Sackett W. Taylor H.J.M. Barnett R. B. Haynes Sauve, J.S. and

A. J. Fox. title =.

[74] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in

Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science

(2nd ed). Cambridge University Press, Cambridge, 1998.

300

[75] T.F. Sherman. The meaning of Murray’s law. J. Gen. Physiol., 78:431–453, 1981.

[76] S. Sherwin and M. Casarin. Low-energy basis preconditioning for elliptic substruc-

tured solvers based on unstructured spectral/hp element discretization. J. Comp.

Phys., 171(1):394–417, 2001.

[77] S. J. Sherwin and H.M. Blackburn. Three-dimensional instabilities of steady and

pulsatile axisymmetric stenotic flows. Journal of Fluid Mechanics, 533(297-327).

[78] S. J. Sherwin and G. E. Karniadakis. A new triangular and tetrahedral basis for

high-order finite element methods. International Journal for Numerical Methods in

Engineering, 38:3775–3802.

[79] S. J. Sherwin and G. E. Karniadakis. Spectral/hp element methods for CFD, second

ed. Oxford University Press, Oxford, 2005.

[80] S. J. Sherwin and J. Peiró. Mesh generation in curvilinear domains using high-order

elements. International Journal for Numerical Methods in Engineering.

[81] S.J. Sherwin, V. Franke, J. Peiro, and K. Parker. 1D modelling of a vascular network

in space-time variable. J. Eng. Math., 47:217–250, 2003.

[82] L. Sirovich. Turbulence and dynamics of coherent structures: I-iii. Quarterly of

Applied Mathematics, 45:561–590, 1987.

[83] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman. MPI: The

Complete Reference. Cambridge: MIT Press, 1995.

[84] R.L. Spilker, J.A. Feinstein, D.W. Parker, V.M. Reddy, and C.A. Taylor.

Morphometry-based impedance boundary conditions for patient-specific modeling of

blood flow in pulmonary arteries. Ann. of Biomed. Eng., 35(4):546–559, 2007.

[85] B.N. Steele, M.S. Olufsen, and C.A. Taylor. Fractal network model for simulating

abdominal and lower extremity blood flow during resting and exercise conditions.

Computer Methods in Applied Mechanics and Engineering, 10:39–51, 2007.

[86] D.A. Steinman, T.L. Poepping, M. Tambasco, R.N. Rankin, and D.W. Holdsworth.

Flow patterns at the stenosed carotid bifurcation: Effects of concentric versus eccen-

tric stenosis. Annals of Biomedical Engineering, 28:415, 2000.

301

[87] N. Stergiopulos, D.F. Young, and T.R. Rogge. Computer simulation of arterial flow

with applications to arterial and aortic stenoses. J. Biomech, 25:1477–1488, 1992.

[88] G. Strang and G.J. Fix. An analysis of the finite element method. Prentice-Hall, 1973.

[89] J. S. Stroud, S. A. Berger, and D. Saloner. Numerical analysis of flow through a

severely stenotic carotid artery bifurcation. Journal of Biomechanical Engineering,

124:9–20, 2002.

[90] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins. Effect of exercise on hemodynamic

conditions in the abdominal aorta. Journal of Vascular Surgery, 29(6):10771089, 1999.

[91] M. A. Taylor, B. A. Wingate, and L. P. Bos. Cardinal function algorithm for comput-

ing multivariate quadrature points. SIAM Journal on Numerical Analysis, 45(1):193–

205, 2007.

[92] L. N. Trefethen and M. Embree. Spectra and pseudospectra: The behavior of Nonnor-

mal Matrices and Operators. 2005.

[93] H.M. Tufo and P.F. Fischer. Fast parallel direct solvers for coarse grid problems. J.

Parallel & Distr. Comput., 61(2):151–177, 2001.

[94] S. A. Urquiza, P. J. Blanco, M. J. Vénere, and R. A. Feijóo. Multidimensional mod-

elling for the carotid artery blood flow. Computer Methods in Applied Mechanics and

Engineering, 195(33-36):4002–4017, 2006.

[95] S. S. Varghese, S H. Frankel, and P.F. Fischer. Direct numerical simulation of stenotic

flows. part 2. pulsatile flow. Journal of Fluid Mechanics, 582:281–318, 2007.

[96] A. Veneziani and C. Vergara. Flow rate defective boundary conditions in haemody-

namics simulations. International Journal for Numerical Methods in Fluids, 47.

[97] I.E. Vignon-Clementel, C.A. Figueroa, K.E. Jansen, and C.A. Taylor. Outflow bound-

ary conditions for three-dimensional finite element modeling of blood flow and pressure

in arteries. Computer Methods in Applied Mechanics and Engineering, 195:3776–3796,

2006.

302

[98] P. Volino and N. Magnenat-Thalmann. The spherigon: A simple polygon patch for

smoothing quickly your polygonal meshes. Proceedings of the Computer Animation,

pages 72–78, 1998.

[99] S. Wandzura and H. Xiao. Symmetric quadrature rules on triangle. Computers and

Mathematics with Applications, 45:1829–1840, 2003.

[100] J.J. Wang and K.H. Parker. Wave Propagation in a model of the arterial circulation.

J. Biomech., 37:457–470, 2004.

[101] K. C. Wang, C. A. Taylor, Z. Hsiau, D. Parker, and R. W. Dutton. Level set methods

and mr image segmentation for geometric modelling in computational hemodynam-

ics. Engineering in Medicine and Biology Society, Proceedings of the 20th Annual

International Conference of the IEEE 1998, 6(29):3079 – 3082, 1998.

[102] S. Wang, W. Lee, J. Provost, J. Luo, and E. Konofagou. A composite high-frame-

rate system for clinical cardiovascular imaging. IEEE Trans Ultrason Ferroelectr Freq

Control, 55(10):2221–2233, 2008.

[103] B. Weir. Unruptured intracranial aneurysms: a review. Journal of Neurosurgery,

96:3–42, 2002.

[104] D.B. Xiu and S.J. Sherwin. Parametric Uncertainty Analysis of Pulse Wave Propa-

gation in a Model of a Human Arterial Network. J. of Comp. Phys., 226:1385–1407,

2007.

[105] M. Zamir. On fractal properties of arterial trees. J. Theor. Biol., 197:517–526, 1999.

