The Discrete Conceilt:
Agent-Based Aggregation Models

Chad Topaz, Macalester College
Andrew Bernoff, Harvey Mudd College




The big picture

Biological aggregations are social groups displaying
collective behavior.

They matter for pattern formation, biology, algorithms...
Consider a minimal modeling approach.

There are hundreds or thousands of published models,
and some have been highly influential.

Choose the right model for the job.
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Aggregations can
oropagate without a leader.
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Social interactions are key to

the formation of groups.
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Social interactions are key to
the formation of groups.
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Who cares”

“Social behaviors [that] on short time and space scales lead to
the formation and maintenance of groups... lead at larger time
and space scales to differences in spatial distributions of
populations and rates of encounter and interaction with
populations of predators, prey, competitors and pathogens...
At the largest time and space scales, aggregation has profound
consequences for ecosystem dynamics and for evolution of
behavioral, morphological, and life history traits.”

- Okubo, Keshet, Grunbaum,“The dynamics of animal grouping”
in Diffusion and Ecological Problems, Springer (2001)



Collective motion occurs across the natural and engineered worlds.




Aggregation
Models



lThere are numerous classes
of aggregation models

Continuum Kinematic Deterministic |sotropic

Discrete Dynamic Stochastic Nonisotropic




Consider the value of
parsimony in your models.

Fish neurobiology Self-propulsion
Fish behavior Attraction/repulsion
Ocean current profiles Alignment

Fluid dynamics
Resource distribution




Example T
Attraction/repulsion

(PoF] Equations descriptive of fish schools and other animal aggregations

CM Breder - Ecology, 1954 - JSTOR
In an effort to understand better the basic nature of the influences at work in a school of

fishes as well as in other less compact aggregations, Breder (1951) discussed, in passing,
y of applying physical equations to such groups, without going into the matter ..

Clted by 343 Related articles All 2 versions Cite Save More




A historical note on
Charles M. Breder
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N oee :
Eugenie Clark
the “shark lady”

His earliest publication, written at 18, concerned photography of
local birds and by age 21 he had published 15 popular articles and
notes and had started his theoretical and experimental studies on
fish locomotion. In 1925 the New York Academy of Sciences
awarded him the A. Cressy Morrison Prize for his pioneering and
penetrating analysis of fish locomotion...




Example T
Attraction/repulsion

(PoF] Equations descriptive of fish schools and other animal aggregations

CM Breder - Ecology, 1954 - JSTOR

In an effort to understand better the basic nature of the influences at work in a school of
fishes as well as in other less compact aggregations, Breder (1951) discussed, in passing,
y of applying physical equations to such groups, without going into the matter ..

Clted by 343 Related articles All 2 versions Cite Save More

Mm=0,n=2
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Example 2:
Kinematic Alignment

Novel type of phase transition in a system of self-driven particles

T Vicsek, A Czirdk, E Ben-Jacob, | Cohen, O Shochet - Physical review letters, 1995 - APS
Abstract A simple model with a novel type of dynamics is introduced in order to investigate
the emergence of self-ordered motion in systems of particles with biologically motivated
interaction. In our model particles are driven with a constant absolute velocity and at each ...

@ by 3@elated articles All 23 versions Cite Save




Example 2:
Kinematic Alignment
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Averaging
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Example 2:
Kinematic Alignment
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Example 2
Kinematic Alignment

Strong
alignment

L.oose

alignment

Clusters



Example 3: Dynamic,
Self-Propelled Swarmers

Self-propelled particles with soft-core interactions: patterns, stability, and collapse
MR D'Orsogna, YL Chuang, AL Bertozzi, LS Chayes - Physical review letters, 2006 - APS

Abstract Understanding collective properties of driven particle systems is significant for

naturally occurring aggregates and because the knowledge gained can be used as building

sign of artificial ones. We model self-propelling biological or artificial ...
Cited by 323 Related articles All 13 versions Cite Save




Example 3: Dynamic,
elf-Propelled Swarmers
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Example 3: Dynamic,
Self-Propelled Swarmers

Social potential Q(r)

r = interorganism distance
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Example 3: D
- Dynamic
Self-Propelled Swarmérs
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Example 4.
Kitchen Sink

Collective memory and spatial sorting in animal groups
ID Couzin, J Krause, R James, GD Ruxton... - Journal of theoretical ..., 2002 - Elsevier

We present a self-organizing model of group formation in three-dimensional space, and use
it to investigate the spatial dynamics of animal groups such as fish schools and bird flocks.

We reveal the existence of major group-level behavioural transitions related to minor ...
Cited by 878 )Related articles All 28 versions Cite Save More
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Case Study 1:
| ocusts



L ocusts = devastating
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| ocust swarms migrate with
a rolling motion

wind >
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Takeoff Resting Landing

Uvarov, Grasshoppers and [ ocusts (1977



Modael It.



Eur. Phys. J. Special Topics 157, 93-109 (2008) | HE EUROPEAN
© EDP Sciences, Springer-Verlag 2008 PHYSICAL JOURNAL
DOI: 10.1140/epjst/e2008-00633-y SDEC AL TOPICS

A model for rolling swarms of locusts
CM.

opaz, A.J. Bernoft, S. Logan, W. Toolson




height (2)

A

An agent-pased model

Social potential p(r)

wind (U) — —

downwind (x)

Model:

gravity

(G)

—-

r = Interlocust distance







Free-space swarms have
two possible behaviors

Behavior #1: H-stable (FL3 < 1) p(r) = —FLe ™t 47
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Free-space swarms have
two possible behaviors

Behavior #2: Catastrophic (FL3 > 1) p(r) = —FLe ™1 4 e
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Free-space swarms have
two possible behaviors
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With gravity, the catastrophic
swarm forms a bubble

H-stable Gravity G = 0.01

e -]




With gravity, the catastrophic
swarm forms a bubble

Catastrophic Gravity G = 1

"---------------------.-T ------------------------




With wind, the H-stable
swarm daies out

H-Stable Wind U = 0.01




Catastrophic

With wind,
the catastrophic swarm rolls

Wind U =

time =0
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Case Study 2:
Aphids



How well are aggregation models tied to data!

Inferring individual rules from collective behavior
R. Lukeman,Y.-X. Li, L. Edelstein-Keshet
PNAS 2010

|A SWARM (S) POLARIZED (P) MILLING (M) - =
-H — P R
2SSy P T TSN,
- ~ o
I \k’\-ﬁ. <= | L Q‘:‘\\{\\?‘Q‘* /// /;\IH :"._ ~ I.l'
F{B }J?\h \"-"/ “-\“- 1‘-“"}.‘1‘?\\‘5\%\ r,’{f :\ !\f j‘\ //J; lfi L[] e ° °
C\ RN W S
\& “}{\[ . \‘\-.—._\ \‘\\\ RN ~ \ T' N it (e 4 II t t t It t b I t d
A R N N A Collective sta €S, MUITISTaDIIIty an
P N N N \\:‘(_-—-f/f,
= \\‘:- > B

coarzaion 0, — raten 0 — =« transitional behavior in schooling fish

B.
Tunstrom, Katz, et al.
PLoS One 2013
S ":.._' ¢ :
Tl Interaction ruling collective animal behavior

bt ot ,;* : depends on topological rather than metric distance
" s e S M. Ballerini, N. Cabibbo, et al.

il Bl pAs 2008

:' i "-l? & o o " '# %
" # BB - i d '
- o o rE . . o
i P - =
"‘ ' - 47 - I""I *ll" '- -
- 1_' 3 5 Y - =" v '!r, - ph



Meet Acyrthosiphon pisum (pea aphid)

* Crop pests

* Model organism in biology (disease, phenotypic
plasticity, insect-plant interactions...)

* Genomic interest (PLoS Biology, vol. 8,2010)

* Social aggregators??? (Kidd 1976; Strong 1967)
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OPEN @ACCESS Freely available online o P LO S
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o Dec 2013 |Volume 8 | Issue 12 | e83343
Social aggregation in pea aphids:
Experiment and random walk modeling

C. Nilsen*, J. Paige™, O.Warner*, B. Mayhew™, R. Sutley™,
M. Lam*,A.). Bernoff, C.M.Topaz
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We filmed pea aphids in a featureless arena.




We applied tracking algorithms to obtain trajectories.




We applied tracking algorithms to obtain trajectories.
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Modael It.



We tried a two-state correlated random walk model with
four primary parameters.

| = Pms | — Psm
Moving PM.S. »[ Stationary
Follow unbiased transition Do nothing.
correlated probabilities
random walk. [€
Psm

step lengths
\\(distance in 0.5 sec)




Analyze data binned by nearest neighbor distance.

Frame #1 )
Aphid Position Moving? Neighbor Dist.| I €dagogical example:
1 (#,#) Y 0.02 O <004 m
N B R 008 ® 0.04-0.08 m
3 (#,4) N 0.11
T an o ® 0.08-0.12 m
Frame #2

Aphid Position Moving? Neighbor Dist.| \A/ithin each bin, investigate

1 (#,#) Y 0.05 ° M . .
, # 4 y 0.0 ovement transitions
3 (#,#) N 0.11 ® Step Iength
d | EH Y 0.09 ® Turning angle
Frame #3
Aphid Position Moving? Neighbor Dist.
1 (#,#) Y 0.11 |n the real data
2 (##) N 0.03 ® | bin = 800 observations
3 (#,#) N 0.11 J—_— .
°
. o N 010 | .2 million observations




State transition probabilities depend on distance to an

aphid’s nearest neighbor.

Prrs(d) = Prpg + (Pyg — Prgg)e™ 4/ @ms.
R2 = 0.92

Probability Pms

Probability Psm

0 0.04 0.08 0.12 0.16 0.20
nearest neighbor distance d (m)



Step lengths depend on distance to an aphid’s nearest
neighbor.
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Turning angle distribution spread depends on distance to
an aphid’s nearest neighbor.

Turning angle distribution Turning angle distribution
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0 006 . 0.12 0.18
nearest neighbor distance d (m)



In summary of the model...

| = Pws | — Psm
Moving PM.S. »[ Stationary
Follow unbiased transition Do nothing.
correlated probabilities
random walk. [
Psm

Estimated from a data set of |.2 million entries:

Depends on nearest

Quantity Meaning neighbor distance d via...
Pms Probability of stopping 3 parameters
Psm Probability of starting 4 parameters
£ Step length 3 parameters

o) Turning angle spread 3 parameters



Main messages:

* Sensing range 0.4 - 1.2 cm (| - 3 body lengths)
* Lonely: P(move) T, step length T, turning angle |
* Crowded: P(move) 1, step length |, turning angle T
* Social behavior, passive aggregation mechanism
* Social model gives better agreement with experiment

-y

-----



Conclusions

. There are many agent based aggregation models.

. Some have been influential.

. Choose the right model for the question(s) you

want to answer.

. Actually, please, |just
want to answer.

AVE a question that you



The big picture

* Questions about biological aggregations
1. How does each individual behave?
2. How does the group behave”

3. How are individual and group behavior linked"”



