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Abstract:
Biological aggregations (swarms) exhibit morphologies governed by social 
interactions and responses to environment. Starting from a particle model we 
derive a nonlocal PDE, known as the aggregation equation, which describes 
evolving population density. The solutions to the aggregation equation can exhibit 
a variety of behaviors including spreading without bound, concentrating into δ-
functions and formation of compactly supported equilibria. We describe some tools 
for investigating the asymptotic behavior of solutions. We also study equilibria and 
their stability via the calculus of variations which yields analytical solutions. Finally 
we present a case study about how these methods can be used to construct a 
model of locust swarms.
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Dyn. Sys. 8 (2009) 880-908.

• C. M. Topaz, A. J. Bernoff, S. Logan & W. Toolson, “Aggregations, Interactions, and Boundaries: A Minimal Model 
for Rolling Swarms of Locusts,”  Eur. Phys. J. - Spec. Top. 157 (2008) 93-109.



Many aggregations have sharp boundaries.

Sinclair, 1977



Biological question
How are individual behavior and

group behavior connected?

Mathematical question
How do different social interaction kernels affect the 

(asymptotic) macroscopic behavior of a solution?



Three Key Ideas:
•  Continuum model of swarm density,            .
•  Individuals interact pairwise and social forces are additive.
− Repel at short distances (collision avoidance)
− Attract at longer distances (swarming behavior) 

•  Kinematic Model (velocity ∝ social forces)

Previous Work:
• Bodnar & Velazquez (2006) considered well-posedness and blow-up in 1D.
• Bertozzi & Laurent (2007) proved axisymmetric blow-up in N-dimensions.
• Bertozzi & collaborators (2008 . . .) working on general blow-up in N-dimensions.

A Continuum Model of Swarming
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Conservation of Mass

 And the velocity is given by
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Continuum Model:
•  Difficult to simulate, particularly, in higher dimensions
•  Simulation difficulty independent of number of particles.
•  Relationship to biology not always clear.
•  Much better tools for analysis  

Continuum vs. Discrete

Discrete Model:
•  Easy to simulate a small number of particles.
•  Easy to generalize to higher dimensions.
•  Relationship to biology well understood.
•  Difficult to analyze or find exact solutions. 
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Abstract. We classify and predict the asymptotic dynamics of a class of swarming models. The model consists
of a conservation equation in one dimension describing the movement of a population density field.
The velocity is found by convolving the density with a kernel describing attractive-repulsive social
interactions. The kernel’s first moment and its limiting behavior at the origin determine whether
the population asymptotically spreads, contracts, or reaches steady state. For the spreading case,
the dynamics approach those of the porous medium equation. The widening, compactly supported
population has edges that behave like traveling waves whose speed, density, and slope we calculate.
For the contracting case, the dynamics of the cumulative density approach those of Burgers’ equation.
We derive an analytical upper bound for the finite blow-up time after which the solution forms one
or more δ-functions.
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1. Introduction. Biological aggregations such as fish schools, bird flocks, ungulate herds,
and insect swarms have drawn considerable attention from mathematical modelers in recent
years. These animal groups—which for brevity we refer to simply as swarms—have implica-
tions for ecological dynamics, human food supply availability, disease transmission, and, on
the longest spatiotemporal scales, evolution [19, 23]. Increasingly, they serve as prototypes
for the development of algorithms in robotics, engineering, and artificial intelligence [6, 22].
Furthermore, biological swarms are a rich and versatile source of pattern-forming behavior,
taking on morphologies including vortices, advancing fronts, branched dendritic structures,
and more exotic patterns [12, 20].

The emergent organization of swarms can be mediated by exogenous influences such as
nutrients, light, or gravity, as well as by endogenous ones, namely social interactions between
individuals. Since some species swarm even in the absence of meaningful external stimuli, one
concludes that social interactions play a key role. The most important social forces are thought
to be attraction, repulsion, and alignment [9, 12, 13]. Attraction refers to the evolutionarily
preprogrammed tendency of conspecific organisms to move towards each other, which offers
benefits such as protection and mate choice, while repulsion refers to the tendency to move
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A Menagerie of Behaviors
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A Phase Diagram
Morse Social Force:

F

L



Cumulative Mass Function
Define the cumulative mass function:

Where     satisfies a wave equation

And the velocity can be approximated as

Where              .
Note that as the density is positive,     , is increasing.



Burger’s Equation
The dynamics are dominated by

- If          social forces are repulsive at 
small distances and density is 
bounded for all t.

- If          social forces are attractive at 
small distances and    will form a 
shock.

But as         ,
Shocks = Density  δ-functions!!

 See Bodnar & Velazquez (2006)



Spreading Swarms
Expand velocity at long lengthscales:

Where    is the first moment

Substitute into C of M,

                              ,
to yield the porous media equation,

Barenblatt Solution

which has spreading solutions for κ< 0.



Barenblatt Solution

Rescaled Density Approaches 
Barenblatt Solution

RMS width has proper 
time dependence



∫ β

α

V (|z − z′|)ρ(z′) dz′ = λ − f(z),

∫ β

α

ρ(z′) dz′ = M

Energy
Fredholm
integral 

equationfirst
variation

Fredholm Integral Equation Mass Constraint

Where α < z < β is the support of the solution
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When β  > 0, κ< 0 we expect steady solutions.
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Phase Diagram Revisited
Morse Social Force:

F

L



Some conclusions 

• Repulsion (attraction) at the origin suppresses 
(causes) blow-up and density concentrations.

• First moment governs spreading at long lengthscales. 
Spreading governed by porous media equation.

• Steady states can be found via integral equations.

Open Questions 
• Necessary and sufficient conditions for spreading   

and convergence to Barenblatt solution.
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A fly in the ointment . . .

Social Force Density Plot

RMS Width Final Steady State

This potential has  β  > 0, κ> 0 which suggests spreading



Let’s focus on locusts . . . 



Locusts form giant, destructive swarms.

1010 locusts

100 km2

10 - 100 km/day
days or weeks

$10 billion/yr for pesticides (all insects)
$100 million/yr for control (Africa)
$100 million/yr in crop loss (Africa)

(EPA, U
N

FAO
)

National Geographic,
 “A Perfect Swarm”



Catastrophic

With gravity, swarm forms a bubble.

Sticky boundary

Gravity G = 1



With wind,  swarms roll

Takeoff Resting Landing
Uvarov, Grasshoppers & Locusts (1977)

Wind U = 1Catastrophic
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Can we explain the swarm 
morphology?

Steady Catastrophic Locust Swarm

Empty Gap 

Mass concentration 
on ground 



A Continuum Swarming Model 

• Pairwise, additive 
• Antisymmetric
• Finite first moment
• Jump discontinuity (x = 0)

Morse Social Force
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External Force

 Conservation of Mass

• Finite Mass
• Compact Support

Bodnar & Velasquez (2005,2006)



Energy for the Continuum Model 

• Pairwise, additive  [ Q’(x)= - q(x) , F’(x) = - f(x) ]
• Repulsive at small x and attractive at large x
• Symmetric 
• Pointy at (x = 0)

Morse Potential 

 Energy

External Potential

 Energy Dissipation

• Energy dissipated unless equilibrium
• Connection to optimal transport



First Variation and Steady Solutions
Let 

Then

Where the first variation is given by:

where     is a steady solution and        is a zero mass perturbation.

For the first variation to vanish, in the support of the solution:

which is a Fredholm Integral Equation.

Z

�⇢̄

Q(x� y)⇥̄(y) dy + F (x) = � for x 2 �⇢̄.

Constant energy per unit mass



Second Variation and Stability

Then for stability two conditions are sufficient:

Suppose     is an equilibrium solution satisfying:
Z

�⇢̄

Q(x� y)⇥̄(y) dy + F (x) = � for x 2 �⇢̄.

I) The energy per unit mass    minimizes the induced potential,        :� �(x)

Z

⌦⇢̄

Q(x� y)⇥̄(y) dy + F (x) = �(x) � �

II) Second Variation is positive definite:

W2[�̃, �̃] =

Z

�⇢

Z

�⇢

Q(x� y)�̃(x)�̃(y) dx dy > 0

for zero mass perturbations,       .

�(x)

�(x) = �



Energy
Fredholm
integral 

equationfirst
variation

Fredholm Integral Equation Mass Constraint

Where α < z < β is the support of the solution
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Finding Equilibrium States

Equilibrium solutions satisfy an integral equation



Energy
Fredholm
integral 

equationfirst
variation

“invert”
integral
operator

ODE

then

yields

So applying to

If 

Finding Equilibrium States
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Energy
Fredholm
integral 

equationfirst
variation

“invert”
integral
operator

ODE

Linear
ODE

Plug in 
and satisfy mass 

constraint

Solution

ρ(z) = A + B cos (μz)

Solving

Yields in the support of the solution.

Finding Equilibrium States
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ρ vs. z
Steady Solutions  (N = 100)

Continuum solutions agree with discrete (numerical) ones.

ρ(z) = A + B cos (μz)

F = 0.5, L = 2



A Primer of Swarm Equilibria



Repulsive Forces on a Finite Interval
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Numerics

• Laplace Repulsive Potential:
• Finite Interval:  -d < x < d
• Equipartition of mass between concentrations at        
  the endpoints and classical solution in interior.
• Mass Concentrations can’t be found by classical
  integral equation methods



Repulsive Forces in a Quadratic Potential 
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Numerics

• Laplace Repulsive Potential:
• Quadratic external potential: 
• Solution is compactly supported on                        .
• Jump discontinuities at edge of support
• Global energy minimizer.



• Laplace Repulsive Potential:
• Half line:  
• If M < g all mass concentrates at origin.
• If M > g some mass concentrates at origin and the 
  remainder forms a compact swarm.
• Global minimizer and probably global attractor.
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Numerics

As a swarm model: 
   - Concentration on ground (good) but no gap (bad).

Repulsive forces in a gravitational potential



Catastrophic Morse Potential in Free Space
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• Morse Potential in catastrophic regime          .
• Solution is compactly supported on                         .
• Width of support independent of mass!! 
• Jump discontinuities at edge of support.
• Local energy minimizer.
• Probably a global energy minimizer.

Morse Potential

Analytic Solution



H-Stable Morse Potential on bounded interval
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• Morse Potential in H-stable regime.
• No solution in free space (swarm spreads forever).
• Mass concentrations at endpoints of interval. 
• Global energy minimizer.
• Probably global attractor.

Morse Potential



Repulsion
from mass concentrated 

on ground

~ dz2ln(z)

Gravity
gz+ = Stable gap

(for some parameters)

x

z

Suppose that we look at a quasi-2D mass distribution 

This has an associated potential,            :

This allows steady swarms with a gap at zero:

Quasi 2D-Potential 

Empty Gap 

Mass concentration on ground 

Airborne swarm
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The quasi 2D potential yields dynamically stable bubbles.

1D

Quasi
2D

Organism column Density profile
ρ

z

ρ

z35 insects
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Quasi 2D Locust Swarms
• Quasi 2D Laplace Repulsion Potential.
• Gravity & Ground:
  - Linear potential on a half space.
• Mass concentration on ground 
• Gap above ground.
• Continuous family of solutions
• Solution is only a local “swarm” minimizer.
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2D Morse Equilibria  
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Why are there
mass concentrations

at the edges?



2D Morse - Ribbon 

Quasi 2D Swarmz
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Morse Potential

Quasi-2D Morse Potential

Q2D(z) � |z|2 ln |z|

|z| � 1Quasi-2D Morse Potential  (             )
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C⇤

L2 � z2
|z| < L

Z L
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Integral Equation (Carleman)
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Figure 2. This is a comparison between Carleman’s and the numerical
solution as for C = 2, and L = 1.5, 1.6. Carleman’s solution is in red and
the numerical solution is in blue.
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2D Morse - Circular Swarm 
2D Catastrophic Swarm

(Particle Simulation)
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Conclusions 
• Energy methods allow us to analyze equlibria 

and their stability.
• Equilibria satisfy a Fredholm Integral 

Equation. This yields some analytical 
solutions.

• Equlibria often contain concentrations on 
boundaries.

• For locust model, quasi-2D repulsive 
potential and gravity yield a ground 
concentration together with a gap.

• 2D Morse yields inverse square-root mass 
singularities on boundaries.

• Inverse square-root singularities appear 
generic in 2D for “pointy” repulsive potentials.
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Bernoff & Topaz “Nonlinear Aggregation Equations: A Primer of Swarm Equilibria.” SIREV (2013).


