Lattice paths, linear algebra and combinatorics Day 2

Carolina Benedetti Velásquez

with Jerónimo Valencia

Mathematics Sin Fronteras October 28th, 2021

La vez pasada

A matroid M = (E, B) on the ground set E is such that B consists of subsets of E where:

$$\blacktriangleright \ \mathcal{B} \neq \emptyset$$

For all $A, B \in \mathcal{B}$, for all $a \in A - B$ there is $b \in B - A$ such that $A - a + b \in \mathcal{B}$.

Ejemplos:

grafos: G = (E, B) where E are the set of edges and B is the collection of trees. *k*-ev: Let V be a *k*-dim. vector space in \mathbb{R}^n . Then $M_V = ([n], B)$ where $B = \{J : |J| = k, p_J \neq 0\}.$

Today: Partially Ordered SETs - posets credit: Viviane Pons

Today: Partially Ordered SETs - posets credit: Viviane Pons

IDEA: Given a set of elements, order them according a given rule.

Posets

A partially ordered set is a pair (P, \leq) where P is a set and \leq is such that for all $x, y, z \in P$:

- $x \le x$ (reflexive)
- If $x \le y$ and $y \le x$ then x = y (antisymmetric)
- If $x \leq y$ and $y \leq z$ then $x \leq z$ (transitive).

Posets

A partially ordered set is a pair (P, \leq) where P is a set and \leq is such that for all $x, y, z \in P$:

- $x \leq x$ (reflexive)
- If $x \le y$ and $y \le x$ then x = y (antisymmetric)
- If $x \leq y$ and $y \leq z$ then $x \leq z$ (transitive).

Ejemplos:

- ▶ (ℕ,≤).
- (D_n, \leq) where $D_n = \{m \geq 1 : m | n\}$ and $k \leq m \leftrightarrow k | m$.

Posets

A partially ordered set is a pair (P, \leq) where P is a set and \leq is such that for all $x, y, z \in P$:

- $x \leq x$ (reflexive)
- If $x \le y$ and $y \le x$ then x = y (antisymmetric)
- If $x \le y$ and $y \le z$ then $x \le z$ (transitive).

Ejemplos:

- ▶ (ℕ,≤).
- (D_n, \leq) where $D_n = \{m \geq 1 : m | n\}$ and $k \leq m \leftrightarrow k | m$.

Notation: $x \leq y \leftrightarrow x < y$ and no z satisfies x < z < y (y covers x).

Let's order graphical matroids on [n]

Let's order graphical matroids on [n]

 $\circ g \lt h \leftrightarrow$ every circuit of *h* is union of circuits in *g*.

chain of the poset

- ▶ How can we order the set of LPMs on [*n*].
- What for?

chain of the poset

- ▶ How can we order the set of LPMs on [*n*].
- What for?

We need a good axiomatization that captures what's happening on the RHS.

Quotients of matroids

A matroid N is a quotient of a matroid M if every circuit of M is union of circuits of N.

LPMs

- ► As anything about matroids, this definition has MANY equivalent ones.
- What to do in the case of LPMs? Using their combinatorics?

LPMs

- ► As anything about matroids, this definition has MANY equivalent ones.
- What to do in the case of LPMs? Using their combinatorics?
- We'll answer this using just drawings next time.

LPMs

- ► As anything about matroids, this definition has MANY equivalent ones.
- What to do in the case of LPMs? Using their combinatorics?
- We'll answer this using just drawings next time.

¡Muchas gracias!