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Abstract:

Biological aggregations (swarms) exhibit morphologies governed by social
interactions and responses to environment. Starting from a particle model we
derive a nonlocal PDE, known as the aggregation equation, which describes
evolving population density. The solutions to the aggregation equation can exhibit
a variety of behaviors including spreading without bound, concentrating into &-
functions and formation of compactly supported equilibria. We describe some tools
for investigating the asymptotic behavior of solutions. We also study equilibria and
their stability via the calculus of variations which yields analytical solutions. Finally

we present a case study about how these methods can be used to construct a
model of locust swarms.

Useful References:

* A. J. Bernoff & C. M. Topaz, “Nonlocal aggregation models: A primer of swarm equilibria.” SIAM Review 55 (2013)
709-747. Note the introduction and epilogue to this paper contain a potentially useful literature review.

* A. J. Leverentz, C. M. Topaz & A. J. Bernoff. “Asymptotic Dynamics of Attractive-Repulsive Swarms,” SIAM J. Appl.
Dyn. Sys. 8 (2009) 880-908.

e C. M. Topaz, A. J. Bernoff, S. Logan & W. Toolson, “Aggregations, Interactions, and Boundaries: A Minimal Model
for Rolling Swarms of Locusts,” Eur. Phys. J. - Spec. Top. 157 (2008) 93-109.



Many aggregations have sharp boundaries.

Plate 3. Wildebeest massing in a grazing front on the Serengeti Plains. March 1973.
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Biological question
How are individual behavior and
group behavior connected?

Mathematical question
How do different social interaction kernels affect the
(asymptotic) macroscopic behavior of a solution?



A Continuum Model of Swarming

Three Key Ideas:
« Continuum model of swarm density, £(7,1).

* Individuals interact pairwise and social forces are additive.
— Repel at short distances (collision avoidance)
— Attract at longer distances (swarming behavior)
 Kinematic Model (velocity « social forces) plx,t)

X

Previous Work:
* Bodnar & Velazquez (2006) considered well-posedness and blow-up in 1D.
* PBertozzi & Laurent (2007) proved axisymmetric blow-up in N-dimensions.
* Bertozzi & collaborators (2008 . . .) working on general blow-up in N-dimensions.




Computing the Velocity

® /\/\P(y)

X

Velocity for a test mass at z from the density p(¥)

v(l’)z/oo fs(x —y)ply) dy = fsxp

—=—00

Where f,(x) is the social force J)

Induced by the mass distribution
with density p(y) .
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Conservation of Mass

plz,1)

The flux, J, is given by:
J =wvp

So the equation of conservation of mass is:

op 0J

5 T, =0 = pet(vp)a=0
And the velocity is given by
U_/ fs(x —y)p(y) dy = fs = p

S




Conservation of Mass

/\/\p(y)

X

The flux, J, is given by:

J =wvp
So the equation of conservation of mass is:
dp , 0J

And the velocity is given by

v—/ fulz = y)p(y) dy = fu*p

S




Continuum vs. Discrete

Continuum Model:

Difficult to simulate, particularly, in higher dimensions
< Simulation difficulty independent of number of particles.
=+) Relationship to biology not always clear. p(@,1)

&) Much better tools for analysis /\/\

Discrete Model: 12
&£ Easy to simulate a small number of particles.

0.8}

< Easy to generalize to higher dimensions.
&£ Relationship to biology well understood. 04
Difficult to analyze or find exact solutions.
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The Continuum Model (1D)
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Morse Social Force

(0,1 —F)

\

fs(x)

b (0,—1+ F)

" Odd
Finite first moment
Cont. & piecewise diff. (x # 0)
Jump discontinuity (x = 0)

. Crosses zero for exactly one x|

Piecewise Linear Social Force
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A I\/Ienagerle of Behaviors
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A Phase Diagram

Morse Social Force: fs(z) = sgn(x) (6—;1; T L)
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p(x)

Cumulative Mass Function

Define the cumulative mass function:

(x,t) = / p(z,t) dz p(z,t) =M
Where ¢ satisfies a wave equation 0 p(x,t)
L‘ — : :
Ve + v, =0 7

And the velocity can be approximated as

v = / fs(x = z)p(z) dz oo

~ [+ “regular”

— } —3(0,-1+F)

Where 3 = f,(0")
Note that as the density is positive, ¢, Is mcreasmg



Burger's Equation

The dynamics are dominated by
Ve + B, =~ 0 B = fs(07)

- If 3 > 0 social forces are at
small distances and density is —/

bounded for all t. v
- If 3 < 0 social forces are attractive at (x,t)
small distances and «» will form a
shock. —
But as p = 1,
i

Shocks = Density §-functions!!

See Bodnar & Velazquez (2006)



Spreading Swarms

Expand velocity at long lengthscales: 0.2

Spreading

OO
vo= / fs(x —=y)p(y) dy
J — 00

~ _H'/Oil..‘
Where ~ is the first moment

K = / 2fs(2)dz
Jo
Substitute into C of M,

( f) 31/3;“[2/3 1 r — X 2
NWr,U) = _— — _p
f 4{;‘1”(75 — f())]l/d [QA\[iu(f — f())]l/‘;

_+

Barenblatt Solution

/)/ _'_ (/){l-“");l,‘. — 0
to yield the porous media equation,

pr = KPPz )z which has spreading solutions for x < 0.




Spreading

Barenblatt Solution - \

Rescaled density profile RMS width vs. time
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0.4

Finding Steady States . ﬂ

0.1

When § >0, £ <0 we expect steady solutions.

Energy

ass Constraint

p(z)dz' =M

the solution



Phase Diagram Revisited

Morse Social Force: fs(z) = sgn(z) (@—-z: - Fe—:z:/L)
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Some conclusions

p(x)

 Repulsion (attraction) at the origin suppresses
(causes) blow-up and density concentrations.

* First moment governs spreading at long lengthscales.
Spreading governed by porous media equation.

» Steady states can be found via integral equations.

Open Questions

* Necessary and sufficient conditions for spreading
and convergence to Barenblatt solution.



£,

RMS width

10° |

107"}

A fly in the ointment . . .

This potential has [ >0, £ > 0 which suggests spreading
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| et’s focus on locusts . . .




Locusts form giant, destructive swarms.

National Geographic,
“A Perfect Swarm”

$10 billion/yr for pesticides (all msects)
$100 million/yr for control (Africa)
$100 million/yr in crop loss (Africa)

| (OVANN ‘vd3)

10
10 'Oﬁ“StS. 10 - 100 km/day
L PR AN days or weeks

USRS S

100 km?



With gravity, swarm forms a bubble.

Catastrophic Gravity G = 1
: — €= Sticky boundary



With wind, swarms roll

Catastrophic Wind U = 1
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Can we explain the swarm
morphology?

Steady Catastrophic Locust Swarm
1.2 . . ;

0.8r

0.4} :......-.'...-,-::::: ‘EmptyGap

Q
0.5 1 1. 2

Mass concentration
on ground




A Continuum Swarming Model

Velocity Conservation of Mass
V() = | ale = (o) dy+ 1) o+ (pV)s = 0,
v External Force
q(x)
mG)\ /\/\ p(x,t)
. : " :

0,G —1)
* Finite Mass
« Compact Support

Morse Social Force

¢(z) = sgn(x) |e™* — Ge /&

+ Pairwise, additive

+ Antisymmetric

* Finite first moment Bodnar & Velasquez (2005,2006)
« Jump discontinuity (x = 0)



Energy for the Continuum Model

Energy
Wil = /Q /Q p(2)p(4)Q(x — ) d dy + /Q F(2)p(z) do

/- External Potential

Energy Dissipation

D= [ ) (v@)? o

 Energy dissipated unless equilibrium

« Connection to optimal transport

Morse Potential

Q(z) = e 17 — GLe17l/L /\/\
- Pairwise, additive [ O'(x)=-q(x), F'(x) = - f(x) ] : : / )(."I’, ﬂ

* Repulsive at small x and attractive at large x

« Symmetric T
* Pointy at (x = 0)



First Variation and Steady Solutions
Let p(z) = p+ep(x)
where p 1s a steady solution and p(z) 1s a zero mass perturbation.

Then
Wlp] = W(p] + eWi[p, p| + €Wa|p, pl,

Where the first variation 1s given by:

=),

For the first variation to vanish, in the support of the solution:

/Qa}— y)dy + F(z)| dx

/ Qlz —y)ply)dy + F(x) =X for x € Q5.

i

which is a Fredholm Integral Equation. | constant eneray per unit mass




Second Variation and Stability

Suppose 5 1s an equilibrium solution satisfying:

/ Qlx —y)ply)dy + F(x) =X for z € Q5.

Then for stability two conditions are sufficient:

I) The energy per unit mass A minimizes the induced potential, A(z):

A(z) :
Q:U— y)dy + F(x) = A(z) > A

IT) Second Variation 1s positive definite:

Walp, p] = //Qx— )p(y) dx dy > 0

for zero mass perturbations, ().



Finding Equilibrium States

Equilibrium solutions satisfy an integral equation

Energy

Fredholm Integral Equation

—

first
variation

B
/ Qi — y)p(y) dy = A

Fredholm
integral
equation

Equilibrium state

0.3
£
o2
0.1
0
X

Mass Constraint

/j/)(y) dy =M

Where o < z < [ is the support of the solution



Equilibrium state
0.4

Finding Equilibrium States /\

Fredholm
first e : “invert”
o quation ,
variation integral

operator
If Q(z)=el®l —GLe™*I/'E then
(Opz — 1) (L?0ps — 1)Q(x) = 2L*(G — 1)64e — 2(GL? — 1)6

So applying (Ozz — 1)(L?0ps — to / Qx — =\

yields | 2L%(G — 1)pae — 2(GL? — 1)p = (Opy — 1)(L20pp — 1)\




Finding Equilibrium States

Equilibrium state
0.4

Energy —
first
variation
Solving

Fredholm
integral
equation

Plug in
and satisfy mas
constraint

—

“invert”
integral
operator

2L (G — 1) pgs

—2(GL? = 1)p = (Opy —

1) (L0 — 1)

Yields

o(z) = A + B cos (uz)

0.3
=
$ 02
0.1
0
X

ODE

Linear
ODE

Solution

in the support of the solution.



Continuum solutions agree with discrete (humerical) ones.

Steady Sqlutionsl (N =100) |
30P VS. Z F=05L=2
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o0(z) = A + B cos (uz)



A Primer of Swarm Equilibria




Repulsive Forces on a Finite Interval

- Laplace Repulsive Potential: Q(x) = P

* Finite Interval: -d <x<d

- Equipartition of mass between concentrations at
the endpoints and classical solution in interior.

- Mass Concentrations can'’t be found by classical
integral equation methods

Numerics

2(1]\1 70+ 2(1]\44r 70— d) O_3V:’
Q O :
|
P0) = g 18

—d T d 0

SO+

0.5




Repulsive Forces in a Quadratic Potential
- Laplace Repulsive Potential: Q(x) = e~ |®

» Quadratic external potential: F'(x) = 7:1:2

- Solution is compactly supportedon —H <z < H

- Jump discontinuities at edge of support

- Global energy minimizer.

Numerics

pela) = 5 [(W+1>2/3+(1—x2)] 15

¢ | N 1.4
0 —-H x H

1.3

0.4




Repulsive forces in a gravitational potential

- Laplace Repulsive Potential: Q(z) = ezl

- Half line: 0 < z < o0 @ M<yg

- If M < g all mass concentrates at origin.
- If M > g some mass concentrates at origin and the
remainder forms a compact swarm. :
» Global minimizer and probably global attractor. : 2 >

Numerics

0.6

1
0.4r 1
1

0.2 |

1
% % F(x) =gz
0 L L L

0 0.25 0.5 0.75 1 (=

As a swarm model:
- Concentration on ground (good) but no gap (bad).




Catastrophic Morse Potential in Free Space

- Morse Potential in catastrophic regime ¢ <0 .

- Solution is compactly supportedon —H < x < H.

- Width of support independent of mass!!
- Jump discontinuities at edge of support.
- Local energy minimizer.

- Probably a global energy minimizer.

Numerics

0.3f

0.15¢

Morse Potential

Q(z) = e I1*l — GLeI*I/E

Analytic Solution

pl) = C cos(pa) — Me

7o 1 (1 GL -1
e=2(GL* - 1) S\ Va-aGr -1/
M VG(L? 1)

GL2? — 1 200H+L+1) LOA-G)’
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H-Stable Morse Potential on bounded interval

- Morse Potential in H-stable regime.

* No solution in free space (swarm spreads forever). Morse Potential
- Mass concentrations at endpoints of interval.
Q(z) = e I1*l — GLeI*I/E

» Global energy minimizer.
- Probably global attractor.

Numerics
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Quasi 2D-Potential

Suppose that we look at a quasi-2D mass distribution

p(z,z,t) = p(z,t)
This has an associated potential, @2p(2):

QQD(Z):/O_O_ QW2 + 22) d:z::/io_ VAT

This allows steady swarms with a gap at zero:

Airborne swarm

Empty Gap

Mass concentration on ground

Repulsion ;
from mass concentrated L GraVIty — Stable gap
on ground g< (for some parameters)

~ dz2In(z)




The quasi 2D potential yields dynamically stable bubbles.

Organism column Density profile
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Quasi 2D Locust Swarms
Quasi-2D Numerics

- Quasi 2D Laplace Repulsion Potential. @

- Gravity & Ground: @ .
- Linear potential on a half space. L

- Mass concentration on ground p(:) .

- Gap above ground. at

« Continuous family of solutions

2f 1
- Solution is only a local “swarm” minimizer. % \

1.2

------ . 12.8

0.81 o .. . v T, 1 Airborne swarm A)
z ...o......./ 12.4}

04 :'  eoe - e Empty Gap |

| @ I . |

/0 4 8 12
x

x Mass concentration on ground




2D Morse Equilibria

2D Catastrophic Swarm

0.6l T (d)_ Why are there

R mass concentrations
R IR A at the edges?

2D Morse Ribbons
| @ < | N

0 4 \ 12
xT
Airborne swarm

Mass concentration on ground Z /

Louis Ryan
HMC 2012

Empty Gap




2D Morse - Ribbon

Morse Potential

Z|1 Quasi 2D Swarm
A=t - —

Quasi-2D Moge Potential o(z) X _
)= | Qi) da -LP
Quasi-2D Morse Potential (|2|«1) .t
QQD(Z) ~ ‘Z|21H|Z‘ s00]
Carleman
400} e

Integral Equation (Carleman)

>
=

¢ s00r | Numerical

[a]

L
/ ylPInlylp(z —y) dz2=X  [2| <L \
—L 200} U

100 |
C
2| < L o
\/L2 — Z2 —%.2 -0.15 -0.1 -0.05 O 0.05 0.1 0.15 0.2

= | p(2)




2D Morse - Circular Swarm

2D Catastrophic Swarm 2D Catastrophic Swarm

(Continuum Model) (Particle Simulation)
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Found as an Energy
Minimizer
Dimensionality of local minimizers of the interaction energy

D Balagué, JA Carrillo, T Laurent, G Raoul
Archive for Rational Mechanics and Analysis (2013)



Conclusions

Energy methods allow us to analyze equlibria
and their stability. NG 1D
Equilibria satisfy a Fredholm Integral '
Equation. This yields some analytical
solutions.

Equlibria often contain concentrations on
boundaries.

For locust model, quasi-2D repulsive z
potential and gravity yield a ground
concentration together with a gap.

2D Morse yields inverse square-root mass
singularities on boundaries.

Inverse square-root singularities appear
generic in 2D for “pointy” repulsive potentials. 1

Mass concentration on ground

Quasi 2D

Empty Gap

Bernoff & Topaz “Nonlinear Aggregation Equations: A Primer of Swarm Equilibria.” SIREV (2013).



