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The big picture
• Biological aggregations are social groups displaying 

collective behavior.

• They matter for pattern formation, biology, algorithms…

• Consider a minimal modeling approach.

• There are hundreds or thousands of published models, 
and some have been highly influential.

• Choose the right model for the job.



Biological 
Aggregations



Biological aggregations move 
in a coordinated manner.

Parrish & Keshet, Nature, 1999



Aggregations can 
propagate without a leader.

http://youtu.be/iRNqhi2ka9k



Social interactions are key to 
the formation of groups.
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Who cares?
“Social behaviors [that] on short time and space scales lead to 
the formation and maintenance of groups… lead at larger time 
and space scales to differences in spatial distributions of 
populations and rates of encounter and interaction with 
populations of predators, prey, competitors and pathogens…  
At the largest time and space scales, aggregation has profound 
consequences for ecosystem dynamics and for evolution of 
behavioral, morphological, and life history traits.” 

- Okubo, Keshet, Grunbaum,“The dynamics of animal grouping”  
in Diffusion and Ecological Problems, Springer (2001)



Collective motion occurs across the natural and engineered worlds.



Aggregation 
Models



There are numerous classes 
of aggregation models

Continuum

Discrete

Kinematic

Dynamic

Deterministic

Stochastic

Isotropic

Nonisotropic



Consider the value of 
parsimony in your models.

Fish neurobiology 
Fish behavior 

Ocean current profiles 
Fluid dynamics 

Resource distribution

Self-propulsion 
Attraction/repulsion 

Alignment



Example 1: 
Attraction/repulsion



His earliest publication, written at 18, concerned photography of 
local birds and by age 21 he had published 15 popular articles and 
notes and had started his theoretical and experimental studies on 
fish locomotion. In 1925 the New York Academy of Sciences 
awarded him the A. Cressy Morrison Prize for his pioneering and 
penetrating analysis of fish locomotion…

A historical note on 
Charles M. Breder

11

Plate 17. Larval fish. Labeled: "10476. Mar. 5, 1917. 18-0 M Net. Bot. Net." (Aug. 23, 1919,
pencil drawing on buff paper, 5 x 8 in). Image: larval_fish_17.jpg on CD.

Plate 18. Citharichthys arctifrons. Labeled: "Citharichthys artifrons. Grampus. 10082 18-OF"
(Pencil drawing on buff paper, 5 x 8 in). Image: larval_fish_18.jpg on CD.

Eugenie Clark
the “shark lady”



Example 1: 
Attraction/repulsion
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Example 2: 
Kinematic Alignment



Example 2: 
Kinematic Alignment

Averaging 
+ 

Noise



Example 2: 
Kinematic Alignment
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Example 2: 
Kinematic Alignment
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Example 3: Dynamic,  
Self-Propelled Swarmers



ẋi = vi

mv̇i =
�
↵� �|vi|2

�
vi �riQi

Qi =
X

j 6=i

Cre
�|xi�xj |/Lr

� Cae
�|xi�xj |/La .

Example 3: Dynamic,  
Self-Propelled Swarmers



Social potential Q(r)

r = interorganism distance

Example 3: Dynamic,  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Example 4: 
Kitchen Sink



Case Study 1: 
Locusts



1010 locusts

100 km2
10 - 100 
km/day

33

Deser t Locust Guide lines

Migration

Deser t Locust Guide lines

32 Biology and behaviour

MIGRATION AND SEASONAL DISTRIBUTIONS

Since both day-flying swarms and night-flying solitary individuals are displaced
downwind, the seasonal changes in the mean wind flow bring locusts into particular
zones during particular seasons (see Fig. 16). For example, locusts move southwards
from northwest Africa into the Sahel of West Africa at the beginning of the summer.
During the autumn, they move northwards again but low temperatures at night limit the
movement of night-flying solitaries compared with day-flying swarms.

Downwind displacement tends to bring locusts into an area during the season when
rain is most likely, for example, the Sahel of West Africa and the Sudan in the summer
and the Red Sea coasts in the winter. Once the rain falls, the locusts will mature and
breed. By the time the new generation of adults is capable of sustained flight, the
seasonal wind pattern may well have changed and breeding conditions become poor.
The locusts will then migrate rapidly, often over very great distances, to another area.

All this is true only in a very general way. Often there are movements that take place
during periods of particular winds rather than coinciding with the prevailing wind flow.
Moreover, rare and even unprecedented movements continue to occur. This is one
reason why, in any given year, only part of the seasonal breeding area will be infested.
The other major reason for unsuccessful breeding will be failure of the seasonal rains.

Figure 16. Within the recession area, locusts move with the winds. These bring
them into particular zones during the summer (the Sahel and the Indo-Pakistan
desert) and during the winter/spring (northwest Africa, along the Red Sea and
Baluchistan).

Locust season Rainfall season Hatching Fledging

Spring (long rains) February – May March – June May – August
Summer June – September July – September August – October
Winter (short rains) October – January October – January November – February

Winter/spring breeding areas
and resulting migration

Summer breeding areas
and resulting migration

Recession area

Spring breeding areas Summer breeding areas

● Northwest Africa ● Sudan, Eritrea, Ethiopia
● Iran, Pakistan ● East Africa*
● Interior of Saudi Arabia and Yemen ● Sahel, West Africa
● Somalia Peninsula and East Africa* ● Indo-Pakistan border

Winter breeding areas

● Red Sea and Gulf of Aden coasts
● Somali Peninsula and East Africa*

* during plagues

Desert Locust Range

Locusts = devastating



wind

Uvarov, Grasshoppers and Locusts (1977)

Takeoff Resting Landing

Locust swarms migrate with 
a rolling motion



Model it.



Eur. Phys. J. Special Topics 157, 93–109 (2008) 
© EDP Sciences, Springer-Verlag 2008 
DOI: 10.1140/epjst/e2008-00633-y

THE EUROPEAN 
PHYSICAL JOURNAL 
SPECIAL TOPICS

A model for rolling swarms of locusts
C.M. Topaz, A.J. Bernoff, S. Logan, W. Toolson
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Free-space swarms have 
two possible behaviors
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Free-space swarms have 
two possible behaviors
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Free-space swarms have 
two possible behaviors
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With gravity, the catastrophic 
swarm forms a bubble

H-stable Gravity G = 0.01



With gravity, the catastrophic 
swarm forms a bubble

Catastrophic Gravity G = 1



With wind, the H-stable 
swarm dies out

H-Stable Wind U = 0.01



With wind, 
the catastrophic swarm rolls

Takeoff Resting Landing
Uvarov, Grasshoppers & Locusts (1977)

Wind U = 1Catastrophic



Case Study 2: 
Aphids



spacing structure, and synchrony in dives (26, 27) (Fig. 1A and
SI Text).
In our data, individuals have a mean nearest-neighbor distance

(NND) of 1.45 body lengths (BL) with SD 0.25 BL, and a mean
speed of 2.0 BL/s. While collecting data, we noted that ducks
occasionally accelerate/decelerate and are visually alert to their
neighbors (in 360°), displaying frequent head turns. Kleptoparasitic
gulls (28) (primarily glaucous-winged gulls, Larus glaucescens) fre-
quently attack scoters, robbing themofmussels (Mytilus edulis) (26).
We observed scoters actively avoiding encroaching gulls by form-
ing avoidance zones (“vacuoles”) within the aggregate (Fig. S1).
Noteworthy features of the dataset we collected are a natural

setting using native undomesticated birds, and minimal effect of
measurement on behavior, large groups (up to ≈200), and con-
venient geometry (2D, well-spaced floating flock, versus 3D flying
swarm). The high signal-to-noise ratio allows us to reconstruct
individual trajectories accurately.
The observed mean neighbor density and angular deviation ob-

tained by pooling the data are depicted in the 2D plot (Fig. 2 A and
B). The neighbor density (Fig. 2A) reveals an empty disk (dark
blue), surrounded by ring of high density (red) at 1.45 BL, and
further clouds of lower density (yellow). The highest density (dark
red) occurs at a preferred distance directly in front/behind the focal
bird (Fig. 4C). A few “echo” waves are seen in radial neighbor
density plots (Fig. 4D). These observations imply a higher proba-
bility of finding a neighbor at preferred distance and angle.
The mean angle between headings (denoted “absolute devia-

tion”) is shown in Fig. 2B. At close distances (< ≈1.3 BL), de-
viation is strongly angle-dependent (high in front/behind: dark
red; low at left/right: blue): That is, birds align roughly in parallel
with neighbors alongside, but deviate from neighbors in the axis
of motion. At preferred distances (≈1.5 BL), deviation is low at
all angles (minimal at left/right). At larger distances (>2 BL),
deviation increases as correlation decays.
As shown in Fig. 2, neighbor distributions have circular reflective

symmetry due to mutual neighbor pairs. We asked whether the
front/back high deviation stems from interactions from behind

(avoiding aggressive neighbors), from the front (collision avoid-
ance), or both. The deviation from themean velocity field caused by
a neighbor too close in front was higher than that of a neighbor too
close in back, suggesting that a frontal response dominates (further
discussion in SI Text).
Taken together, Fig. 2 A and B suggest that the dominant dis-

tance-dependent interaction occurs along the axis of motion: Indi-
viduals preferentially move in line with those in front of them, and
repel strongly, by deviating sideways, if too close to that neighbor.
In contrast, alignment with neighbors is strongest for neighbors at
left/right. Importantly, the increase in deviation with radial distance
in Fig. 2B gives direct evidence for the existence of a local align-
ment force, for if alignment was instead imparted solely by global
information (e.g., the direction to the foraging site), deviation
would be uncorrelated with distance from a given individual.

Fig. 1. A typical flock of M. perspicillata (surf scoter) moving on the water surface showing a raw image (A) and an image filtered and thresholded to isolate
individuals and eliminate noise (B). (C) Validation of objects by overlay on original image; centers of mass for individuals were calculated. (D) Correction for
perspective and transformation to ”real” positions, calculated velocities (gray lines), and correction for drift currents.

Fig. 2. Results of data analysis: Density maps for position and orientation of
neighbors relative to a typical individual (central white disk, with ”beak” in
front) based on pooled data excluding flock edges. Radial distances of 1, 2,
and 3 BL are superimposed. (A) Density of neighbor positions (normalized to
have an average value of 1) showing a preference for frontal neighbors. (B)
Relative neighbor orientation showing high deviation in front/behind versus
low at left/right flanks. Deviation increases radially outwards, indicating
local alignment interaction (as distinct from alignment to common goal).

2 of 5 | www.pnas.org/cgi/doi/10.1073/pnas.1001763107 Lukeman et al.

Inferring individual rules from collective behavior
R. Lukeman, Y.-X. Li, L. Edelstein-Keshet
PNAS 2010

Hence, to learn something about the interaction ruling collective
behavior, it is necessary to analyze the structural organization of
individuals within the group. To do this, however, it is essential
to have data on the 3D positions of individuals in large groups.
Collective behavior is a qualitatively different phenomenon, with
emerging complex patterns, only when the number of individuals
is big. Moreover, in small aggregations, the surface-to-volume
ratio is large, and the bias introduced by the border is inevitably
very strong (see Methods). Unfortunately, gathering quantitative
3D data on even moderately large groups of animals is very
difficult. Most empirical studies have two major limitations: A
small number of individuals (a few tens) and loose group
arrangements (22–25), at variance with the huge, highly cohesive
natural aggregations.

Using stereometric and computer vision techniques, we mea-
sured 3D individual birds positions in compact flocks of up to
2,600 European Starlings (Sturnus vulgaris) in the field. This
number is an advance of almost two orders of magnitude
compared with former experiments. A typical f lock and its 3D
reconstruction are shown in Fig. 1 [see also supporting infor-
mation (SI) Fig. 5]. Although not all birds form groups, starlings
habitually organize in flocks, and their aerial display provides a
paradigmatic case of collective behavior. These birds gather in
the evening over the roost and form sharp bordered, strongly
cohesive flocks, ranging from a few hundreds to tens of thou-

sands of birds (see SI Figs. 6 and 7). We reconstructed and
analyzed 10 independent flocking events recorded at the roost-
ing site of Termini railway station (Rome, Italy) between
December 2005 and February 2006. Each event is defined by a
series of up to 80 stereo photographs, shot at 10 frames per
second. Different events correspond to different flocking flight
sequences. Observations were made at dusk.

The clearest characterization of the structure of birds within
a flock is given by the spatial distribution of the nearest
neighbors. Given a reference bird, we measure the angular
orientation of its nearest neighbor with respect to the flock’s
direction of motion, i.e., the neighbor’s bearing and elevation.
We repeat this by taking all individuals within a flock as
reference bird, and, in this way, we map the average angular
position of nearest neighbors (see Fig. 2’s legend). This map (Fig.
2a) shows a striking lack of nearest neighbors along the direction
of motion. The structure of individuals is therefore strongly
anisotropic. The possible reasons for this anisotropy, probably
related to the visual apparatus of birds (starlings have lateral
visual axis), are discussed in the SI Text. The crucial point,
however, is that this anisotropy is the effect of the interaction

Fig. 1. A typical analyzed flock. This group consists of 1,246 starlings, flying
at !70 m from the cameras at !11 ms"1 (flock 28-10 in SI Table 1). (a and b)
Left (a) and right (b) photographs of the stereo pair, taken at the same instant
of time, but 25 m apart. To perform the 3D reconstruction, each bird’s image
on the left photo must be matched to its corresponding image on the right
photo. Five matched pairs of birds are visualized by the red squares. (c–f )
Three-dimensional reconstruction of the flock under four different points of
view. (d) Reconstructed flock under the same perspective as in b.

Fig. 2. Angular density of nearest neighbors. For each bird i we define the
unit vector u! i in the direction of its nearest neighbor. We then place all of the
vectors u! i at the same origin and plot their density on the unitary sphere
(Mollweide projection). We normalize by the isotropic case so that the density
is uniformly equal to 1 for a noninteracting aggregation of individuals. The
velocity V! goes through the center of the map, whereas the component of
gravity perpendicular to the velocity, G! !, corresponds with a minus sign to the
zenith of the map (velocity V! and gravity G! are approximately orthogonal in
all flocks; on average, V! !G! # 0.13 $ 0.02 SE). The plane P orthogonal to G! !

corresponds to the horizon. The latitude, or elevation, ! !["90°:90°] indicates
the angle between ui and the horizon plane P. The longitude, or bearing, "
!["180°:180°] indicates the angle between the projection of u! i on the horizon
plane P and the velocity V! . Therefore, the center of the map (! # 0°, " # 0°)
corresponds to the front of the bird, whereas the points (! # 0°, " # %180°)
and (! # 0°, " # "180°) correspond to the rear of the bird. (a) For nearest
neighbors, the density is strongly anisotropic, with a significant lack of birds
along the velocity. The map is calculated by using data from flock 25-11 (see
SI Table 1). However, data from all flocks show the same lack of nearest
neighbors along the velocity (SI Fig. 10). (b) The density for the tenth nearest
neighbor shows no statistically significant structure, and it is compatible with
a set of noninteracting points.

Ballerini et al. PNAS ! January 29, 2008 ! vol. 105 ! no. 4 ! 1233
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Interaction ruling collective animal behavior
depends on topological rather than metric distance
M. Ballerini, N. Cabibbo, et al.
PNAS 2008

How well are aggregation models tied to data?
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which, by construction also takes values between 0 (no rotation)
and 1 (strong rotation).

Time series of these two order parameters give us valuable
information about the global structure of a group and how the
structure changes during an experiment. However, important
pieces of information are not captured, like the group density, the
average individual speed, and how close a group swims to the tank
boundary. For a fuller picture of the collective dynamics, we will
also use these order parameters. Other group properties could also
be measured.

Collective states exhibited and the role of group size
Throughout our entire period of filming the fish were cohesive,

and for all group sizes three dynamically-stable collective
behaviors were observed [3]; the swarm (S), polarized (P) and milling
(M) group state. Snapshots of these distinct patterns are shown in
Fig. 1A for a group of 150 fish (Videos S1, S2, S3, S4 contain
video extracts of all group sizes). As in [3], these separate modes of
motion can be categorized by only two structural properties (order
parameters) of the group—its polarization Op and its degree of
collective rotation Or. Groups repeatedly transitioned between
these collective states, as is evident in representative time series of
the order parameters shown in Fig. 1B.

To demonstrate more clearly these dynamically-stable states, in
Fig. 2 we consider the proportion of time groups spend in different
regions of the two-dimensional phase space spanned by the order
parameters Op and Or (red representing more time spent in a given
region and blue the least time; black areas signify regions of the
phase space not visited by groups in our experiments). While all
three states of motion were manifest in all groups, there are also

visible differences relating to increasing group size. For the
smallest group size of 30 fish we see that the polarized group state
predominates (high Op and low Or). Only rarely did groups of this
size exhibit swarm behavior (low Op and low Or), and even less
frequently did they adopt the rotating group state (low Op and high
Or). The fluctuations in the order parameters are also most
frequent for this group size (Fig. 1B). For a group size of 70 fish the
frequency of transitions decreases and the collective states
corresponding to the three dynamically-stable states become
clearly distinguishable as ‘hotspots’: the polarized state is no
longer dominant, with milling and swarm behavior also being
common. As group size is increased further, to 150 and then 300
fish, groups spend most of their time milling, displaying fewer
transitions into (and among) the polar state and swarm state. For
all group sizes the milling state has an equal probability of rotating
clockwise and counter-clockwise, i.e. groups did not exhibit a
handedness (see Fig. S1).

A natural consequence of increasing the number of fish in the
tank is that the mean density within the experimental arena
becomes higher, and hence the effects of the tank boundary
become more pronounced. To reveal whether the higher density
of fish per tank area in larger groups could cause the increased
stability of the milling state we performed an experiment (4
replicates) with 30 fish in a smaller tank (0.6660.38 m), which
corresponds to the mean density of 300 fish in the larger tank. The
density plot of the order parameters is shown as an inset in the 30
fish density plot in Fig. 2, and reveals that confinement by the
boundaries and higher mean density do not lead to increased time
spent milling. However, the time spent in the polarized state was
reduced; contact with the smaller tank caused this group size to

Figure 1. Dynamical states of schooling fish. (A) Snapshots of a
group of 150 golden shiners swimming in a shallow tank. The different
images (thresholded for clarity) demonstrate the typical configurations
displayed by the fish school: swarm state (S), polarized state (P) and
milling state (M). (B) Extracts of time series of order parameters for
groups of 30, 70, 150, and 300 golden shiners. Polarization Op (in blue)
measures how aligned the fish are, while rotation Or (in red) measures
the degree of rotation around the center of mass of the fish shoal.
doi:10.1371/journal.pcbi.1002915.g001

Figure 2. Density plots of polarization vs. rotation from
experiments. The data shown are averaged over all replicates for
each of the groups of 30, 70, 150, and 300 golden shiners. The order
parameter space is divided into four regions—swarm (S), polarized (P),
milling (M), and transition (T)—each being characterized by the
dominant dynamical state of the fish school in that particular region.
Different values of pmin and pmax were used for each group size to
emphasize the density patterns and regions with no data are colored
black. The insert in the 30 fish plot shows the density plot from an
experiment with 30 fish and the tank area reduced to one tenth of the
original.
doi:10.1371/journal.pcbi.1002915.g002

Collective States in Schooling Fish

PLOS Computational Biology | www.ploscompbiol.org 3 February 2013 | Volume 9 | Issue 2 | e1002915

Collective states, multistability and
transitional behavior in schooling fish
Tunstrøm, Katz, et al.
PLoS One 2013



Meet Acyrthosiphon pisum (pea aphid)

• Crop pests
• Model organism in biology (disease, phenotypic 

plasticity, insect-plant interactions...)
• Genomic interest (PLoS Biology, vol. 8, 2010)
• Social aggregators??? (Kidd 1976; Strong 1967)



Social aggregation in pea aphids:  
Experiment and random walk modeling
C. Nilsen*, J. Paige*, O. Warner*, B. Mayhew*, R. Sutley*,  
M. Lam*, A.J. Bernoff, C.M. Topaz
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Abstract

Locusts exhibit two interconvertible behavioral phases, solitarious and gregarious. While solitarious individuals are repelled
from other locusts, gregarious insects are attracted to conspecifics and can form large aggregations such as marching
hopper bands. Numerous biological experiments at the individual level have shown how crowding biases conversion
towards the gregarious form. To understand the formation of marching locust hopper bands, we study phase change at the
collective level, and in a quantitative framework. Specifically, we construct a partial integrodifferential equation model
incorporating the interplay between phase change and spatial movement at the individual level in order to predict the
dynamics of hopper band formation at the population level. Stability analysis of our model reveals conditions for an
outbreak, characterized by a large scale transition to the gregarious phase. A model reduction enables quantification of the
temporal dynamics of each phase, of the proportion of the population that will eventually gregarize, and of the time scale
for this to occur. Numerical simulations provide descriptions of the aggregation’s structure and reveal transiently traveling
clumps of gregarious insects. Our predictions of aggregation and mass gregarization suggest several possible future
biological experiments.
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Introduction

Outbreaks of locusts such as Schistocerca gregaria, Locusta migratoria,
and Chortoceites terminifera regularly afflict vast areas of Northern
Africa, the Middle East, Asia, and Australia. Depending on
climate and vegetation conditions, billions of voracious locusts
aggregate into destructive swarms that span areas up to a thousand
square kilometers. A flying locust swarm can travel a few hundred
kilometers per day, stripping most of the vegetation in its path
[1–4]. A recent locust plague in West Africa (2003–2005) severely
disrupted agriculture, destroying $2.5 billion in crops destined for
both subsistence and export. Despite control efforts totalling
$400 million, loss rates exceeded 50% in certain regions [5,6].
These numbers alone attest to the urgency of finding better ways
to predict, manage, and control locust outbreaks.

Between outbreaks, locusts are mainly antisocial creatures who live
in arid regions, laying eggs in breeding grounds lush with vegetation.
Resource abundance may, on occasion, support numerous hatchings,
leading to a high population density. Overcrowding at resource sites
promotes transition to a social state in a self-reinforcing process. The
social locust nymphs may display mass migration behavior. Within
the newly formed group, individuals cohere via sensory communi-
cation, whether visual, chemical, and/or mechanical [3]. Outbreaks
may be exacerbated in periods of drought, when large numbers of
locusts congregate on the same breeding or feeding grounds [7–9].

Locusts are phase polyphenic: while sharing the same genotype,
individuals may display different phenotypes [10,11] that incor-
porate variations in morphology [12], coloration [13], reproduc-
tive features [14] and, significantly, behavior [15,16]. An
individual can change from a solitarious state (preferring isolation)
to a gregarious one (seeking conspecifics). Behavioral state is plastic
[3,11,15] and strongly dependent on local population density: in
sparse surroundings, a gregarious locust transitions to the
solitarious state [15] and vice versa in crowded environments.
These phase transitions are called solitarization and gregarization.
Gregarization dominates when large numbers of locusts gather at
the same site, potentially leading to a destructive outbreak [8,9].

Locust gregarization may be induced by visual, olfactory, or
tactile cues. For the desert locust Schistocerca gregaria, the most
potent stimulus is tactile: repetitive stroking of the femora of hind
legs [15–17] functions as a crowding indicator. Mechanosensory
stimulation of leg nerves leads to serotonin cascades in the
metathoracic ganglion, and initiates gregarious behavior [16–18].
Gregarization can be induced by rubbing a locust’s hind leg for 5 s
per minute during a period of 4 hr [17]. Cessation of physical
contact leads to solitarization after 4 hr, though the degree of
solitarization achieved during that time depends on the individ-
ual’s ancestry.

Experiments and models have shed much light on how group
alignment [19–22] and group motion [23,24] depend on group
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We filmed pea aphids in a featureless arena.

r = 0.2 m



We applied tracking algorithms to obtain trajectories.



We applied tracking algorithms to obtain trajectories.

Frame 1

Frame 2

Frame 3
Frames 
4 - 11

Frame 13



Model it.



Moving
Follow unbiased 

correlated 
random walk.

Stationary
Do nothing.

PMS

PSM

1 – PMS 1 – PSM

We tried a two-state correlated random walk model with 
four primary parameters.

A
`1

`2

✓1

step lengths
(distance in 0.5 sec)turning angle

B

C

transition
probabilities



Analyze data binned by nearest neighbor distance.

Frame #1
Aphid 

#
Position Moving? Neighbor Dist.

1 (#,#) Y 0.02
2 (#,#) N 0.06
3 (#,#) N 0.11
4 (#,#) Y 0.07

Frame #2
Aphid 

#
Position Moving? Neighbor Dist.

1 (#,#) Y 0.05
2 (#,#) Y 0.03
3 (#,#) N 0.11
4 (#,#) Y 0.09

Frame #3
Aphid 

#
Position Moving? Neighbor Dist.

1 (#,#) Y 0.11
2 (#,#) N 0.03
3 (#,#) N 0.11
4 (#,#) N 0.12

Pedagogical example:
• < 0.04 m      
• 0.04 – 0.08 m
• 0.08 – 0.12 m

Within each bin, investigate
• Movement transitions
• Step length
• Turning angle

In the real data
• 1 bin ≈ 800 observations
• 1.2 million observations
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Step lengths depend on distance to an aphid’s nearest 
neighbor.
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Turning angle distribution spread depends on distance to 
an aphid’s nearest neighbor.
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Moving
Follow unbiased 

correlated 
random walk.

Stationary
Do nothing.

PMS

PSM

1 – PMS 1 – PSM

In summary of the model...

transition
probabilities

Quantity Meaning
Depends on nearest 

neighbor distance d via... 

PMS Probability of stopping 3 parameters

PSM Probability of starting 4 parameters

l Step length 3 parameters

ρ Turning angle spread 3 parameters

Estimated from a data set of 1.2 million entries:



Main messages:

• Sensing range 0.4 - 1.2 cm (1 - 3 body lengths)
• Lonely: P(move) ↑, step length ↑, turning angle ↓        
• Crowded: P(move) ↓, step length ↓, turning angle ↑    
• Social behavior, passive aggregation mechanism
• Social model gives better agreement with experiment



Conclusions
1. There are many agent based aggregation models.

2. Some have been influential.

3. Choose the right model for the question(s) you 
want to answer.

4. Actually, please, just HAVE a question that you 
want to answer.



The big picture
• Questions about biological aggregations

1. How does each individual behave?

2. How does the group behave?

3. How are individual and group behavior linked?


