Image recognition: Defense adversarial attacks using Generative Adversarial Network (GAN)

Speaker: Guofei Pang

Division of Applied Mathematics Brown University

Presentation after reading the paper:

Ilyas, Andrew, et al. "The Robust Manifold Defense: Adversarial Training using Generative Models." arXiv preprint arXiv:1712.09196 (2017).

- Adversarial attacks
- Generative Adversarial Network (GAN)
- How to defense attacks using GAN
- Numerical results

x

"panda" 57.7% confidence

$$\operatorname{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$$

"nematode" 8.2% confidence $\begin{array}{c} \boldsymbol{x} + \\ \epsilon \text{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y})) \\ \text{``gibbon''} \\ 99.3 \% \text{ confidence} \end{array}$

P(man) > 0.99

P(woman) > 0.99

n

m

Image as a vector:

$$\mathbf{x} = \{\mathbf{x}_{j}\},\ \mathbf{j} = \mathbf{1}, \mathbf{2}, \dots, \mathbf{n} * \mathbf{m}$$

n*m

 $P(\text{man}) > 0.99 \underset{\mathbf{x}_1}{\text{ log }} \quad \left[\begin{array}{c} \end {a} \end {a}$

 $||x_1 - x_2||_2 < e0 \implies |C(x_1) - C(x_2)| > f0$

Adversarial examples for a classifier C():

- A pair of input x_1 and x_2
- A person says they are of the same class
- But a classifier will they are completely different!

Robust Physical Perturbation

Sequence of physical road signs under different conditions

Different types of physical adversarial examples

Lab (Stationary) Test

Physical road signs with adversarial perturbation under different conditions

Stop Sign → Speed Limit Sign

Field (Drive-By) Test

Video sequences taken under different driving speeds

Stop Sign → Speed Limit Sign

Why does classifier become fool for these examples?

Why does classifier become fool for these examples?

An intuition from the authors:

- Natural image: Low-dimensional manifold
- Noisy image: High-dimensional manifold
- High dimensionality is tough for classifier.

- x and x' have similar PDF
- G() has learned the underlying distribution of image dataset after training GAN
- The DNN G() is a nonlinear mapping from lowdimensional space, z, to high-dimensional space, x'

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))].$

Convergence state: p_{data}(x)=p_G(x)

- Green solid line: probability density function (PDF) of the generator G()
- Black dotted line: PDF of original image x, i.e., p_{data}(x)
- Blue dash line: PDF of discriminator D()

$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))].$

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments. G() is pre-trained and has learned the underlying distribution of the training (image) dataset after training GAN

Synthetic image x'=G(z*) (Preserve low-dimensional manifold)

Original image **x** (Could include highdimensional manifold when noise enters)

$$z^* = \arg\min_z \|G(z) - x\|_2$$

Enhanced Invert and Classify

Synthetic image **x'=G(**z*) (Preserve low-dimensional manifold)

Classifier C() (retrain the classifier)

Upper bound of attack magnitude Classification loss $\inf_{\theta} \mu \left(\sup_{z,z'} \|C_{\theta}(G(z)) - C_{\theta}(G(z'))\|_{2}^{2} \right) + (1-\mu) \left(\frac{1}{N} \sum_{i=1}^{N} f\left(y^{(i)}, C_{\theta}(x^{(i)})\right) \right)$ s.t. $\|G(z) - G(z')\|_{2}^{2} \leq \eta^{2}$.

$$z^* = \arg\min_z \|G(z) - x\|_2$$
 13/25

First-order classifier attacks for handwritten digit classification

 $\delta = +\epsilon \cdot \operatorname{sign}(\nabla_X L(y, C_\theta(X))|_{X=x}),$

First-order classifier attacks for handwritten digit classification

First-order classifier attacks for handwritten digit classification

ϵ	No defense	Invert and Classify
Clean Data	97%	84%
FGSM ($\epsilon = 0.05$)	1%	82%
FGSM $(\epsilon = 0.1)$	0%	80%
FGSM ($\epsilon = 0.2$)	0%	73%
Carlini-Wagner ℓ_2	0%	77%
Carlini-Wagner ℓ_0	0%	65%
Carlini-Wagner ℓ_{∞}	0%	66%

$$\delta = +\epsilon \cdot \operatorname{sign}(\nabla_X L(y, C_\theta(X))|_{X=x}), \qquad 16/25$$

First-order classifier attacks for gender classification

First-order classifier attacks for gender classification

100%

100%

100%

Substitute model attacks

Results from Invert and Classify

P(man) > 0.99

P(woman) > 0.99

Comparison between Invert and Classify and Enhanced Invert and Classify

2 E			_
81 -			
92-			

1.0 ne nitel

en real Relat

.

100

GAN for regression problems?

GAN versus other neural networks?

One defense strategy for all types of attacks?