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Lecture 2: Theoretical foundation and parameterization 
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1. Background 
Molecular dynamics (e.g. Lennard-Jones): 

– Lagrangian nature 
– Stiff force 
– Atomic time step 

 
(Allen&Tildesley, Oxford Uni. Press, 1989) 
 

 Coarse-grained (1980s): Lattice gas automata 
– Mesoscopic collision rules 
– Grid based particles 

 
 (Frisch et al, PRL, 1986) 



 Physics intuition: Let particles represent clusters 
of molecules and interact via pair-wise forces 

 
 
Conditions: 
– Conservative force is softer than Lennard-Jones 
– System is thermostated by two forces  
– Equation of motion is Lagrangian as: 
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Mesoscale + Langrangian? 

This innovation is named as DPD method! 
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2. Fluctuation-dissipation theorem 
 
 
 

Langevin equations (SDEs) 

With                        the independent Wiener increment: 

Corresponding Fokker-Planck equation (FPE) 



 
 
 

Gibbs distribution: steady state solution of  FPE 

DPD version of fluctuation-dissipation theorem 

Require  Energy dissipation and generation balance 

DPD can be viewed as canonical ensemble (NVT) 

2. Fluctuation-dissipation theorem 

Espanol, EPL, 1995 
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3. Parameterization 
(How to choose simulation parameters?) 

Strategy: match DPD thermodynamics to atomistic system 
I. How to choose repulsion parameter? 

 
 Match the static thermo-properties, i.e.,   
   
                       Isothermal compressibility (water) 
                        
                       Mixing free energy, Surface tension (polymer blends) 

 
II. How to choose dissipation (or fluctuation) parameter? 
                 
              Match the dynamic thermo-properties, i.e., 
                       
                       Self-diffusion coefficient,   kinematic viscosity  
                             (however, can not match both easily) 
              Schmidt number                  usually lower than atomic fluid 
 
                  



Repulsion parameter for water? 
Equation of state: self and pair contributions 

Match isothermal compressibility 
 

Groot&Warren, JChemPhys, 1997 



 
 
 

Lattice Flory-Huggins free energy 

Repulsion parameter for polymers 

DPD free energy corresponds to pressure 
 



Friction parameters for simple fluids 
Simple argument by Groot&Warren, JChemPhys., 1997 
   
     

Dissipative contribution to stress 

Dissipative viscosity 

Motion of single particle:  
  ignore conservative forces, average out other particle velocities 
  Self-diffusion coefficient 

Viscosity 

Consider an uniform linear flow  



Marsh et al, EPL&PRE, 1997 

 with collision term 

Single-particle and pair distribution functions 

Fokker-Planck-Boltzmann equation 

Integration of FPB over v yields continuity equation 

Multiplying FPB by v and integrate over v yields momentum equation 

Compare with NS 
equation 

Kinetic theory: dynamic properties 
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4. DPD ----> Navier-Stokes 

Stochastic differential equations 

Fokker-Planck equation 

Mathematically equivalent 

Mori projection for relevant variables 

Espanol, PRE, 1995 

Hydrodynamic equations 
(sound speed, viscosity) 

Strategy: 



 
 
 

Stochastic differential equations 

DPD equations of motion 



 
 
 

Fokker-Planck equation 

Evolution of probability density in phase space 
 
Conservative/Liouville operator 
Dissipative and random operators 

 



Mori projection 
(linearized hydrodynamics) 

 Relevant hydrodynamic variables to keep 

Equilibrium averages vanish 
 



Mori projection 
Navier-Stokes 

Sound speed 

Espanol, PRE, 1995 



Mori projection 
 Stress tensor via Irving-Kirkwood formula: 

 

 Contributions: 
 Conservative force 
 Dissipative force 



Mori projection 
 Viscosities via with Green-Kubo formulas 

 Shear viscosity η and bulk viscosity ζ 

 Note the squared dependence of viscosity on γ 
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Story begins with  
 

smoothed particle hydrodynamics (SPH) 
method 

 
Originally invented for Astrophysics 

(Lucy. 1977, Gingold&Monaghan, 1977) 
 

Popular since 1990s for physics on earth 
   (Monaghan, 2005) 

5. Navier-Stokes ---> (S)DPD 



 
 
 SPH 1st step: kernel approximation 



 
 
 SPH 2nd step: particle approximation 

Error estimated for particles on grid 
Actual error depends on configuration of particles  

(Price, JComputPhys. 2012) 



SPH: isothermal Navier-Stokes 
Continuity equation 

Momentum equation 

Input equation of state: pressure and density 

Hu&Adams, JComputPhys. 2006 



SPH: add Brownian motion 
Momentum with fluctuation (Espanol&Revenga, 2003) 

Cast dissipative force in GENERIC  random force 

dW is an independent increment of Wiener process 

Espanol&Revenga, PRE, 2003 



SPH + fluctuations = SDPD 

Discretization of Landau-Lifshitz’s fluctuating 
hydrodynamics (Landau&Lifshitz, 1959) 

 
Fluctuation-dissipation balance on discrete level 

 
Same numerical structure as original DPD formulation 

 
 



GENERIC framework (part 1) 
(General equation for nonequilibrium reversible-irreversible coupling) 

Grmela&Oettinger, PRE, 1997; Oettinger&Grmela, PRE, 1997 

Dynamic equations of a deterministic system: 
State variables x:  position, velocity, energy/entropy 
E(x): energy/ S(x): entropy 
L and M are linear operators/matrices and 
represent reversible and irreversible dynamics 

First and second Laws of thermodynamics 

For any dynamic invariant variable I, e.g, linear momentum 

if then 



GENERIC framework (part 2) 
(General equation for nonequilibrium reversible-irreversible coupling) 

Dynamic equations of a stochastic system: 

Fluctuation-dissipation theorem: compact form 

No Fokker-Planck equation needs to be derived 

Last term is thermal fluctuations 

Model construction becomes simple linear algebra  

Grmela&Oettinger, PRE, 1997; Oettinger&Grmela, PRE, 1997 
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Coarse-graining: Voronoi tessellation 

1. Partition of particles of molecular dynamics 
2. Measuring fluxes at edges 
3. Update center of mass 
4. Repeat 1, 2 and 3 

 
5. Ensemble average interacting forces 

between neighboring Voronoi cells:  
    similarly as DPD pairwise interactions 

Conceptually: useful to support  
DPD as a coarse-grained (CG) model 

Practically: force fields are useless 
and can not reproduce MD system  
 

Procedure: 

Flekkoy&Coveney, PRL, 1999 



Mori-Zwanzig Projection 



Mori-Zwanzig Projection 



Mori-Zwanzig Projection 

Mori, ProgTheorPhys., 1965 
Zwanzig, Oxford Uni. Press, 2001 
Kinjo&Hyodo, PRE, 2007 



 
 
 

Consider an atomistic system consisting of N atoms which 
are grouped into K clusters, and NC atoms in each cluster. 
The Hamiltonian of the system is:  
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Theoretically, the dynamics of the atomistic system can be 
mapped to a coarse-grained or mesoscopic level by using 
Mori-Zwanzig projection operators.  
The equation of motion for coarse-grained particles can be 
written as: (in the following page) 

MZ formalism as practical tool 
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Kinjo&Hyodo, PRE, 2007 

Friction force 

Conservative force 

Stochastic force 

1. Pairwise approximation: 
2. Markovian approximation: 

µ µνµ ν≠
≈∑F F

( ) (0 ) ( )t tϑ ϑ
µ ν µνδ δ δ⋅ = Γ ⋅F F

MZ formalism as practical tool 

Equation of motion for coarse-grained particles 



 
 
 

Coarse-graining constrained fluids 

DPD 

Atomistic Model Coarse-Grained Model 

Hard Potential CG Potential 

Coarse 
graining 

Degree of coarse-graining : Nc to 1 

MD 

Lei,  Caswell, &Karniadakis, PRE, 2010 

Constrain gyration radius 



Dynamical properties of constrained fluids 
Mean square displacement (long time scale) 

MSD with R g = 0.95 (left) and R g = 1.4397(right) 

Small Rg always fine Large Rg and high density 



WCA Potential   +  FENE Potential 

NVT ensemble with Nose-Hoover 
thermostat. 
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Coarse-graining unconstrained polymer melts 

Natural bonds 



Directions for pairwise interactions 
between neighboring clusters 

1. Parallel direction: 
 
 
 

2. Perpendicular direction #1: 
 
 
 
 

3. Perpendicular direction #2: 
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DPD force fields from MD simulation 

Conservative Dissipative (parallel one) 

Li, Bian, Caswell, &Karniadakis, 2014 



Quantities MD MZ-DPD (error) 
Pressure 0.191 0.193 (+1.0%) 

Diffusivity 
(Integral of VACF) 0.119 0.138 (+16.0%) 

Viscosity 0.965 0.851 (-11.8%) 

Schmidt number 8.109 6.167 (-23.9%) 

Stokes-Einstein radius 1.155 1.129 (-2.2%) 

Performance of the MZ-DPD model (Nc = 11) 



Quantities MD MZ-FDPD (error) 
Pressure 0.191 0.193 (+1.0%) 

Diffusivity 
(Integral of VACF) 0.119 0.120 (+0.8%) 

Viscosity 0.965 0.954 (-1.1%) 

Schmidt number 8.109 7.950 (-2.0%) 

Stokes-Einstein radius 1.155 1.158 (+0.3%) 

Performance of the MZ-FDPD model (Nc = 11) 



Conclusion&Outlook 
• Invented by physics intuition 
• Statistical physics on solid ground 

– Flucutation-dissipation theorem 
– Canonical ensemble (NVT) 

• DPD <-----> Navier-Stokes equations 
• Coarse-graining microscopic system 

– Mori-Zwanzig formalism 
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