
Dissipative Particle Dynamics:  
Foundation, Evolution and Applications 

George Em Karniadakis 
Division of Applied Mathematics, Brown University 

& Department of Mechanical Engineering, MIT 
& Pacific Northwest National Laboratory, CM4 

 
The CRUNCH group: www.cfm.brown.edu/crunch 

Lecture 2: Theoretical foundation and parameterization 
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1. Background 
Molecular dynamics (e.g. Lennard-Jones): 

– Lagrangian nature 
– Stiff force 
– Atomic time step 

 
(Allen&Tildesley, Oxford Uni. Press, 1989) 
 

 Coarse-grained (1980s): Lattice gas automata 
– Mesoscopic collision rules 
– Grid based particles 

 
 (Frisch et al, PRL, 1986) 



 Physics intuition: Let particles represent clusters 
of molecules and interact via pair-wise forces 

 
 
Conditions: 
– Conservative force is softer than Lennard-Jones 
– System is thermostated by two forces  
– Equation of motion is Lagrangian as: 
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  Hoogerbrugge & Koelman, EPL, 1992 
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Mesoscale + Langrangian? 

This innovation is named as DPD method! 
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2. Fluctuation-dissipation theorem 
 
 
 

Langevin equations (SDEs) 

With                        the independent Wiener increment: 

Corresponding Fokker-Planck equation (FPE) 



 
 
 

Gibbs distribution: steady state solution of  FPE 

DPD version of fluctuation-dissipation theorem 

Require  Energy dissipation and generation balance 

DPD can be viewed as canonical ensemble (NVT) 

2. Fluctuation-dissipation theorem 

Espanol, EPL, 1995 
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3. Parameterization 
(How to choose simulation parameters?) 

Strategy: match DPD thermodynamics to atomistic system 
I. How to choose repulsion parameter? 

 
 Match the static thermo-properties, i.e.,   
   
                       Isothermal compressibility (water) 
                        
                       Mixing free energy, Surface tension (polymer blends) 

 
II. How to choose dissipation (or fluctuation) parameter? 
                 
              Match the dynamic thermo-properties, i.e., 
                       
                       Self-diffusion coefficient,   kinematic viscosity  
                             (however, can not match both easily) 
              Schmidt number                  usually lower than atomic fluid 
 
                  



Repulsion parameter for water? 
Equation of state: self and pair contributions 

Match isothermal compressibility 
 

Groot&Warren, JChemPhys, 1997 



 
 
 

Lattice Flory-Huggins free energy 

Repulsion parameter for polymers 

DPD free energy corresponds to pressure 
 



Friction parameters for simple fluids 
Simple argument by Groot&Warren, JChemPhys., 1997 
   
     

Dissipative contribution to stress 

Dissipative viscosity 

Motion of single particle:  
  ignore conservative forces, average out other particle velocities 
  Self-diffusion coefficient 

Viscosity 

Consider an uniform linear flow  



Marsh et al, EPL&PRE, 1997 

 with collision term 

Single-particle and pair distribution functions 

Fokker-Planck-Boltzmann equation 

Integration of FPB over v yields continuity equation 

Multiplying FPB by v and integrate over v yields momentum equation 

Compare with NS 
equation 

Kinetic theory: dynamic properties 
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4. DPD ----> Navier-Stokes 

Stochastic differential equations 

Fokker-Planck equation 

Mathematically equivalent 

Mori projection for relevant variables 

Espanol, PRE, 1995 

Hydrodynamic equations 
(sound speed, viscosity) 

Strategy: 



 
 
 

Stochastic differential equations 

DPD equations of motion 



 
 
 

Fokker-Planck equation 

Evolution of probability density in phase space 
 
Conservative/Liouville operator 
Dissipative and random operators 

 



Mori projection 
(linearized hydrodynamics) 

 Relevant hydrodynamic variables to keep 

Equilibrium averages vanish 
 



Mori projection 
Navier-Stokes 

Sound speed 

Espanol, PRE, 1995 



Mori projection 
 Stress tensor via Irving-Kirkwood formula: 

 

 Contributions: 
 Conservative force 
 Dissipative force 



Mori projection 
 Viscosities via with Green-Kubo formulas 

 Shear viscosity η and bulk viscosity ζ 

 Note the squared dependence of viscosity on γ 
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Story begins with  
 

smoothed particle hydrodynamics (SPH) 
method 

 
Originally invented for Astrophysics 

(Lucy. 1977, Gingold&Monaghan, 1977) 
 

Popular since 1990s for physics on earth 
   (Monaghan, 2005) 

5. Navier-Stokes ---> (S)DPD 



 
 
 SPH 1st step: kernel approximation 



 
 
 SPH 2nd step: particle approximation 

Error estimated for particles on grid 
Actual error depends on configuration of particles  

(Price, JComputPhys. 2012) 



SPH: isothermal Navier-Stokes 
Continuity equation 

Momentum equation 

Input equation of state: pressure and density 

Hu&Adams, JComputPhys. 2006 



SPH: add Brownian motion 
Momentum with fluctuation (Espanol&Revenga, 2003) 

Cast dissipative force in GENERIC  random force 

dW is an independent increment of Wiener process 

Espanol&Revenga, PRE, 2003 



SPH + fluctuations = SDPD 

Discretization of Landau-Lifshitz’s fluctuating 
hydrodynamics (Landau&Lifshitz, 1959) 

 
Fluctuation-dissipation balance on discrete level 

 
Same numerical structure as original DPD formulation 

 
 



GENERIC framework (part 1) 
(General equation for nonequilibrium reversible-irreversible coupling) 

Grmela&Oettinger, PRE, 1997; Oettinger&Grmela, PRE, 1997 

Dynamic equations of a deterministic system: 
State variables x:  position, velocity, energy/entropy 
E(x): energy/ S(x): entropy 
L and M are linear operators/matrices and 
represent reversible and irreversible dynamics 

First and second Laws of thermodynamics 

For any dynamic invariant variable I, e.g, linear momentum 

if then 



GENERIC framework (part 2) 
(General equation for nonequilibrium reversible-irreversible coupling) 

Dynamic equations of a stochastic system: 

Fluctuation-dissipation theorem: compact form 

No Fokker-Planck equation needs to be derived 

Last term is thermal fluctuations 

Model construction becomes simple linear algebra  

Grmela&Oettinger, PRE, 1997; Oettinger&Grmela, PRE, 1997 
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Coarse-graining: Voronoi tessellation 

1. Partition of particles of molecular dynamics 
2. Measuring fluxes at edges 
3. Update center of mass 
4. Repeat 1, 2 and 3 

 
5. Ensemble average interacting forces 

between neighboring Voronoi cells:  
    similarly as DPD pairwise interactions 

Conceptually: useful to support  
DPD as a coarse-grained (CG) model 

Practically: force fields are useless 
and can not reproduce MD system  
 

Procedure: 

Flekkoy&Coveney, PRL, 1999 



Mori-Zwanzig Projection 



Mori-Zwanzig Projection 



Mori-Zwanzig Projection 

Mori, ProgTheorPhys., 1965 
Zwanzig, Oxford Uni. Press, 2001 
Kinjo&Hyodo, PRE, 2007 



 
 
 

Consider an atomistic system consisting of N atoms which 
are grouped into K clusters, and NC atoms in each cluster. 
The Hamiltonian of the system is:  
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Theoretically, the dynamics of the atomistic system can be 
mapped to a coarse-grained or mesoscopic level by using 
Mori-Zwanzig projection operators.  
The equation of motion for coarse-grained particles can be 
written as: (in the following page) 

MZ formalism as practical tool 
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Kinjo&Hyodo, PRE, 2007 

Friction force 

Conservative force 

Stochastic force 

1. Pairwise approximation: 
2. Markovian approximation: 

µ µνµ ν≠
≈∑F F

( ) (0 ) ( )t tϑ ϑ
µ ν µνδ δ δ⋅ = Γ ⋅F F

MZ formalism as practical tool 

Equation of motion for coarse-grained particles 



 
 
 

Coarse-graining constrained fluids 

DPD 

Atomistic Model Coarse-Grained Model 

Hard Potential CG Potential 

Coarse 
graining 

Degree of coarse-graining : Nc to 1 

MD 

Lei,  Caswell, &Karniadakis, PRE, 2010 

Constrain gyration radius 



Dynamical properties of constrained fluids 
Mean square displacement (long time scale) 

MSD with R g = 0.95 (left) and R g = 1.4397(right) 

Small Rg always fine Large Rg and high density 



WCA Potential   +  FENE Potential 

NVT ensemble with Nose-Hoover 
thermostat. 
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Coarse-graining unconstrained polymer melts 

Natural bonds 



Directions for pairwise interactions 
between neighboring clusters 

1. Parallel direction: 
 
 
 

2. Perpendicular direction #1: 
 
 
 
 

3. Perpendicular direction #2: 
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DPD force fields from MD simulation 

Conservative Dissipative (parallel one) 

Li, Bian, Caswell, &Karniadakis, 2014 



Quantities MD MZ-DPD (error) 
Pressure 0.191 0.193 (+1.0%) 

Diffusivity 
(Integral of VACF) 0.119 0.138 (+16.0%) 

Viscosity 0.965 0.851 (-11.8%) 

Schmidt number 8.109 6.167 (-23.9%) 

Stokes-Einstein radius 1.155 1.129 (-2.2%) 

Performance of the MZ-DPD model (Nc = 11) 



Quantities MD MZ-FDPD (error) 
Pressure 0.191 0.193 (+1.0%) 

Diffusivity 
(Integral of VACF) 0.119 0.120 (+0.8%) 

Viscosity 0.965 0.954 (-1.1%) 

Schmidt number 8.109 7.950 (-2.0%) 

Stokes-Einstein radius 1.155 1.158 (+0.3%) 

Performance of the MZ-FDPD model (Nc = 11) 



Conclusion&Outlook 
• Invented by physics intuition 
• Statistical physics on solid ground 

– Flucutation-dissipation theorem 
– Canonical ensemble (NVT) 

• DPD <-----> Navier-Stokes equations 
• Coarse-graining microscopic system 

– Mori-Zwanzig formalism 
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